Heat-Sealing Process for Chañar Brea Gum Films
Abstract
1. Introduction
- a-
- The Rise of Edible and Biodegradable Films
- b-
- Advancements in Bio-based Packaging Materials
- Corn starch and functional polysaccharides: Self-supporting edible films composed of corn starch and functional polysaccharides (amylose, methylcellulose, and hydroxypropyl methylcellulose) have been evaluated for heat sealing between 85 and 166 °C [1].
- Protein films: Although protein films are promising alternatives to conventional plastics, they often require improved mechanical and barrier properties through physical, chemical, or biochemical treatments. Combining nanotechnology with enzymatic and physical treatments appears to be the most promising approach for creating optimal protein packaging for diverse food applications [8].
- Starch with essential oils: Biodegradable corn/wheat starch films infused with lemon essential oil (LEO) and surfactants exhibit modified physical properties and significantly increased antimicrobial activity, making them potential biodegradable active packaging for controlling microbial food spoilage [9].
- Blends for enhanced properties:
- ○
- Soluble soy polysaccharide (SSPS) and gelatin: Blended films of SSPS and gelatin have been developed to enhance heat sealability, strength, and stability, making them promising for rapidly dissolving packaging of powdered products [10].
- ○
- Cellulose acetate and nanofibers: A biodegradable bag for fish and meat was developed using cellulose acetate and cellulose nanofibers. This heat-sealable film, incorporating natural anthocyanin as an ammonia sensor, exhibited good properties and potential as an active biodegradable packaging with a freshness indicator [11].
- ○
- Starch-chitosan with graphene oxide: Biodegradable active films of starch-chitosan reinforced with reduced graphene oxide have shown improved functional properties while maintaining heat sealability for food packaging [12].
- ○
- Soy protein isolate with Tara pod extract: Biodegradable films made from soy protein isolate (SPI) and Tara pod extract (TPE) have demonstrated improved mechanical, UV/oxygen barrier, and heat-sealing properties, providing greater protection for fatty foods compared to polyethylene containers [15].
- HPMC/cellulose nanofiber films: Active, printable, and heat-sealable HPMC/cellulose nanofiber films containing propolis-loaded zein nanoparticles are emerging as environmentally friendly alternatives to plastics for food packaging [4].
- Vegetable purees and pectin: “Greek salad”-style edible films made from vegetable purees and pectin have demonstrated good heat-sealing properties, with future efforts focusing on optimizing the basic film for packaging fatty foods [16].
- Pectin with curcumin-loaded nanoparticles: Enhanced pectin-active films with curcumin-loaded phytoglycogen nanoparticles have improved barrier, antioxidant, and antibacterial properties, showing potential to replace heat-sealable plastics in oil packaging [17].
- Chitosan: This promising antimicrobial biopolymer is being explored for biodegradable packaging to extend food shelf life; however, further research is needed for optimal properties and commercialization [18].
- Rice biopolymer, chitosan, and alginate adhesive: A novel, nontoxic, and sustainable adhesive based on rice biopolymer, chitosan, and alginate has proven effective in bonding biopolymer surfaces with good strength, even under high-humidity conditions, offering a promising alternative for sealing bio-based films [19].
- Soy protein films with cow horn: Heat-sealable soy protein films reinforced with cow horn have been developed as smart (pH-sensitive) and environmentally friendly packaging materials with good mechanical properties and UV protection for food [20].
- Starch-Based Packaging: Despite significant advancements, starch-based packaging, although sustainable and affordable, faces practical challenges in large-scale implementation, particularly in developing countries with limited recycling infrastructure. These include issues related to industrial processing, storage, and moisture resistance [21,22]. Addressing these stages comprehensively is crucial for scaling up production and successfully replacing single-use plastics [23].
