Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (192)

Search Parameters:
Keywords = strong typhoon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4476 KB  
Article
Storm Surge Dynamics and Mechanisms in the Macao Cross Tidal Channel
by Li Li, Boshuai Zhang, Jiayi Guo, Ye Zhu, Zhiguo He and Yuezhang Xia
J. Mar. Sci. Eng. 2025, 13(11), 2087; https://doi.org/10.3390/jmse13112087 - 3 Nov 2025
Viewed by 275
Abstract
Storm surge dynamics in coastal zones and estuaries are complex, driven by coupled oceanic and terrestrial interactions that enhance the risk of coastal disasters. This study investigates storm surge characteristics and mechanisms in the Macao Cross Tidal Channel (MCTC), located in the Macao [...] Read more.
Storm surge dynamics in coastal zones and estuaries are complex, driven by coupled oceanic and terrestrial interactions that enhance the risk of coastal disasters. This study investigates storm surge characteristics and mechanisms in the Macao Cross Tidal Channel (MCTC), located in the Macao Sea Area (MSA). A tide-surge coupled numerical model was established using the unstructured grid Finite Volume Community Ocean Model (FVCOM). The model was rigorously validated against tide gauge data from Typhoon Hato, demonstrating strong performance, with a skill score of 0.95 and a correlation coefficient exceeding 0.94. The spatiotemporal characteristics and mechanisms of storm surge dynamics in the MCTC were elucidated. The results show that the MCTC’s complex geometry induces a geometric funneling effect, which substantially amplifies the storm surge compared with adjacent locations in the estuary and open sea. During the typhoon period, coastal geomorphology affects winds, tide levels, currents, and waves, which in turn spatially and temporally modulate the storm surge. Wind is the primary driver, but its effect is modulated by nonlinear interactions with waves, including enhanced bottom friction and wave set-down. In isolation, the wind-induced component contributed approximately 106% of the peak total surge. This overestimation quantitatively highlights the critical role of nonlinear interactions, where wave-enhanced bottom friction acts as a major energy sink, and wave set-down directly suppresses the water level at the channel entrance. The individual peak contributions from atmospheric pressure and wave were approximately 5% and 17%, respectively, but these peaks occurred out of phase with the storm surge. Energy transformation analysis based on the Bernoulli principle revealed a distinct conversion from potential to kinetic energy in the constricted transverse waterway, while the longitudinal waterway exhibited a more gradual energy change. These findings enhance the mechanistic understanding of storm surges in complex, constricted estuaries and can inform targeted strategies for coastal hazard mitigation in the Macao region. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

15 pages, 4896 KB  
Article
Typhoon-Driven Shifts in Dissolved Organic Carbon Across Mangrove Ecosystems of Varying Restoration Age
by Youwei Lin, Shengjie Han, Ruina Liu, Yunfeng Shi, Xiaoya Zhang, Zongbo Peng, Zhen Ni and Mingzhong Liu
Forests 2025, 16(10), 1599; https://doi.org/10.3390/f16101599 - 17 Oct 2025
Viewed by 260
Abstract
Mangrove ecosystems are vital to coastal carbon cycling, yet their response to extreme climatic events remains underexplored. This study assesses dissolved organic carbon (DOC) dynamics across four ecosystem types—primary mangrove, restored (5-year and 8-year), and bare land—during three typhoons (Maliksi, Yagi, and Trami) [...] Read more.
Mangrove ecosystems are vital to coastal carbon cycling, yet their response to extreme climatic events remains underexplored. This study assesses dissolved organic carbon (DOC) dynamics across four ecosystem types—primary mangrove, restored (5-year and 8-year), and bare land—during three typhoons (Maliksi, Yagi, and Trami) that occurred in 2024. DOC concentrations (mol m−2 s−1) were measured across pre-, during-, and post-event phases and analyzed using boxplots, heatmaps, and ANOVA. Results show that primary mangroves maintained stable DOC levels, indicating strong biogeochemical resilience. Restored plots exhibited phase-dependent DOC variability, with older restoration age linked to improved carbon retention. Bare land showed consistently high DOC release, especially post-event, reflecting vulnerability to hydrological stress. DOC peaks occurred after typhoons, suggesting delayed carbon mobilization via microbial turnover and detrital input. These findings highlight the role of restoration age and vegetation cover in stabilizing coastal carbon under intensifying climatic extremes. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

