Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,170)

Search Parameters:
Keywords = stripping analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 44058 KiB  
Article
Geomorphological Features and Formation Process of Abyssal Hills and Oceanic Core Complexes Linked to the Magma Supply in the Parece Vela Basin, Philippine Sea: Insights from Multibeam Bathymetry Analysis
by Xiaoxiao Ding, Junjiang Zhu, Yuhan Jiao, Xinran Li, Zhengyuan Liu, Xiang Ao, Yihuan Huang and Sanzhong Li
J. Mar. Sci. Eng. 2025, 13(8), 1426; https://doi.org/10.3390/jmse13081426 - 26 Jul 2025
Viewed by 13
Abstract
Based on the new high-resolution multibeam bathymetry data collected by the “Dongfanghong 3” vessel in 2023 in the Parece Vela Basin (PVB) and previous magnetic anomaly data, we systematically analyze the seafloor topographical changes of abyssal hills and oceanic core complexes (OCCs) in [...] Read more.
Based on the new high-resolution multibeam bathymetry data collected by the “Dongfanghong 3” vessel in 2023 in the Parece Vela Basin (PVB) and previous magnetic anomaly data, we systematically analyze the seafloor topographical changes of abyssal hills and oceanic core complexes (OCCs) in the “Chaotic Terrain” region, and the revised seafloor spreading model is constructed in the PVB. Using detailed analysis of the seafloor topography, we identify typical geomorphological features associated with seafloor spreading, such as regularly aligned abyssal hills and OCCs in the PVB. The direction variations of seafloor spreading in the PVB are closely related to mid-ocean ridge rotation and propagation. The formation of OCCs in the “Chaotic Terrain” can be explained by links to the continuous and persistent activity of detachment faults and dynamic adjustments controlled by variations of deep magma supply in the different segments in the PVB. We use 2D discrete Fourier image analysis of the seafloor topography to calculate the aspect ratio (AR) values of abyssal hills in the western part of the PVB. The AR value variations reveal a distinct imbalance in magma supply across various regions during the basin spreading process. Compared to the “Chaotic Terrain” area, the region with abyssal hills indicates a higher magma supply and greater linearity on seafloor topography. AR values fluctuated between 2.1 and 1.7 of abyssal hills in the western segment, while in the “Chaotic Terrain”, they dropped to 1.3 due to the lower magma supply. After the formation of the OCC-1, AR values increased to 1.9 in the eastern segment, and this shows the increase in magma supply. Based on changes in seafloor topography and variations in magma supply across different segments of the PVB, we propose that the seafloor spreading process in the magnetic anomaly linear strip 9-6A of the PVB mainly underwent four formation stages: ridge rotation, rift propagation, magma-poor supply, and the maturation period of OCCs. Full article
(This article belongs to the Section Geological Oceanography)
26 pages, 6714 KiB  
Article
Study on the Shear Performance of MMOM Stay-in-Place Formwork Beams Reinforced with Perforated Steel Pipe Skeleton
by Lingling Li, Chuanhe Shang and Xiaodong Wang
Buildings 2025, 15(15), 2638; https://doi.org/10.3390/buildings15152638 - 26 Jul 2025
Viewed by 158
Abstract
The simulation analysis of a novel stay-in-place formwork (SIPF) beam reinforced with perforated steel pipe skeleton was conducted. The SIPF beam consists of a modified magnesium oxysulfide mortar (MMOM) formwork, a square steel pipe skeleton with holes dug on the sides and top, [...] Read more.
The simulation analysis of a novel stay-in-place formwork (SIPF) beam reinforced with perforated steel pipe skeleton was conducted. The SIPF beam consists of a modified magnesium oxysulfide mortar (MMOM) formwork, a square steel pipe skeleton with holes dug on the sides and top, and cast-in-place concrete. The finite element (FE) analysis model of the SIPF beam was established by using the ABAQUS CAE 2021 software, and simulation analysis was conducted with the shear span ratio (SSR), the distance between the remaining steel strips, and the strength of concrete as the variation parameters. The results show that the stiffness and shear capacity of the SIPF beam decrease with the increase in SSR and increase with the decrease in strip spacing. Under the same conditions, when the concrete strength grade is increased from C30 to C50, the shear bearing capacity of the SIPF beam increases by 11.8% to 16.2%. When the spacing of the steel strips is reduced from 200 mm to 150 mm, the shear bearing capacity can be increased by 12.7% to 31.5%. When the SSR increases from 1.5 to 3.0, the shear bearing capacity decreases by 26.9% to 37.3%. Moreover, with the increase in the SSR, the influence of the steel strip spacing on the shear bearing capacity of the SIPF beam improves, while the influence of the concrete strength on the shear bearing capacity decreases. Taking parameters such as SSR, steel strip spacing, and concrete strength as variables, the influence of steel pipe constraining the core concrete on the shear bearing capacity was considered. The calculation formula for the shear bearing capacity of the SIPF beam with perforated steel pipe skeleton was established. The calculation results fit well with the laboratory test and simulation test results and can be used for the design and calculation of engineering structures. Full article
Show Figures