- c-
- Exploring Chañar Brea Gum (CBG) in Edible Films
2. Materials and Methods
2.1. Raw Material
2.1.1. Film Preparation
2.1.2. Film Heat-Sealing
2.1.3. Proximate Analysis of Biomass
2.1.4. Antioxidant Activity Assays
Reducing Power
DPPH Scavenging Activity
Total Polyphenol Content
2.2. Fourier-Transform Infrared Spectroscopy
2.3. X-Ray Diffraction (XRD)
2.4. Differential Scanning Calorimetric Analysis (DSC)
2.5. Thermogravimetric Analysis
2.6. Scanning Electron Microscopy (SEM)
2.7. Mechanical Tests
2.8. Water Vapor Permeability
2.9. Biodegradability
3. Results
3.1. Proximate Analysis of Biomass and Antioxidant Capacity
3.2. X-Ray Diffraction (XRD)
3.3. Fourier-Transform Infrared Spectroscopy (FTIR)
3.4. Differential Scanning Calorimetry (DSC)
3.5. Thermogravimetric Analysis (TGA-DTGA)
3.6. Scanning Electron Microscopy (SEM)
3.7. Water Sorption and Water Vapor Permeability
3.8. Mechanical Test and Heat-Sealing Capacity
Heat Sealing Capacity
3.9. Biodegradability
- -
- Starch: Widely studied and used due to its low cost and availability. Thermoplastic starch films are biodegradable in various environments [74].
- -
- Cellulose and its derivatives: Cellulose, the most abundant natural polymer, is an important base for biodegradable films. Its derivatives, such as carboxymethylcellulose or cellophane (regenerated cellulose), are also biodegradable [75].
- -
- Chitin and Chitosan: Obtained mainly from crustacean exoskeletons, these polysaccharides have interesting properties for films, including biodegradability in the presence of chitinases [76].
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, M.; Chowdhury, T. Heat sealing property of starch based self-supporting edible films. Food Packag. Shelf Life 2016, 9, 64–68. [Google Scholar] [CrossRef]
- Khodaei, D.; Álvarez, C.; Mullen, A.M. Biodegradable packaging materials from animal processing co-products and wastes: An overview. Polymers 2021, 13, 2561. [Google Scholar] [CrossRef] [PubMed]
- Jeevahan, J.J.; Chandrasekaran, M.; Venkatesan, S.P.; Sriram, V.; Joseph, G.B.; Mageshwaran, G.; Durairaj, R.B. Scaling up difficulties and commercial aspects of edible films for food packaging: A review. Trends Food Sci. Technol. 2020, 100, 210–222. [Google Scholar] [CrossRef]
- Dag, D.; Jung, J.; Zhao, Y. Development and characterization of cinnamon essential oil incorporated active, printable and heat sealable cellulose nanofiber reinforced hydroxypropyl methylcellulose films. Food Packag. Shelf Life 2023, 39, 101153. [Google Scholar] [CrossRef]
- Yi, C.; Yuan, T.; Xiao, H.; Ren, H.; Zhai, H. Hydrophobic-modified cellulose nanofibrils (CNFs)/chitosan/zein coating for enhancing multi-barrier properties of heat-sealable food packaging materials. Colloids Surf. A Physicochem. Eng. Asp. 2023, 666, 131245. [Google Scholar] [CrossRef]
- Rajeshkumar, L.; Ramesh, M.; Bhuvaneswari, V.; Balaji, D.; Deepa, C. Synthesis and thermomechanical properties of bioplastics and biocomposites: A systematic review. J. Mater. Chem. B 2023, 11, 3307–3337. [Google Scholar] [CrossRef]
- Kalina, S.; Kapilan, R.; Wickramasinghe, I.; Navaratne, S.B. Potential use of plant leaves and sheath as food packaging materials in tackling plastic pollution: A Review. Ceylon J. Sci. 2024, 53, 21–37. [Google Scholar] [CrossRef]
- Zink, J.; Wyrobnik, T.; Prinz, T.; Schmid, M. Physical, chemical and biochemical modifications of protein-based films and coatings: An extensive review. Int. J. Mol. Sci. 2016, 17, 1376. [Google Scholar] [CrossRef]
- Song, X.; Zuo, G.; Chen, F. Effect of essential oil and surfactant on the physical and antimicrobial properties of corn and wheat starch films. Int. J. Biol. Macromol. 2018, 107, 1302–1309. [Google Scholar] [CrossRef]