17 pages, 4602 KB  
Article
Typhoon-Induced Wave–Current Coupling Dynamics in Intertidal Zones: Impacts on Protective Device of Ancient Forest Relics
by Lihong Zhao, Dele Guo, Chaoyang Li, Zhengfeng Bi, Yi Hu, Hongqin Liu and Tongju Han
J. Mar. Sci. Eng. 2025, 13(9), 1831; https://doi.org/10.3390/jmse13091831 - 22 Sep 2025
Viewed by 432
Abstract
Extreme weather events, such as typhoons, induce strong wave–current interactions that significantly alter nearshore hydrodynamic conditions, particularly in shallow intertidal zones. This study investigates the influence of wind speed and water depth on wave–current coupling under typhoon conditions in Shenhu Bay, southeastern China—a [...] Read more.
Extreme weather events, such as typhoons, induce strong wave–current interactions that significantly alter nearshore hydrodynamic conditions, particularly in shallow intertidal zones. This study investigates the influence of wind speed and water depth on wave–current coupling under typhoon conditions in Shenhu Bay, southeastern China—a semi-enclosed bay that hosts multiple ancient forest relics within its intertidal zone. A two-tier numerical modeling framework was developed, comprising a regional-scale hydrodynamic model and a localized high-resolution model centered on a protective structure. Validation data were obtained from in situ field observations. Three structural scenarios were tested: fully intact, bottom-blocked, and damaged. Results indicate that wave-induced radiation stress plays a dominant role in enhancing flow velocities when wind speeds exceed 6 m/s, with wave contributions approaching 100% across all water depths. However, the linear relationship between water depth and wave contribution observed under non-typhoon conditions breaks down under typhoon forcing. A critical depth range was identified, within which wave contribution peaked before declining with further increases in depth—highlighting its potential sensitivity to storm energy. Moreover, structural simulations revealed that bottom-blocked devices, although seemingly more enclosed, may be vulnerable to vertical pressure loading due to insufficient water exchange. In contrast, perforated designs facilitate an internal–external hydrodynamic balance, thereby enhancing protective effect. This study provides both theoretical and practical insights into intertidal structure design and paleo-heritage conservation under extreme hydrodynamic stress. Full article
(This article belongs to the Special Issue Advances in Storm Tide and Wave Simulations and Assessment)
Show Figures

Figure 1

20 pages, 2582 KB  
Article
Emulating Real-World EV Charging Profiles with a Real-Time Simulation Environment
by Shrey Verma, Ankush Sharma, Binh Tran and Damminda Alahakoon
Machines 2025, 13(9), 791; https://doi.org/10.3390/machines13090791 - 1 Sep 2025
Viewed by 756
Abstract
Electric vehicle (EV) charging has become a key factor in grid integration, impact analysis, and the development of intelligent charging strategies. However, the rapid rise in EV adoption poses challenges for charging infrastructure and grid stability due to the inherently variable and uncertain [...] Read more.
Electric vehicle (EV) charging has become a key factor in grid integration, impact analysis, and the development of intelligent charging strategies. However, the rapid rise in EV adoption poses challenges for charging infrastructure and grid stability due to the inherently variable and uncertain charging behavior. Limited access to high-resolution, location-specific data further hinders accurate modeling, emphasizing the need for reliable, privacy-preserving tools to forecast EV-related grid impacts. This study introduces a comprehensive methodology to emulate real-world EV charging behavior using a real-time simulation environment. A physics-based EV charger model was developed on the Typhoon HIL platform, incorporating detailed electrical dynamics and control logic representative of commercial chargers. Simulation outputs, including active power consumption and state-of-charge evolution, were validated against field data captured via phasor measurement units, showing strong alignment across all charging phases, including SOC-dependent current transitions. Quantitative validation yielded an MAE of 0.14 and an RMSE of 0.36, confirming the model’s high accuracy. The study also reflects practical BMS strategies, such as early charging termination near 97% SOC to preserve battery health. Overall, the proposed real-time framework provides a high-fidelity platform for analyzing grid-integrated EV behavior, testing smart charging controls, and enabling digital twin development for next-generation electric mobility. Full article
Show Figures