Figure 1

21 pages, 5549 KiB  
Article
Axial Compression of BFRP Spiral Strip–PVC Tube Confined Fiber-Recycled Concrete: Experiment and FEM Analysis
by Jiaxing Tian, Huaxin Liu, Genjin Liu, Wenyu Wang and Jiuwen Bao
Materials 2025, 18(15), 3431; https://doi.org/10.3390/ma18153431 - 22 Jul 2025
Viewed by 207
Abstract
The use of short cylinders of recycled aggregate concrete (RAC) reinforced with basalt fiber-reinforced polymer (BFRP) circumferential strips and polyvinyl chloride (PVC) tubes has been proven effective in previous studies. However, BFRP circumferential strips are cumbersome to install and do not ensure the [...] Read more.
The use of short cylinders of recycled aggregate concrete (RAC) reinforced with basalt fiber-reinforced polymer (BFRP) circumferential strips and polyvinyl chloride (PVC) tubes has been proven effective in previous studies. However, BFRP circumferential strips are cumbersome to install and do not ensure the integrity of the BFRP strips. Therefore, this study investigates axial compression experiments on RAC short cylinders reinforced with BFRP spiral strips and PVC tubes. A combination of experimental studies, finite element simulations, and theoretical analyses revealed that the winding angle and spacing of BFRP strips significantly affect the load-bearing capacity and ductility of the restrained specimens. Additionally, an improved strength model was developed based on an existing model. When evaluated using both computational and experimental results, the equations generated in this study showed an average error of less than 10%. The findings indicate that the composite structure provides effective reinforcement and offers valuable reference information for practical applications. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

18 pages, 3268 KiB  
Article
In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism
by Liangliang Wang, Minghua Shi, Jiaxin Li, Baiqiang Shi, Xiaoming Su, Yande Zhao, Qing Guo and Yuan Yuan
Energies 2025, 18(14), 3879; https://doi.org/10.3390/en18143879 - 21 Jul 2025
Viewed by 226
Abstract
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development [...] Read more.
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development of offshore oilfields. This study addresses the challenges hindering water flooding development in offshore oilfields by investigating the emulsification mechanism and key influencing factors based on oil–water emulsion characteristics, thereby proposing a novel in situ emulsification flooding method. Based on a fundamental analysis of oil–water properties, key factors affecting emulsion stability were examined. Core flooding experiments clarified the impact of spontaneous oil–water emulsification on water flooding recovery. Two-dimensional T1–T2 NMR spectroscopy was employed to detect pure fluid components, innovating the method for distinguishing oil–water distribution during flooding and revealing the characteristics of in situ emulsification interactions. The results indicate that emulsions formed between crude oil and formation water under varying rheometer rotational speeds (500–2500 r/min), water cuts (30–80%), and emulsification temperatures (40–85 °C) are all water-in-oil (W/O) type. Emulsion viscosity exhibits a positive correlation with shear rate, with droplet sizes primarily ranging between 2 and 7 μm and a viscosity amplification factor up to 25.8. Emulsion stability deteriorates with increasing water cut and temperature. Prolonged shearing initially increases viscosity until stabilization. In low-permeability cores, spontaneous oil–water emulsification occurs, yielding a recovery factor of only 30%. For medium- and high-permeability cores (water cuts of 80% and 50%, respectively), recovery factors increased by 9.7% and 12%. The in situ generation of micron-scale emulsions in porous media achieved a recovery factor of approximately 50%, demonstrating significantly enhanced oil recovery (EOR) potential. During emulsification flooding, the system emulsifies oil at pore walls, intensifying water–wall interactions and stripping wall-adhered oil, leading to increased T2 signal intensity and reduced relaxation time. Oil–wall interactions and collision frequencies are lower than those of water, which appears in high-relaxation regions (T1/T2 > 5). The two-dimensional NMR spectrum clearly distinguishes oil and water distributions. Full article
Show Figures