- Liu, C.; Huang, J.; Zheng, X.; Liu, S.; Lu, K.; Tang, K.; Liu, J. Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications. Food Packag. Shelf Life 2020, 24, 100485. [Google Scholar] [CrossRef]
- Hazarika, K.K.; Konwar, A.; Borah, A.; Saikia, A.; Barman, P.; Hazarika, S. Cellulose nanofiber mediated natural dye based biodegradable bag with freshness indicator for packaging of meat and fish. Carbohydr. Polym. 2023, 300, 120241. [Google Scholar] [CrossRef] [PubMed]
- Alves, Z.; Ferreira, N.M.; Ferreira, P.; Nunes, C. Design of heat sealable starch-chitosan bioplastics reinforced with reduced graphene oxide for active food packaging. Carbohydr. Polym. 2022, 291, 119517. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.S.; Ock, S.Y.; Park, G.D.; Lee, I.W.; Lee, M.H.; Park, H.J. Heat-sealing property of cassava starch film plasticized with glycerol and sorbitol. Food Packag. Shelf Life 2020, 26, 100556. [Google Scholar] [CrossRef]
- Bamps, B.; Buntinx, M.; Peeters, R. Seal materials in flexible plastic food packaging: A review. Packag. Technol. Sci. 2023, 36, 507–532. [Google Scholar] [CrossRef]
- Ren, Z.; Ning, Y.; Xu, J.; Cheng, X.; Wang, L. Eco-friendly fabricating Tara pod extract-soy protein isolate film with antioxidant and heat-sealing properties for packaging beef tallow. Food Hydrocoll. 2024, 153, 110041. [Google Scholar] [CrossRef]
- Trianti, M.; Mastora, A.; Nikolaidou, E.; Zorba, D.; Rozou, A.; Giannou, V.; Tzia, C.; Sinanoglou, V.J.; Papadakis, S.E. Development and characterization of “Greek Salad” edible films. Food Packag. Shelf Life 2024, 46, 101378. [Google Scholar] [CrossRef]
- Wang, R.; Chen, Z.; Shu, Y.; Wang, Y.; Wang, W.; Zhu, H.; Sun, J.; Ma, Q. Apple pectin-based active films to preserve oil: Effects of naturally branched phytoglycogen-curcumin host. Int. J. Biol. Macromol. 2024, 266, 131218. [Google Scholar] [CrossRef] [PubMed]
- Zehra, A.; Amin, T.; Wani, S.M.; Sidiq, H.; Bashir, I.; Mustafa, S.; Showkat, S. Chitosan-Based Films. In Polysaccharide Based Films for Food Packaging: Fundamentals, Properties and Applications; Springer Nature: Singapore, 2024; pp. 121–144. [Google Scholar]
- Rahman, S.; Konwar, A.; Gurumayam, S.; Borah, J.C.; Chowdhury, D. Sodium Alginate-chitosan-starch based glue formulation for sealing biopolymer films. Next Mater. 2025, 7, 100507. [Google Scholar] [CrossRef]
- Uribarrena, M.; Cabezudo, S.; Núñez, R.N.; Copello, G.J.; de la Caba, K.; Guerrero, P. Development of smart films based on soy protein and cow horn dissolved in a deep eutectic solvent: Physicochemical and environmental assessment. Int. J. Biol. Macromol. 2025, 291, 139045. [Google Scholar] [CrossRef]
- Nafchi, A.M.; Nassiri, R.; Sheibani, S.; Ariffin, F.; Karim, A.A. Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydr. Polym. 2013, 96, 233–239. [Google Scholar] [CrossRef]
- Ortega, F. Materiales Biodegradables Con Nanopartículas de Plata con Capacidad Antimicrobiana Para Mejorar Los Procesos de Conservación de Alimentos. Ph.D. Thesis, Universidad Nacional de la Plata, La Plata, Argentina, 2021. [Google Scholar]
- Garavito, J.; Peña-Venegas, C.P.; Castellanos, D.A. Production of Starch-Based Flexible Food Packaging in Developing Countries: Analysis of the Processes, Challenges, and Requirements. Foods 2024, 13, 4096. [Google Scholar] [CrossRef] [PubMed]
- Bertuzzi, M.A.; Slavutsky, A.M.; Armada, M. Physicochemical characterisation of the hydrocolloid from Brea tree (Cercidium praecox). Int. J. Food Sci. Technol. 2012, 47, 768–775. [Google Scholar] [CrossRef]
- Bertuzzi, M.A.; Slavutsky, A.M. Formulation and Characterization of Film Based on Gum Exudates from Brea Tree (Cercidium praecox). J. Food Sci. Eng. 2013, 3, 113–122. [Google Scholar]