Figure 1

21 pages, 2914 KB  
Article
Machine Learning-Based Short-Term Forecasting of Significant Wave Height During Typhoons Using SWAN Data: A Case Study in the Pearl River Estuary
by Mengdi Ma, Guoliang Chen, Sudong Xu, Weikai Tan and Kai Yin
J. Mar. Sci. Eng. 2025, 13(9), 1612; https://doi.org/10.3390/jmse13091612 - 23 Aug 2025
Cited by 1 | Viewed by 1602
Abstract
Accurate wave forecasting under typhoon conditions is essential for coastal safety in the Pearl River Estuary. This study explores the use of Random Forest (RF) and Long Short-Term Memory (LSTM) models to predict significant wave heights, using SWAN-simulated data from 87 historical typhoon [...] Read more.
Accurate wave forecasting under typhoon conditions is essential for coastal safety in the Pearl River Estuary. This study explores the use of Random Forest (RF) and Long Short-Term Memory (LSTM) models to predict significant wave heights, using SWAN-simulated data from 87 historical typhoon events. Ten representative typhoons were reserved for independent testing. Results show that the LSTM model outperforms RF in 3 h forecasts, achieving a lower mean RMSE and higher R2, particularly in capturing wave peaks under highly dynamic conditions. For 6 h forecasts, both models exhibit decreased accuracy, with RF performing slightly better in stable scenarios, while LSTM remains more responsive in complex wave evolution. Generalization tests at three nearby stations demonstrate that both models, especially LSTM, retain strong predictive skill beyond the training location. These findings highlight the potential of combining numerical wave models with machine learning for short-term, data-driven wave forecasting in typhoon-prone and observation-sparse regions. The study also points to future improvements through integration of wind field predictors, model updating strategies, and ensemble meteorological data. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 17693 KB  
Article
Mooring Observations of Typhoon Trami (2024)-Induced Upper-Ocean Variability: Diapycnal Mixing and Internal Wave Energy Characteristics
by Letian Chen, Xiaojiang Zhang, Ze Zhang and Weimin Zhang
Remote Sens. 2025, 17(15), 2604; https://doi.org/10.3390/rs17152604 - 27 Jul 2025
Viewed by 544
Abstract
High-resolution mooring observations captured diverse upper-ocean responses during typhoon passage, showing strong agreement with satellite-derived sea surface temperature and salinity. Analysis indicates that significant wind-induced mixing drove pronounced near-surface cooling and salinity increases at the mooring site. This mixing enhancement was predominantly governed [...] Read more.
High-resolution mooring observations captured diverse upper-ocean responses during typhoon passage, showing strong agreement with satellite-derived sea surface temperature and salinity. Analysis indicates that significant wind-induced mixing drove pronounced near-surface cooling and salinity increases at the mooring site. This mixing enhancement was predominantly governed by rapid intensification of near-inertial shear in the surface layer, revealed by mooring observations. Unlike shear instability, near-inertial horizontal kinetic energy displays a unique vertical distribution, decreasing with depth before rising again. Interestingly, the subsurface peak in diurnal tidal energy coincides vertically with the minimum in near-inertial energy. While both barotropic tidal forcing and stratification changes negligibly influence diurnal tidal energy emergence, significant energy transfer occurs from near-inertial internal waves to the diurnal tide. This finding highlights a critical tide–wave interaction process and demonstrates energy cascading within the oceanic internal wave spectrum. Full article
(This article belongs to the Special Issue Remote Sensing for Ocean-Atmosphere Interaction Studies)
Show Figures