Figure 1

14 pages, 7022 KiB  
Article
Sensitive and Facile Detection of Aloin via N,F-CD-Coated Test Strips Coupled with a Miniaturized Fluorimeter
by Guo Wei, Chuanliang Wang, Rui Wang, Peng Zhang, Xuhui Geng, Jinhua Li, Abbas Ostovan, Lingxin Chen and Zhihua Song
Biomolecules 2025, 15(7), 1052; https://doi.org/10.3390/biom15071052 - 21 Jul 2025
Viewed by 221
Abstract
Aloin, a kind of active phenolic component, is sourced from Aloe vera. Recently, the determination of aloin has received enormous attention, owing to its positive performance (including anti-tumor, antibacterial, detoxification, liver protection, anti-stomach damage, and skin protection activities) and painful side effects [...] Read more.
Aloin, a kind of active phenolic component, is sourced from Aloe vera. Recently, the determination of aloin has received enormous attention, owing to its positive performance (including anti-tumor, antibacterial, detoxification, liver protection, anti-stomach damage, and skin protection activities) and painful side effects (increased carcinogenicity caused by excessive use of aloin) impacting human health. This investigation was inspired by the good fluorescence properties of carbon dots (CDs); CD-based sensors have aroused a great deal of interest due to their excellent sensitivity and selectivity. Thus, it is of great significance to develop novel CD-based sensors for aloin determination. Herein, N,F-CDs were designed and synthesized through a convenient hydrothermal strategy; the synthesized N,F-CDs possessed good fluorescence performance and a small particle size (near 4.3 nm), which demonstrated the successful preparation of N,F-CDs. The resulting N,F-CDs possessed a large Stokes shift and could emit a highly stable green fluorescence. The fluorescence of the N,F-CDs could be effectively quenched by aloin through the inner filter effect. Furthermore, the synthesis procedure was easy to operate. Finally, the N,F-CD-coated test strips were fabricated and combined with a miniaturized fluorimeter for the fluorescence detection of aloin via the inner filter effect for the first time. The N,F-CD-coated test strips were fabricated and used for the fluorescence sensing of aloin, and the results were compared with a typical ultraviolet (UV) method. The N,F-CD-coated test strips exhibited high recovery (96.9~106.1%) and sensitivity (31.8 nM, n = 3), good selectivity, low sample consumption (1 μL), high speed (5 min), good stability, and anti-interference properties. The results indicate that N,F-CD-coated test strips are applicable for the quantitative determination of aloin in bovine serum, orange juice, and urine samples. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