- Slavutsky, A.M.; Bertuzzi, M.A.; Armada, M.; García, M.G.; Ochoa, N.A. Preparation and characterization of montmorillonite/brea gum nanocomposites films. Food Hydrocoll. 2014, 35, 270–278. [Google Scholar] [CrossRef]
- Slavutsky, A.M.; Bertuzzi, M.A. Thermodynamic study of water sorption and water barrier properties of nanocomposite films based on brea gum. Appl. Clay Sci. 2015, 108, 144–148. [Google Scholar] [CrossRef]
- Cecchini, J.P.; Spotti, M.J.; Piagentini, A.M.; Milt, V.G.; Carrara, C.R. Development of edible films obtained from submicron emulsions based on whey protein concentrate, oil/beeswax and brea gum. Food Sci. Technol. Int. 2017, 23, 371–381. [Google Scholar] [CrossRef] [PubMed]
- Slavutsky, A.M.; Gamboni, J.E.; Bertuzzi, M.A. Formulation and characterization of bilayer films based on Brea gum and Pectin. Braz. J. Food Technol. 2018, 21, e2017213. [Google Scholar] [CrossRef]
- Masuelli, M.A.; Slatvustky, A.; Ochoa, A.; Bertuzzi, M.A. Physicochemical Parameters for Brea Gum Exudate from Cercidium praecox Tree. Colloids Interfaces 2018, 2, 72. [Google Scholar] [CrossRef]
- Torres, M.F.; Lazo Delgado, L.; Filippa, M.; Masuelli, M.A. Effect of Temperature on Mark-Houwink-Kuhn-Sakurada (MHKS) Parameters of Chañar Brea Gum Solutions. J. Polym. Biopolym. Phys. Chem. 2020, 8, 28–30. [Google Scholar]
- Torres, M.F.; Lazo Delgado, L.; D’Amelia, R.; Filippa, M.; Masuelli, M. Sol/gel transition temperature of chañar brea gum. Curr. Trends Polym. Sci. 2021, 20, 83–93. [Google Scholar]
- Becerra, F.; Garro, M.F.; Melo, G.; Masuelli, M. Preparation and Characterization of Lithraea molleoides Gum Flour and Its Blend Films. Processes 2024, 12, 2506. [Google Scholar] [CrossRef]
- ASTM F88-09; Standard Test Method for Seal Strength of Flexible Barrier Materials. Annual book of ASTM. American Society for Testing and Materials: West Conshohocken, PA, USA, 2009.
- AOAC International. Official Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Rulli, M.M.; Villegas, L.B.; Barcia, C.S.; Colin, V.L. Bioconversion of sugarcane vinasse into fungal biomass protein and its potential use in fish farming. J. Environ. Chem. Eng. 2021, 9, 106136. [Google Scholar] [CrossRef]
- Deng, C.; Hu, Z.; Fu, H.; Hu, M.; Xu, X.; Chen, J. Chemical analysis and antioxidant activity in vitro of β-D-glucan isolated from Dictyophora indusiate. Int. J. Biol. Macromol. 2012, 51, 70–75. [Google Scholar] [CrossRef]
- Kaur, R.; Arora, S.; Singh, B. Antioxidant activity of the phenol rich fractions of leaves of Chukrasia tabularis A. Juss. Bioresour. Technol. 2008, 99, 7692–7698. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef] [PubMed]
- Zanon, M.; Masuelli, M. Purification and characterization of alcayota gum. Biopolym. Res. 2018, 2, 105. [Google Scholar]
- Al Sagheer, F.A.; Al-Sughayer, M.A.; Muslim, S.; Elsabee, M.Z. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr. Polym. 2009, 77, 410–419. [Google Scholar] [CrossRef]
- Barbosa, H.F.; Francisco, D.S.; Ferreira, A.P.; Cavalheiro, É.T. A new look towards the thermal decomposition of chitins and chitosans with different degrees of deacetylation by coupled TG-FTIR. Carbohydr. Polym. 2019, 225, 115232. [Google Scholar] [CrossRef]
- Zanon, M.; Masuelli, M.A. Alcayota gum films: Experimental reviews. J. Mater. Sci. Chem. Eng. 2018, 6, 11–58. [Google Scholar] [CrossRef]
- Masuelli, M.A.; Lazo, L.; Becerra, F.; Torres, F.; Illanes, C.O.; Takara, A.; Auad, M.L.; Bercea, M. Physical and Chemical Properties of Pachycymbiola brasiliana Eggshells-From Application to Separative Processes. Processes 2024, 12, 814. [Google Scholar] [CrossRef]
- ASTM D882-18; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. American Society for Testing and Materials: West Conshohocken, PA, USA, 2018.