Figure 1

23 pages, 5397 KB  
Article
A Systematic Analysis of Influencing Factors on Wind Resilience in a Coastal Historical District of China
by Bo Huang, Zhenmin Ou, Gang Zhao, Junwu Wang, Lanjun Liu, Sijun Lv, Bin Huang and Xueqi Liu
Appl. Sci. 2025, 15(14), 8116; https://doi.org/10.3390/app15148116 - 21 Jul 2025
Cited by 1 | Viewed by 626
Abstract
Historical districts are the mark of the continuity of urban history and are non-renewable. Typhoon disasters rank among the most serious and frequent natural threats to China’s coastal regions. Improving the wind resilience of China’s coastal historical districts is of great significance for [...] Read more.
Historical districts are the mark of the continuity of urban history and are non-renewable. Typhoon disasters rank among the most serious and frequent natural threats to China’s coastal regions. Improving the wind resilience of China’s coastal historical districts is of great significance for their protection and inheritance. Accurately analyzing the different characteristics of the influencing factors of wind resilience in China’s coastal historical districts can provide a theoretical basis for alleviating the damage caused by typhoons and formulating disaster prevention measures. This paper accurately identifies the main influencing factors of wind resilience in China’s coastal historical districts and constructs an influencing factor system from four aspects: block level, building level, typhoon characteristics, and emergency management. An IIM model for the systematic analysis of influencing factors of wind resilience in China’s coastal historical districts based on the Improved Decision Making Trial and Evaluation Laboratory (IDEMATEL), Interpretive Structural Modeling (ISM), and Matrices Impacts Croises-Multiplication Appliance Classement (MICMAC) methods is established. This allows us to explore the mechanism of action of internal influencing factors of typhoon disasters and construct an influencing factor system, in order to propose prevention measures from the perspective of typhoon disaster characteristics and the overall perspective of China’s coastal historical districts. The results show that the driving force of a building’s windproof design in China’s coastal historical districts is low, but its dependence is strong; the driving forces of block morphology, typhoon level, and emergency plan are strong, but their dependence is low. A building’s windproof design is a direct influencing factor of the wind resilience of China’s coastal historical districts; block morphology, typhoon level, and emergency plan are the most fundamental and key influencing factors of the wind resilience of China’s coastal historical districts. Full article
Show Figures

Figure 1

21 pages, 19457 KB  
Article
Comparative Analysis of Hydrodynamic Characteristics off Shandong Under the Influence of Two Types of Storm Surges
by Wenwen Liu, Qingdan Zheng, Zhizu Wang and Juncheng Zuo
J. Mar. Sci. Eng. 2025, 13(6), 1054; https://doi.org/10.3390/jmse13061054 - 27 May 2025
Viewed by 604
Abstract
As China’s largest peninsula, the Shandong Peninsula faces recurrent threats from both tropical and extratropical cyclone-induced storm surges. Understanding the distinct mechanisms governing these surge types is critical for developing targeted coastal hazard mitigation strategies. This investigation employs the FVCOM-SWAVE coupled wave–current model [...] Read more.
As China’s largest peninsula, the Shandong Peninsula faces recurrent threats from both tropical and extratropical cyclone-induced storm surges. Understanding the distinct mechanisms governing these surge types is critical for developing targeted coastal hazard mitigation strategies. This investigation employs the FVCOM-SWAVE coupled wave–current model to conduct numerical simulations and comparative analyses of two 2022 surge events, Typhoon Muifa (tropical) and the “221003” extratropical surge. The results demonstrate that hydrodynamic responses exhibit strong dependence on surge-generating meteorological regimes. Tropical surge dynamics correlate closely with typhoon track geometry, intensity gradients, and asymmetric wind field structures, manifesting rightward-biased energy intensification relative to storm motion. Conversely, extratropical surge variations align with evolving wind-pressure configurations during cold air advection, driven by synoptic-scale atmospheric reorganization. The hydrodynamic environmental response in the sea areas surrounding Jiaodong and Laizhou Bay is particularly pronounced, influenced by the intensity of wind stress on the sea surface, as well as the bathymetry and coastal geometry. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

10 pages, 3684 KB  
Article
Effects of Successive Typhoon Durian and Typhoon Utor on Chlorophyll-a Response in South China Sea
by Xiaoyang Hou, Zhenxin Ruan, Bo Li and Yumeng Wang
Water 2025, 17(11), 1567; https://doi.org/10.3390/w17111567 - 23 May 2025
Viewed by 671
Abstract
This paper investigated the effects of the successive Typhoons Durian and Utor on the chlorophyll-a concentration in the overlapping regions of the South China Sea in 2006. Satellite observations were employed to analyze the spatial–temporal variability of chlorophyll-a concentrations. The results [...] Read more.
This paper investigated the effects of the successive Typhoons Durian and Utor on the chlorophyll-a concentration in the overlapping regions of the South China Sea in 2006. Satellite observations were employed to analyze the spatial–temporal variability of chlorophyll-a concentrations. The results show that the strong vertical mixing and upwelling after the passage of the first Typhoon Durian led to a rapid increase in chlorophyll-a concentration, while the effects of the subsequent Typhoon Utor showed regional variability: the chlorophyll-a concentration in the area to the right of the path of Typhoon Utor increased significantly, but it did not continue to increase in the area of the overlap with Durian and showed a decreasing trend. Studies have shown that the impacts of successive typhoons on marine ecology are not simply additive but can be modulated by changes in the marine environment caused by the previous typhoon. This study revealed the complexity of the impacts of successive typhoons on marine productivity and provides a new perspective for understanding how typhoons affect marine productivity. Full article
(This article belongs to the Special Issue Coastal Engineering and Fluid–Structure Interactions)
Show Figures