16 pages, 2849 KiB  
Article
A Simulation Model for the Transient Characteristics of No-Insulation Superconducting Coils Based on T–A Formulation
by Zhihao He, Yingzhen Liu, Chenyi Yang, Jiannan Yang, Jing Ou, Chengming Zhang, Ming Yan and Liyi Li
Energies 2025, 18(14), 3669; https://doi.org/10.3390/en18143669 - 11 Jul 2025
Viewed by 312
Abstract
The no-insulation (NI) technique improves the stability and defect-tolerance of high-temperature superconducting (HTS) coils by enabling current redistribution, thereby reducing the risk of quenching. NI–HTS coils are widely applied in DC systems such as high-field magnets and superconducting field coils for electric machines. [...] Read more.
The no-insulation (NI) technique improves the stability and defect-tolerance of high-temperature superconducting (HTS) coils by enabling current redistribution, thereby reducing the risk of quenching. NI–HTS coils are widely applied in DC systems such as high-field magnets and superconducting field coils for electric machines. However, the presence of turn-to-turn contact resistance makes current distribution uneven, rendering traditional simulation methods unsuitable. To address this, a finite element method (FEM) based on the T–A formulation is proposed. This model solves coupled equations for the magnetic vector potential (A) and current vector potential (T), incorporating turn-to-turn contact resistance and anisotropic conductivity. The thin-strip approximation simplifies second-generation HTS materials as one-dimensional conductors, and a homogenization technique further reduces computational time by averaging the properties between turns, although it may limit the resolution of localized inter-turn effects. To verify the model’s accuracy, simulation results are compared against the H formulation, distributed circuit network (DCN) model, and experimental data. The proposed T–A model accurately reproduces key transient characteristics, including magnetic field evolution and radial current distribution, in both circular and racetrack NI coils. These results confirm the model’s potential as an efficient and reliable tool for transient electromagnetic analysis of NI–HTS coils. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

24 pages, 3329 KiB  
Article
Heat-Sealing Process for Chañar Brea Gum Films
by María Fernanda Torres, Federico Becerra, Mauricio Filippa, Gisela Melo and Martin Masuelli
Processes 2025, 13(7), 2189; https://doi.org/10.3390/pr13072189 - 9 Jul 2025
Viewed by 306
Abstract
This work presents a comprehensive evaluation of the heat-sealability of films developed from chañar brea gum (CBG), a biopolymer with potential for packaging applications. Heat sealability is a critical property in the packaging industry, as it directly determines the integrity and functionality of [...] Read more.
This work presents a comprehensive evaluation of the heat-sealability of films developed from chañar brea gum (CBG), a biopolymer with potential for packaging applications. Heat sealability is a critical property in the packaging industry, as it directly determines the integrity and functionality of the final product. The films were prepared by the 10% casting method with the addition of glycerin, and heat sealing was performed at 140 °C using a heat sealer. Heat sealing was performed on 2 cm × 10 cm strips of chañar gum in the horizontal (CBG-H) and vertical (CBG-V) directions. This study employs a joint determination to explore the fundamental properties of the films, including proximate analysis, antioxidant capacity, FTIR, DSC, TGA-DTGA, XRD, mechanical testing, water vapor permeability, sorption, and biodegradability. By integrating the results of all these determinations, this study seeks to evaluate and explain the “intimate relationships”—i.e., the complex interconnections among the molecular structure, composition, thermal behavior, mechanical properties, and barrier properties of channier gum films—and how these fundamental properties dictate and control their heat sealability. The thermal stability of CBG is up to 200 °C, with a melting point of 152.48 °C. The interstrand spacing was very similar at 4.88 nm for CBG and 4.66 nm for CBG-H. The SEM images of the heat seal show rounded shapes on the surface, while in the cross section, it is homogeneous and almost without gaps. The WVP decreased from 1.7 to 0.37 for CBG and CBG-H, respectively. The Young’s modulus decreased from 132 MPa for CBG to 96.5 MPa for CBG-H. The heat sealability is 656 N/m, with a biodegradability of 4 days. This comprehensive approach is crucial for optimizing the sealing process and designing functional and efficient biodegradable packages. Full article
Show Figures