- Ruano, P.; Delgado, L.L.; Picco, S.; Villegas, L.; Tonelli, F.; Merlo, M.E.A.; Rigau, J.; Masuelli, M. Extraction and Characterization of Pectins from Peels of Criolla Oranges (Citrus sinensis): Experimental Reviews. In Pectins-Extraction, Purification, Characterization and Applications; Martin, M., Ed.; IntechOpen: London, UK, 2019. [Google Scholar]
- ASTM E96; Standard Test Methods for Water Vapor Transmission of Materials. American Society for Testing and Materials: West Conshohocken, PA, USA, 2014.
- Lazo, L.; Melo, G.M.; Auad, M.L.; Filippa, M.; Masuelli, M.A. Synthesis and characterization of Chañar gum films. Colloids Interfaces 2022, 6, 10. [Google Scholar] [CrossRef]
- Illanes, C.O.; Takara, E.A.; Masuelli, M.A.; Ochoa, N.A. pH-responsive gum tragacanth hydrogels for high methylene blue adsorption. J. Chem. Technol. Biotechnol. 2024, 99, 31–39. [Google Scholar] [CrossRef]
- Adhikary, N.D.; Bains, A.; Sridhar, K.; Kaushik, R.; Chawla, P.; Sharma, M. Recent advances in plant-based polysaccharide ternary complexes for biodegradable packaging. Int. J. Biol. Macromol. 2023, 253, 126725. [Google Scholar] [CrossRef]
- Acosta-Ferreira, S.; Castillo, O.S.; Madera-Santana, J.T.; Mendoza-García, D.A.; Núñez-Colín, C.A.; Grijalva-Verdugo, C.; Villa-Lerma, A.G.; Morales-Vargas, A.T.; Rodríguez-Núñez, J.R. Production and physicochemical characterization of chitosan for the harvesting of wild microalgae consortia. Biotechnol. Rep. 2020, 28, e00554. [Google Scholar] [CrossRef]
- Chel-Guerrero, L.; Betancur-Ancona, D.; Aguilar-Vega, M.; Rodríguez-Canto, W. Films properties of QPM corn starch with Delonix regia seed galactomannan as an edible coating material. Int. J. Biol. Macromol. 2024, 255, 128408. [Google Scholar] [CrossRef]
- Yazdi, M.K.; Seidi, F.; Jin, Y.; Zarrintaj, P.; Xiao, H.; Esmaeili, A.; Habibzadeh, S.; Saeb, M.R. Crystallization of polysaccharides. Polysacch. Prop. Appl. 2021, 283–300. [Google Scholar] [CrossRef]
- Luo, A.; Hu, B.; Feng, J.; Lv, J.; Xie, S. Preparation, and physicochemical and biological evaluation of chitosan Arthrospira platensis polysaccharide active films for food packaging. J. Food Sci. 2021, 86, 987–995. [Google Scholar] [CrossRef]
- Nahas, E.O.; Furtado, G.F.; Lopes, M.S.; Silva, E.K. From Emulsions to Films: The Role of Polysaccharide Matrices in Essential Oil Retention Within Active Packaging Films. Foods 2025, 14, 1501. [Google Scholar] [CrossRef]
- Du, B.; Jeepipalli, S.P.; Xu, B. Critical review on alterations in physiochemical properties and molecular structure of natural polysaccharides upon ultrasonication. Ultrason. Sonochemist. 2022, 90, 106170. [Google Scholar] [CrossRef]
- Demircan, B.; McClements, D.J.; Velioglu, Y.S. Next-Generation Edible Packaging: Development of Water-Soluble, Oil-Resistant, and Antioxidant-Loaded Pouches for Use in Noodle Sauces. Foods 2025, 14, 1061. [Google Scholar] [CrossRef]
- Bumbudsanpharoke, N.; Harnkarnsujarit, N.; Chongcharoenyanon, B.; Kwon, S.; Ko, S. Enhanced properties of PBAT/TPS biopolymer blend with CuO nanoparticles for promising active packaging. Food Packag. Shelf Life 2023, 37, 101072. [Google Scholar] [CrossRef]
- Dong, Y.; Rao, Z.; Liu, Y.; Zheng, X.; Tang, K.; Liu, J. Soluble soybean polysaccharide/gelatin active edible films incorporated with curcumin for oil packaging. Food Packag. Shelf Life 2023, 35, 101039. [Google Scholar] [CrossRef]