Figure 1

16 pages, 3068 KB  
Article
XAI Helps in Storm Surge Forecasts: A Case Study for the Southeastern Chinese Coasts
by Lei Han, Wenfang Lu and Changming Dong
J. Mar. Sci. Eng. 2025, 13(5), 896; https://doi.org/10.3390/jmse13050896 - 30 Apr 2025
Cited by 1 | Viewed by 781
Abstract
Storm surge forecasting presents a significant challenge for coastal resilience, particularly in typhoon-prone regions such as southeastern China, where compound flooding events lead to substantial socioeconomic losses. Although artificial intelligence (AI) models have shown strong potential in storm surge prediction, their inherent “black-box” [...] Read more.
Storm surge forecasting presents a significant challenge for coastal resilience, particularly in typhoon-prone regions such as southeastern China, where compound flooding events lead to substantial socioeconomic losses. Although artificial intelligence (AI) models have shown strong potential in storm surge prediction, their inherent “black-box” nature limits both their interpretability and operational trust. In this study, we integrate a Vision Transformer (ViT) model with an explainable AI (XAI) method—specifically, Shapley value analysis (SHAP)—to develop an interpretable, high-performance storm surge forecasting framework. The baseline ViT model demonstrates excellent predictive skill, achieving spatiotemporal correlation coefficients exceeding 0.90 over a 12 h lead time. However, it exhibits systematic underestimations in topographically complex regions, such as semi-enclosed bays (e.g., up to 0.06 m). SHAP analysis reveals that the model primarily relies on the autocorrelation of historical surge levels rather than external wind forcing—contrary to the conventional physical understanding of storm surge dynamics. Guided by these insights, we introduce the surge time difference (ΔZ/Δt) as an explicit input feature to enhance the model’s physical representation. This modification yields substantial improvements: during the critical first hour of forecasting—a key window for disaster mitigation—the RMSE is reduced from 0.01 m to 0.005 m, while the correlation coefficient increases from 0.92 to 0.98. This study bridges the gap between data-driven forecasting and physical interpretability, offering a transparent and trustworthy framework for next-generation intelligent storm surge prediction. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

18 pages, 10793 KB  
Article
Typhoon–Terrain Synergy: A Critical Mechanism Driving High-Frequency Flood Disasters in the Beijing Region
by Zhongmei Wu, Ningsheng Chen, Li Qing, Xiaohu Chen, Na Huang and Yong Zhang
Water 2025, 17(7), 1003; https://doi.org/10.3390/w17071003 - 28 Mar 2025
Viewed by 2076
Abstract
The extreme rainstorm flood disaster in Beijing on 31 July 2023 resulted in 33 fatalities and 18 missing persons, with direct economic losses across the Beijing–Tianjin–Hebei metropolitan area exceeding RMB 10 billion. Despite its inland location, which is not conventionally classified as a [...] Read more.
The extreme rainstorm flood disaster in Beijing on 31 July 2023 resulted in 33 fatalities and 18 missing persons, with direct economic losses across the Beijing–Tianjin–Hebei metropolitan area exceeding RMB 10 billion. Despite its inland location, which is not conventionally classified as a flood-prone zone, Beijing is not conventionally considered a flood-prone region, yet it frequently experiences flood disasters, which has led to confusion and perplexity. This article collects records of historical flooding disasters in Beijing over the past 1000 years, spanning the Jin, Yuan, Ming, and Qing dynasties, the Republics of China, and the founding of New China up to the present, aiming to analyze the basic patterns and characteristics of regional historical flooding disasters. Taking the extreme rainstorm flood disaster in Beijing on 31 July 2023 as an example, this research employs a multidisciplinary approach, including field investigations and numerical simulations, to dissect the disaster-causing mechanisms. The study shows that the significant characteristics of historical flood disasters in Beijing are concentrated in the plain area and the high-frequency outbreaks (below the 3-year return period). Flood disaster events under the participation of typhoons accounted for a high proportion and caused great harm. The extreme rainstorm flood disaster in Beijing on 31 July 2023 was an extreme weather event under the complex coupling of typhoons and terrain. The residual typhoon circulation stayed on the mainland for nearly 70 h, providing abundant precipitation conditions for Beijing. Water vapor is blocked by the Yanshan–Taihang Mountains, uplifting and converging, forming a strong precipitation center in the Piedmont, which aggravates the regional local precipitation intensity. The research results can provide a reference for the scientific prevention and control of typhoon rainstorm flood disasters in Beijing. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