Figure 1

10 pages, 1023 KiB  
Article
Research on the Solidification Structure of the Zn-19Al-6Mg Alloy
by Jianhua Wei, Jun Xiao, Shaoguang Yang, Kuo Cao, Di Wang and Aimin Zhao
Metals 2025, 15(7), 769; https://doi.org/10.3390/met15070769 - 8 Jul 2025
Viewed by 200
Abstract
This paper deals with “Zn-19Al-6Mg” coatings and their solidification structure is the basis for the study of the alloy’s properties. The solidification equilibrium phase diagram of this alloy was calculated using thermodynamic software. Samples were taken from the billets of this alloy for [...] Read more.
This paper deals with “Zn-19Al-6Mg” coatings and their solidification structure is the basis for the study of the alloy’s properties. The solidification equilibrium phase diagram of this alloy was calculated using thermodynamic software. Samples were taken from the billets of this alloy for differential thermal analysis experiments. By combining the phase diagram and the experimental results of differential thermal analysis, the solidification structure of the Zn-19Al-6Mg alloy was obtained. The phases in the solidified structure were identified by means of SEM, EDS, XRD, etc. The research finds that the solidification structure of the Zn-19Al-6Mg alloy is composed of the β-Al phase, the α-Al phase, the MgZn2 phase, and the Mg2Zn11 phase. During the actual solidification process of the alloy, due to the large cooling rate, Zn-rich phases will appear in the microstructure. The research results provide a basis for the regulation of the coating structure when preparing Zn-19Al-6Mg-coated sheets and strips. Full article
Show Figures

Figure 1

25 pages, 5042 KiB  
Article
Surface Topography-Based Classification of Coefficient of Friction in Strip-Drawing Test Using Kohonen Self-Organising Maps
by Krzysztof Szwajka, Tomasz Trzepieciński, Marek Szewczyk, Joanna Zielińska-Szwajka and Ján Slota
Materials 2025, 18(13), 3171; https://doi.org/10.3390/ma18133171 - 4 Jul 2025
Viewed by 359
Abstract
One of the important parameters of the sheet metal forming process is the coefficient of friction (CoF). Therefore, monitoring the friction coefficient value is essential to ensure product quality, increase productivity, reduce environmental impact, and avoid product defects. Conventional CoF monitoring techniques pose [...] Read more.
One of the important parameters of the sheet metal forming process is the coefficient of friction (CoF). Therefore, monitoring the friction coefficient value is essential to ensure product quality, increase productivity, reduce environmental impact, and avoid product defects. Conventional CoF monitoring techniques pose a number of problems, including the difficulty in identifying the features of force signals that are sensitive to the variation in the coefficient of friction. To overcome these difficulties, this paper proposes a new approach to apply unsupervised artificial intelligence techniques with unbalanced data to classify the CoF of DP780 (HCT780X acc. to EN 10346:2015 standard) steel sheets in strip-drawing tests. During sheet metal forming (SMF), the CoF changes owing to the evolution of the contact conditions at the tool–sheet metal interface. The surface topography, the contact loads, and the material behaviour affect the phenomena in the contact zone. Therefore, classification is required to identify possible disturbances in the friction process causing the change in the CoF, based on the analysis of the friction process parameters and the change in the sheet metal’s surface roughness. The Kohonen self-organising map (SOM) was created based on the surface topography parameters collected and used for CoF classification. The CoF determinations were performed in the strip-drawing test under different lubrication conditions, contact pressures, and sliding speeds. The results showed that it is possible to classify the CoF using an SOM for unbalanced data, using only the surface roughness parameter Sq and selected friction test parameters, with a classification accuracy of up to 98%. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