- Bhat, R.; Abdullah, N.; Din, R.H.; Tay, G.S. Producing novel sago starch based food packaging films by incorporating lignin isolated from oil palm black liquor waste. J. Food Eng. 2013, 119, 707–713. [Google Scholar] [CrossRef]
- Sadegh-Hassani, F.; Nafchi, A.M. Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int. J. Biol. Macromol. 2014, 67, 458–462. [Google Scholar] [CrossRef]
- Chhikara, S.; Kumar, D. Edible coating and edible film as food packaging material: A review. J. Packag. Technol. Res. 2022, 6, 1–10. [Google Scholar] [CrossRef]
- Kim, S.J.; Ustunol, Z. Thermal properties, heat sealability and seal attributes of whey protein isolate/lipid emulsion edible films. J. Food Sci. 2001, 66, 985–990. [Google Scholar] [CrossRef]
- Nafchi, A.M. Mechanical, barrier, physicochemical, and heat seal properties of starch films filled with nanoparticles. J. Nano Res. 2013, 25, 90–100. [Google Scholar] [CrossRef]
- Shah, Y.A.; Bhatia, S.; Al-Harrasi, A.; Oz, F.; Khan, M.H.; Roy, S.; Esatbeyoglu, T.; Pratap-Singh, A. Thermal properties of biopolymer films: Insights for sustainable food packaging applications. Food Eng. Rev. 2024, 16, 497–512. [Google Scholar] [CrossRef]
- Demircan, B.; Velioglu, Y.S. Revolutionizing single-use food packaging: A comprehensive review of heat-sealable, water-soluble, and edible pouches, sachets, bags, or packets. Crit. Rev. Food Sci. Nutr. 2025, 65, 1497–1517. [Google Scholar] [CrossRef]
- Chu, Y. Regenerated Cellulose Films with Heat Sealability and Improved Barrier Properties for Sustainable Food Packaging; McGill University: Montreal, QC, Canada, 2023. [Google Scholar]
- Cho, S.W.; Ullsten, H.; Gällstedt, M.; Hedenqvist, M.S. Heat-sealing properties of compression-molded wheat gluten films. J. Biobased Mater. Bioenergy 2007, 1, 56–63. [Google Scholar] [CrossRef]
- Rouhi, J.; Mahmud, S.; Naderi, N.; Ooi, C.R.; Mahmood, M.R. Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Res. Lett. 2013, 8, 364. [Google Scholar] [CrossRef]
- Roidoung, S.; Sonyiam, S.; Fugthong, S. Development of heat sealable film from tapioca and potato starch for application in edible packaging. J. Food Sci. Technol. 2025, 62, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Aleksanyan, K.V. Polysaccharides for biodegradable packaging materials: Past, present, and future (Brief Review). Polymers 2023, 15, 451. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, B.; Li, C.; Xu, Y.; Luo, Y.; Liang, D.; Huang, C. Comprehensive review of polysaccharide-based materials in edible packaging: A sustainable approach. Foods 2021, 10, 1845. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Jiang, L.; Wang, C.; Li, S.; Sun, D.; Ma, Q.; Yu, Z.; Liu, Y.; Jiang, W. Flexibility, dissolvability, heat-sealability, and applicability improvement of pullulan-based composite edible films by blending with soluble soybean polysaccharide. Ind. Crops Prod. 2024, 215, 118693. [Google Scholar] [CrossRef]
- López, O.V.; Lecot, C.J.; Zaritzky, N.E.; García, M.A. Biodegradable packages development from starch based heat sealable films. J. Food Eng. 2011, 105, 254–263. [Google Scholar] [CrossRef]
- Chu, Y.; Popovich, C.; Wang, Y. Heat sealable regenerated cellulose films enabled by zein coating for sustainable food packaging. Compos. Part C Open Access 2023, 12, 100390. [Google Scholar] [CrossRef]
- Jongjun, Y.; Pornprasert, P.; Prateepchanachai, S. Improvement of heat-sealing strength of chitosan-based composite films and product costs analysis in the production process. J. Appl. Res. Sci. Technol. 2024, 23, 251817. [Google Scholar] [CrossRef]