17 pages, 6959 KB  
Article
Response Monitoring and Analysis of Large Temporary Platform of Cross-Sea Bridge Under the Action of High Tidal Range and Strong Wind and Wave
by Qin Xiong and Guanguo Liu
Atmosphere 2025, 16(4), 386; https://doi.org/10.3390/atmos16040386 - 28 Mar 2025
Viewed by 2607
Abstract
The response of large temporary working platforms for cross-sea bridges under the action of strong wind and waves with large tidal ranges is one of the key issues in offshore engineering. Based on a grand offshore bridge project in Fujian Province of China, [...] Read more.
The response of large temporary working platforms for cross-sea bridges under the action of strong wind and waves with large tidal ranges is one of the key issues in offshore engineering. Based on a grand offshore bridge project in Fujian Province of China, on-site monitoring tests were carried out on a temporary working platform. A high-precision and fully automatic monitoring system was adopted to conduct the all-weather and high-frequency monitoring on vibrations, responses, and sea conditions of the platform, enabling us to grasp its structural mechanical characteristic and ensuring the platform safety. The results show that, under the severe sea conditions of typhoons, the stress of the platform structure increases significantly with the increase in the tidal range and reaches its maximum value at the high tide level. The inclination angle changes violently at the high tide level, while the amplitude of inclination angle change is relatively small at the low tide level. The effective value of the platform displacement under the severe sea conditions of typhoon meteorology is much larger than that under normal sea conditions. Compared with the low tide level, the acceleration of the offshore temporary work platform changes more drastically at the high tide level under severe sea conditions. Under severe sea conditions, the tidal level has a significant impact on the frequency corresponding to the peak value of the acceleration power spectrum of the offshore temporary platform. Full article
(This article belongs to the Special Issue Advance in Transportation Meteorology (2nd Edition))
Show Figures

Figure 1

19 pages, 8506 KB  
Article
Rapid Intensification of Typhoon Rammasun (2014) with Strong Vertical Wind Shear
by Weiyu Lu and X. San Liang
Atmosphere 2025, 16(3), 297; https://doi.org/10.3390/atmos16030297 - 2 Mar 2025
Viewed by 1319
Abstract
From a traditional point of view, the growth of a tropical cyclone (TC) requires that the vertical wind shear (VWS) should be weak. However, Typhoon Rammasun (2014) underwent a rapid intensification (RI) even in the presence of a strong VWS background. This study [...] Read more.
From a traditional point of view, the growth of a tropical cyclone (TC) requires that the vertical wind shear (VWS) should be weak. However, Typhoon Rammasun (2014) underwent a rapid intensification (RI) even in the presence of a strong VWS background. This study investigates the counterintuive phenomenon, using the multiscale window transform (MWT) and the theory of canonical transfer. For the first time, the diagnostic results show that the strong VWS provided additional available potential energy (APE) to the mid-to-upper troposphere through baroclinic instability. This APE was converted into kinetic energy (KE) via buoyancy conversion and transported to the lower troposphere by pressure gradient, increasing the lower-troposphere wind speed. The strong VWS facilitated the RI in two main ways. First, it was via baroclinic instability. Strong VWS facilitated the transfer of APE from the background flow window to the typhoon scale window, supplying additional APE to the mid-to-upper troposphere, hence enhancing the warm-core structure. Second, the VWS direction shifted from an east-west orientation to a north-south orientation. This directional change put the typhoon’s vertical alignment from a westward tilt back to a straighter one. This effectively suppressed the destructive effects of the asymmetric circulation, and promoted the conversion of APE into KE via buoyancy conversion, hence contributed to the RI. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