22 pages, 7210 KiB  
Article
Polyethylene Storage Tanks Strengthened Externally with Fiber-Reinforced Polymer Laminates
by Ghassan Hachem, Wassim Raphael and Rafic Faddoul
Polymers 2025, 17(13), 1858; https://doi.org/10.3390/polym17131858 - 3 Jul 2025
Viewed by 472
Abstract
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this [...] Read more.
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this study, a method of external strengthening using fiber-reinforced polymer (FRP) laminates is proposed and explored. The research involves a combination of laboratory testing on carbon fiber-reinforced polymer (CFRP)-strengthened polyethylene strips and finite element simulations aimed at assessing bond strength, anchorage length, and structural behavior. Results from tensile tests indicate that slippage tends to occur unless the anchorage length exceeds approximately 450 mm. To evaluate surface preparation, grayscale image analysis was used, showing that mechanical sanding increased intensity variation by over 127%, pointing to better bonding potential. Simulation results show that unreinforced tanks under seismic loads display stress levels beyond their elastic limit, along with signs of elephant foot buckling—common in thin-walled cylindrical structures. Applying CFRPs in a full-wrap setup notably reduced these effects. This approach offers a viable alternative to full tank replacement, especially in regions where cost, access, or operational constraints make replacement impractical. The applicability is particularly valuable in seismically active and densely populated areas, where rapid, non-invasive retrofitting is essential. Based on the experimental findings, a simple formula is proposed to estimate the anchorage length required for effective crack repair. Overall, the study demonstrates that CFRP retrofitting, paired with proper surface treatment, can significantly enhance the seismic performance of polyethylene tanks while avoiding costly and disruptive replacement strategies. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

18 pages, 3665 KiB  
Article
Analytical Device and Prediction Method for Urine Component Concentrations
by Zhe Wang, Jianbang Huang, Qimeng Chen, Yuanhua Yu, Xuan Yu, Yue Zhao, Yan Wang, Chunxiang Shi, Zizhao Zhao and Dachun Tang
Micromachines 2025, 16(7), 789; https://doi.org/10.3390/mi16070789 - 2 Jul 2025
Viewed by 309
Abstract
To tackle the low-accuracy problem with analyzing urine component concentrations in real time, a fully automated dipstick analysis device of urine dry chemistry was designed, and a prediction method combining an image acquisition system with a whale optimization algorithm (WOA) for BP neural [...] Read more.
To tackle the low-accuracy problem with analyzing urine component concentrations in real time, a fully automated dipstick analysis device of urine dry chemistry was designed, and a prediction method combining an image acquisition system with a whale optimization algorithm (WOA) for BP neural network optimization was proposed. The image acquisition system, which comprised an ESP32S3 chip and a GC2145 camera, was used to collect the urine test strip images, and then color data were calibrated by image processing and color correction on the upper computer. The correlations between reflected light and concentrations were established following the Kubelka–Munk theory and the Beer–Lambert law. A mathematical model of urine colorimetric value and concentration was constructed based on the least squares method. The WOA algorithm was applied to optimize the weight and threshold of the BP neural network, and substantial data were utilized to train the neural network and perform comparative analysis. The experimental results show that the MAE, RMSE and R2 of predicted versus actual urine protein values were, respectively, 3.1415, 4.328 and approximately 1. The WOA-BP neural network model exhibited high precision and accuracy in predicting the urine component concentrations. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

18 pages, 2325 KiB  
Article
Ultrasound Improves Gallbladder Contraction Function: A Non-Invasive Experimental Validation Using Small Animals
by Run Guo, Tian Chen, Fan Ding, Li-Ping Liu, Fang Chen, Gang Zhao and Bo Zhang
Bioengineering 2025, 12(7), 716; https://doi.org/10.3390/bioengineering12070716 - 30 Jun 2025
Viewed by 357
Abstract
Background: Gallbladder hypomotility is a key pathogenic factor in cholelithiasis. Non-invasive interventions to enhance gallbladder contractility remain limited. Ultrasound therapy has shown promise in various muscular disorders, but its effects on gallbladder function are unexplored. Methods: This study employed low-intensity pulsed ultrasound (LIPUS) [...] Read more.
Background: Gallbladder hypomotility is a key pathogenic factor in cholelithiasis. Non-invasive interventions to enhance gallbladder contractility remain limited. Ultrasound therapy has shown promise in various muscular disorders, but its effects on gallbladder function are unexplored. Methods: This study employed low-intensity pulsed ultrasound (LIPUS) at a 3 MHz frequency and 0.8 W/cm2 intensity with a 20% duty cycle to irradiate the gallbladder region of fasting guinea pigs. Gallbladder contractile function was evaluated through multiple complementary approaches: in vivo assessment via two-dimensional/three-dimensional ultrasound imaging to monitor volumetric changes; quantitative functional evaluation using nuclear medicine scintigraphy (99mTc-HIDA); and ex vivo experiments including isolated gallbladder muscle strip tension measurements, histopathological analysis, α-smooth muscle actin (α-SMA) immunohistochemistry, and intracellular calcium fluorescence imaging. Results: Ultrasound significantly enhanced gallbladder emptying, evidenced by the volume reduction and increased ejection fraction. Scintigraphy confirmed accelerated bile transport in treated animals. Ex vivo analyses demonstrated augmented contractile force, amplitude, and frequency in ultrasound-treated smooth muscle. Histological examination revealed smooth muscle hypertrophy, α-SMA upregulation, and elevated intracellular calcium levels. Extended ultrasound exposure produced sustained functional improvements without tissue damage. Conclusions: Ultrasound effectively enhances gallbladder contractile function through mechanisms involving smooth muscle structural modification and calcium signaling modulation. These findings establish the experimental foundation for ultrasound as a promising non-invasive therapeutic approach to improve gallbladder motility and potentially prevent gallstone formation. Full article
Show Figures