- Zhang, H.; Li, M.; Liu, Z.; Li, R.A.; Cao, Y. Heat-sealable, transparent, and degradable arabinogalactan/polyvinyl alcohol films with UV-shielding, antibacterial, and antioxidant properties. Int. J. Biol. Macromol. 2024, 275, 133535. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Romani, V.P.; da Silva Filipini, G.; G Martins, V. Chia seeds to develop new biodegradable polymers for food packaging: Properties and biodegradability. Polym. Eng. Sci. 2020, 60, 2214–2223. [Google Scholar] [CrossRef]
- Janik, W.; Nowotarski, M.; Shyntum, D.Y.; Bana, A.; Krukiewicz, K.; Kudła, S.; Dudek, G. Antibacterial and biodegradable polysaccharide-based films for food packaging applications: Comparative study. Materials 2022, 15, 3236. [Google Scholar] [CrossRef] [PubMed]
- Masuelli, M.A.; García, M.G. Biopackaging: Tara Gum Films. In Advances in Physicochemical Properties of Biopolymers; Part 2; Martin, M., Denis, R., Eds.; Bentham Publishing: Dubai, United Arab Emirates, 2017; pp. 876–898. [Google Scholar]
- García, M.G.; Masuelli, M.A. Effect of Cross-Linking Agent on Mechanical and Permeation Properties of Criolla Orange Pectin. In Pectin-The New-Old Polysaccharides; Martin, M., Ed.; INTECH: Rijeka, Croatia, 2022. [Google Scholar]
- Sznaider, F.; Stortz, C.A.; Rojas, A.M.; Navarro, D.A. Cercidium praecox brea gum arabinoglucuronoxylans: A viscosant substitute for gum Arabic? Food Hydrocoll. 2023, 137, 108403. [Google Scholar] [CrossRef]
- Ferreira, A.R.; Torres, C.A.; Freitas, F.; Reis, M.A.; Alves, V.D.; Coelhoso, I.M. Biodegradable films produced from the bacterial polysaccharide FucoPol. Int. J. Biol. Macromol. 2014, 71, 111–116. [Google Scholar] [CrossRef]
- Mukherjee, C.; Varghese, D.; Krishna, J.S.; Boominathan, T.; Rakeshkumar, R.; Dineshkumar, S.; Rao, B.; Sivaramakrishna, A. Recent advances in biodegradable polymers–properties, applications and future prospects. Eur. Polym. J. 2023, 192, 112068. [Google Scholar] [CrossRef]
- Long, J.; Zhang, W.; Zhao, M.; Ruan, C.Q. The reduce of water vapor permeability of polysaccharide-based films in food packaging: A comprehensive review. Carbohydr. Polym. 2023, 321, 121267. [Google Scholar] [CrossRef]
- Versino, F.; Ortega, F.; Monroy, Y.; Rivero, S.; López, O.V.; García, M.A. Sustainable and bio-based food packaging: A review on past and current design innovations. Foods 2023, 12, 1057. [Google Scholar] [CrossRef]
Flour | 2θ | dspacing (nm) | ICr % |
---|---|---|---|
CBG | 18.15 ± 0.72 | 4.88 ± 0.97 | 34.16 ± 0.97 |
CBG-H | 19.05 ± 0.84 | 4.66 ± 0.91 | 32.54 ± 0.89 |
Film | e (µm) | εmax% | τmax (MPa) | E (MPa) |
---|---|---|---|---|
CBG | 190 | 5.11 | 4.48 | 132.0 |
CBG-H | 307 | 11.09 | 3.36 | 96.8 |
CBG-V | 305 | 12.13 | 4.58 | 159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres, M.F.; Becerra, F.; Filippa, M.; Melo, G.; Masuelli, M. Heat-Sealing Process for Chañar Brea Gum Films. Processes 2025, 13, 2189. https://doi.org/10.3390/pr13072189
Torres MF, Becerra F, Filippa M, Melo G, Masuelli M. Heat-Sealing Process for Chañar Brea Gum Films. Processes. 2025; 13(7):2189. https://doi.org/10.3390/pr13072189
Chicago/Turabian StyleTorres, María Fernanda, Federico Becerra, Mauricio Filippa, Gisela Melo, and Martin Masuelli. 2025. "Heat-Sealing Process for Chañar Brea Gum Films" Processes 13, no. 7: 2189. https://doi.org/10.3390/pr13072189
APA StyleTorres, M. F., Becerra, F., Filippa, M., Melo, G., & Masuelli, M. (2025). Heat-Sealing Process for Chañar Brea Gum Films. Processes, 13(7), 2189. https://doi.org/10.3390/pr13072189