18 pages, 6065 KB  
Article
Risk Assessment of High-Voltage Power Grid Under Typhoon Disaster Based on Model-Driven and Data-Driven Methods
by Xiao Zhou and Jiang Li
Energies 2025, 18(4), 809; https://doi.org/10.3390/en18040809 - 9 Feb 2025
Cited by 1 | Viewed by 1774
Abstract
As global warming continues to intensify, typhoon disasters will more frequently occur in East and Southeast Asia, posing a high risk of causing large-scale power outages in the power system. To investigate the impact of typhoon disasters on high-voltage power grids, a comprehensive [...] Read more.
As global warming continues to intensify, typhoon disasters will more frequently occur in East and Southeast Asia, posing a high risk of causing large-scale power outages in the power system. To investigate the impact of typhoon disasters on high-voltage power grids, a comprehensive risk assessment method that integrates model-driven and data-driven approaches is proposed, which can predict power grid faults in advance and provide support for power grid operators to generate emergency dispatching plans. Firstly, by comparing actual loads with the design strengths of the transmission tower-line system and analyzing the geometric relationship between typhoon wind circles and the system, key variables, such as wind speed, longitude, latitude, and other pertinent factors, are screened. The Spearman correlation coefficient is employed to pinpoint the meteorological variables that exhibit a high degree of relevance, enhancing the accuracy and interpretability of our model. Secondly, addressing the lack of power grid fault samples, three data balancing methods—Borderline-SMOTE, ADASYN, and SMOTE-Tomek—are compared, with Borderline-SMOTE selected for its superior performance in enhancing the sample set. Additionally, a power grid failure risk assessment model is built based on Light Gradient Boosting Machine (LightGBM), and the Borderline-Smoothing Algorithm (BSA) is used for the modeling of power grid faults. The nonlinear mapping relationship between typhoon meteorological data and the power grid equipment failure rate is extracted through deep learning training. Subsequently, the Tree-structured Parzen Estimator (TPE) is leveraged to optimize the hyperparameters of the LightGBM model, thus enhancing its prediction accuracy. Finally, the actual power system data of a province in China under a strong typhoon are assessed, validating the proposed assessment method’s effectiveness. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

16 pages, 1485 KB  
Article
Identification of Critical and Tolerable Fish Habitat Requirements Based on Pre- and Post-Typhoon Data
by Hung-Pin Chiu, Jian-Ping Suen and Pin-Han Chen
Water 2025, 17(3), 425; https://doi.org/10.3390/w17030425 - 3 Feb 2025
Viewed by 1015
Abstract
Catastrophic typhoons with heavy rainfall introduce massive flow and fine sediments into stream channels. In addition, the natural disturbances and engineering practices afterward may strongly alter the fish abundance and their environment. This study compared physical habitat parameters and fish abundance before and [...] Read more.
Catastrophic typhoons with heavy rainfall introduce massive flow and fine sediments into stream channels. In addition, the natural disturbances and engineering practices afterward may strongly alter the fish abundance and their environment. This study compared physical habitat parameters and fish abundance before and after two major typhoons using two sampling period datasets (November 2008–March 2009 and May 2011–March 2012). The study area was in the Cishan Stream, a tributary of the Gaoping River in southern Taiwan. This area experienced two strong typhoons (Morakot and Fanapi) between the two sampling periods, providing an opportunity to compare pre- and post-typhoon conditions. The collected species were Hemimyzon formosanus, Rhinogobius nantaiensis, Onychostoma alticorpus, Candidia barbata, Acrossocheilus paradoxus, and Spinibarbus hollandi. Our results show a decrease in substrate size, fish size, and fish weight after typhoons. The river channel transformed into an unstable condition after the heavy rains, as major habitat types in our sampling stations changed from riffles with coarse substrate to runs with fine substrate. The results of statistical tests indicate the different habitat requirements of three major fish species (H. formosanus, R. nantaiensis, and O. alticorpus) and can indicate whether species’ requirements change between the two sampling periods. Water depth and pebbles were critical habitat requirements for the adults of H. formosanus; water depth, pebbles, and sand were critical habitat requirements for the adults of R. nantaiensis; and flow velocity and standard deviation of flow velocity were critical requirements for the juveniles of O. alticorpus. Understanding habitat requirements can provide useful information for post-disaster restoration and contribute to eco-sensitive river engineering. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

Back to TopTop