Figure 1

15 pages, 1389 KiB  
Article
A Novel Approach to the Design of a Solid Bismuth Microelectrode Array: Applications in the Anodic Stripping Voltammetry of Cd(II) and Pb(II)
by Mieczyslaw Korolczuk, Iwona Gęca and Paulina Mrózek
Molecules 2025, 30(13), 2743; https://doi.org/10.3390/molecules30132743 - 26 Jun 2025
Viewed by 228
Abstract
A new type of solid bismuth microelectrode array characterized by eco-friendly properties and the simplicity of its construction is presented for the first time. The proposed array of microelectrodes consists of exactly forty-three single capillaries of an inner diameter of about 10 µm [...] Read more.
A new type of solid bismuth microelectrode array characterized by eco-friendly properties and the simplicity of its construction is presented for the first time. The proposed array of microelectrodes consists of exactly forty-three single capillaries of an inner diameter of about 10 µm filled with metallic bismuth and packed in one casing. The proposed sensor is reusable thanks to its distinctive design. The microelectrode properties of the proposed working electrodes were confirmed by comparing the analytical signals of cadmium and lead recorded from stirred and unstirred solutions during the deposition step. The practical application of the solid bismuth microelectrode array is presented by detailing the procedure for the simultaneous determination of Pb and Cd by anodic stripping voltammetry. The calibration graphs were linear from 5 × 10−9 to 2 × 10−7 mol L−1 and 2 × 10−9 to 2 × 10−7 mol L−1 for Cd(II) and Pb(II), respectively (deposition time of 60 s). The detection limits for Cd(II) and Pb(II) were equal to 2.3 × 10−9 mol L−1 and 8.9 × 10−10 mol L−1, respectively. Potential interferences were investigated. The developed procedure was successfully used for the analysis of certified water reference material and environmental water samples. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

11 pages, 943 KiB  
Article
Impact of Microkeratome Dissection Parameters on Textural Interface Opacities in DSAEK Grafts
by Marina S. Chatzea, George D. Kymionis, Dionysios G. Vakalopoulos, Robert C. O’Brien, Daniella Mora, Katrina Llanes, Elizabeth Fout, William Buras, Concetta Triglia, Rahul S. Tonk and Sonia H. Yoo
Diagnostics 2025, 15(13), 1608; https://doi.org/10.3390/diagnostics15131608 - 25 Jun 2025
Viewed by 309
Abstract
Background: Textural interface opacities (TIOs) following Descemet’s stripping automated endothelial keratoplasty (DSAEK) have become a significant postoperative concern. Studies have explored possible links such as stromal irregularities and viscoelastic usage, but the exact cause of TIOs remains unclear. PURPOSE: To evaluate the [...] Read more.
Background: Textural interface opacities (TIOs) following Descemet’s stripping automated endothelial keratoplasty (DSAEK) have become a significant postoperative concern. Studies have explored possible links such as stromal irregularities and viscoelastic usage, but the exact cause of TIOs remains unclear. PURPOSE: To evaluate the relationship between microkeratome dissection parameters and the development of textural interface opacities in DSAEK grafts utilizing the “M-TIO” grading scale for standardized assessment. Methods: Optical coherence tomography (OCT) images of DSAEK-processed corneal grafts, prepared with the same microkeratome and technique for transplantation at Bascom Palmer Eye Institute, underwent blinded analysis using a newly developed grading scale termed “M-TIO”. This analysis aimed to evaluate and categorize the occurrence of TIO, explore its potential correlation with graft characteristics prior to DSAEK preparation, and assess specific stages of the DSAEK dissection process. Data collected included the size of the microkeratome head used, the difference between the head and the actual stromal cut, and the difference between the pre-cut graft thickness and post-cut DSAEK lenticule thickness. Results: The study retrospectively included 422 donor corneas transplanted from 2019 to 2023. Variables associated with TIO in the final multivariable ordinal logistic model included the difference between the pre-cut graft thickness and the post-cut DSAEK lenticule thickness (OR: 1.57 [99% CI: 1.22 to 2.06] per 50 µm) and microkeratome head (OR: 6.95 [99% CI: 1.04 to 36.60] 300 µm, OR: 4.39 [99% CI: 0.76 to 19.00] 350 µm, and OR: 18.86 [99% CI: 2.35 to 175.91] 400 µm vs 450 or 500 µm, respectively). Conclusions: This study identified a statistically significant association between TIOs and the microkeratome DSAEK preparation, proposing several factors that could help prevent its occurrence. Specifically, creating an ultra-thin DSAEK lenticule from an initially thick graft using a smaller microkeratome head with the slow single-pass technique may increase the risk of TIOs. In contrast, utilizing a larger microkeratome head can improve stromal thickness consistency, reduce technical challenges during graft preparation, and lower the risk of TIOs. Full article
(This article belongs to the Special Issue Optical Coherence Tomography in Diagnosis of Ophthalmology Disease)
Show Figures

Figure 1

19 pages, 6315 KiB  
Article
Age-Friendly Public-Space Retrofit in Peri-Urban Villages Using Space Syntax and Exploratory Factor Analysis
by Qin Li, Zhenze Yang, Jingya Cui, Xingping Wu, Jiao Liu, Wenlong Li and Yijun Liu
Buildings 2025, 15(13), 2219; https://doi.org/10.3390/buildings15132219 - 24 Jun 2025
Viewed by 490
Abstract
Population ageing is revealing acute mismatches between inherited village layouts and older residents’ everyday needs in China’s peri-urban fringe. This study combines space-syntax diagnostics with an exploratory factor analysis to create a building-oriented retrofit workflow. Using Liulin Village, Beijing, as a test bed, [...] Read more.
Population ageing is revealing acute mismatches between inherited village layouts and older residents’ everyday needs in China’s peri-urban fringe. This study combines space-syntax diagnostics with an exploratory factor analysis to create a building-oriented retrofit workflow. Using Liulin Village, Beijing, as a test bed, axial-line modelling pinpoints the low-integration alleys and mono-functional retail strips, while elder-user surveys distil four latent demand factors, led by personal convenience. Overlaying these two layers highlights the “high-demand/low-fit” segments for intervention. Prefabricated 3 m × 6 m health kiosks, sunrooms and rest pergolas—constructed from light-gauge steel frames and assembled with dry joints—are then inserted along a newly permeated corridor–core walking loop. The modules follow a 600 mm dimensional grid and can be installed or removed within a single working day, cutting the on-site labour by roughly one-third relative to that required for conventional masonry kiosks and enabling their future relocation or reuse. The workflow shows how small-scale, low-carbon building interventions can simultaneously improve accessibility, social interaction and functional diversity, providing a transferable template for ageing-responsive public-space retrofits in rapidly transforming village contexts. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop