Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,987)

Search Parameters:
Keywords = stress-strain measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3715 KB  
Article
A Meso-Scale Modeling Framework Using the Discrete Element Method (DEM) for Uniaxial and Flexural Response of Ultra-High Performance Concrete (UHPC)
by Pu Yang, Aashay Arora, Christian G. Hoover, Barzin Mobasher and Narayanan Neithalath
Appl. Sci. 2026, 16(3), 1230; https://doi.org/10.3390/app16031230 - 25 Jan 2026
Abstract
This study addresses a key limitation in meso-scale discrete element modeling (DEM) of ultra-high performance concrete (UHPC). Most existing DEM frameworks rely on extensive macroscopic calibration and do not provide a clear, transferable pathway to derive contact law parameters from measurable micro-scale properties, [...] Read more.
This study addresses a key limitation in meso-scale discrete element modeling (DEM) of ultra-high performance concrete (UHPC). Most existing DEM frameworks rely on extensive macroscopic calibration and do not provide a clear, transferable pathway to derive contact law parameters from measurable micro-scale properties, limiting reproducibility and physical interpretability. To bridge this gap, we develop and validate a micro-indentation-informed, poromechanics-consistent calibration framework that links UHPC phase-level micromechanical measurements to a flat-joint DEM contact model for predicting uniaxial compression, direct tension, and flexural response. Elastic moduli and Poisson’s ratios of the constituent phases are obtained from micro-indentation and homogenization relations, while cohesion (c) and friction angle (α) are inferred through a statistical treatment of the indentation modulus and hardness distributions. The tensile strength limit (σₜ) is identified by matching the simulated flexural stress–strain peak and post-peak trends using a parametric set of (c, α, σₜ) combinations. The resulting DEM model reproduces the measured UHPC responses with strong agreement, capturing (i) compressive stress–strain response, (ii) flexural stress–strain response, and (iii) tensile stress–strain response, while also recovering the experimentally observed failure modes and damage localization patterns. These results demonstrate that physically grounded micro-scale measurements can be systematically upscaled to meso-scale DEM parameters, providing a more efficient and interpretable route for simulating UHPC and other porous cementitious composites from indentation-based inputs. Full article
20 pages, 4862 KB  
Article
An Investigation of Cracks in PK-Section Concrete Beams at Early Ages
by Zepeng Zhang, Jia Wang, Hongsheng Li, Xuefei Shi and Bin Huang
Buildings 2026, 16(2), 460; https://doi.org/10.3390/buildings16020460 - 22 Jan 2026
Viewed by 16
Abstract
Early age cracking induced by cement hydration heat in a 37.6 m-wide PK-section concrete box girder was investigated through full-scale field testing and numerical simulation. Material properties, temperature, and strain were measured, and the obtained thermal and mechanical parameters were used to simulate [...] Read more.
Early age cracking induced by cement hydration heat in a 37.6 m-wide PK-section concrete box girder was investigated through full-scale field testing and numerical simulation. Material properties, temperature, and strain were measured, and the obtained thermal and mechanical parameters were used to simulate temperature and stress distributions during cantilever casting. Results show that direct casting on the foundation cap led to extensive vertical cracking in diaphragms, where tensile stresses exceeded concrete strength, corresponding to a cracking index of approximately 1.8, with thermal-to-shrinkage stress ratios up to 3:1 in critical regions. Under cantilever construction conditions, significant transverse stress occurred only at the diaphragm bottom, reaching a cracking index of about 1.6, with a thermal-to-shrinkage ratio of 2:1. Reducing casting temperature lowered thermal stress by 0.1 MPa/°C, while adding 0.9 kg/m3 polypropylene fibers increased early-age tensile strength by 15%. Optimized mix design or the inclusion of mineral admixtures such as silica fume further reduced shrinkage. The combined application of these measures effectively mitigated early-age cracking risk, providing practical guidance for the construction of wide-box girders in subtropical climates. Full article
Show Figures

Figure 1

24 pages, 3361 KB  
Article
Nitroxide Hormesis in Yeast: 4-Hydroxy-TEMPO Modulates Aging, and Cell Cycle
by Mateusz Mołoń, Patrycja Kielar, Eliza Molestak, Agnieszka Mołoń, Ewelina Kuna, Marek Biesiadecki, Przemysław Grela, Alan González-Ibarra and Sabina Galiniak
Molecules 2026, 31(2), 376; https://doi.org/10.3390/molecules31020376 - 21 Jan 2026
Viewed by 194
Abstract
4-hydroxy-TEMPO is a water-soluble nitroxide radical with potent antioxidant and redox-modulating properties. Its small molecular weight and membrane permeability enable it to act as a superoxide dismutase mimetic, efficiently scavenging reactive oxygen species and mitigating oxidative damage. In this study, we investigated the [...] Read more.
4-hydroxy-TEMPO is a water-soluble nitroxide radical with potent antioxidant and redox-modulating properties. Its small molecular weight and membrane permeability enable it to act as a superoxide dismutase mimetic, efficiently scavenging reactive oxygen species and mitigating oxidative damage. In this study, we investigated the physiological and transcriptomic effects of 4-hydroxy-TEMPO in Saccharomyces cerevisiae, using wild-type and mutant strains deficient in key redox and DNA repair pathways (sod1Δ, sod2Δ, yap1Δ, rad52Δ). RNA-Seq analysis revealed widespread transcriptional reprogramming. Treatment with 4-hydroxy-TEMPO impaired cell growth, induced accumulation of cells with 1C (G1 phase) DNA content, and modulated chronological aging in a strain-dependent manner. Notably, low concentrations delayed aging in wild-type, yap1Δ, and rad52Δ strains, while accelerating it in sod1Δ mutants, consistent with a hormetic response. Unlike TEMPO, 4-hydroxy-TEMPO exhibited markedly reduced translational toxicity, preserved polysome structure at high doses, and triggered a non-canonical, redox-dependent transcriptional program characterized by induction of stress-response genes together with unexpected up-regulation of multiple ribosomal protein genes. This was accompanied by a biphasic, genotype-specific hormetic response and a measurable genoprotective effect. RT-qPCR confirmed key transcriptional changes, linking transcriptome remodeling to functional outcomes. Full article
Show Figures

Figure 1

30 pages, 16854 KB  
Article
Study on Shaped Charge Blasting Pressure-Relief Technology for the Floor of Extra-Thick Coal Seams and Its Application
by Renyuan Su, Zonglong Mu, Jiaxun Li, Jinglong Cao, Chunlong Jiang, Yongzheng Ren, Jingqi Ji and Hao Fu
Appl. Sci. 2026, 16(2), 1079; https://doi.org/10.3390/app16021079 - 21 Jan 2026
Viewed by 58
Abstract
During layered mining of extra-thick coal seams in deep rock-burst-prone mines, a thick bottom coal layer facilitates the accumulation of elastic strain energy in the floor strata. This stored energy may be released under mining-induced disturbances during retreat, thereby triggering rock-burst events. To [...] Read more.
During layered mining of extra-thick coal seams in deep rock-burst-prone mines, a thick bottom coal layer facilitates the accumulation of elastic strain energy in the floor strata. This stored energy may be released under mining-induced disturbances during retreat, thereby triggering rock-burst events. To mitigate floor energy accumulation at the lower-slice working face of extra-thick coal seams, previous studies have primarily adopted floor blasting for pressure relief. However, conventional blasting is often associated with poor energy utilization and limited controllability of the pressure-relief range, which hampers achieving the intended relief performance. Accordingly, this study proposes a shaped charge blasting scheme to reduce floor energy accumulation. ANSYS/LS-DYNA simulations and UDEC-based energy analyses, together with theoretical analysis and field validation, were conducted to clarify the mechanism of directional fracture propagation and the evolution of floor elastic energy before and after blasting. The results showed that the synergistic effects of the high-velocity jet and quasi-static pressure in shaped charge blasting generated a through-going fracture aligned with the maximum horizontal principal stress. This fracture effectively segmented the high-stress region in the floor and increased the maximum fracture length along the shaped charge direction to 10–13 times that achieved by conventional blasting. UDEC simulations and theoretical analysis indicated that the peak elastic energy in the floor was reduced by up to 54.08% after shaped charge blasting. Field measurements further showed that shaped charge blasting limited the maximum roadway floor heave to 300 mm and reduced floor deformation by 35–42% compared with the case without pressure relief. Overall, shaped charge blasting effectively blocks stress-transfer pathways and improves energy dissipation efficiency, providing theoretical support and a practical technical paradigm for safe and efficient mining of deep extra-thick coal seams. Full article
Show Figures

Figure 1

21 pages, 3990 KB  
Article
Enhancing Thermo-Mechanical Behavior of Bio-Treated Silts Under Cyclic Thermal Stresses
by Rashed Rahman, Tejo V. Bheemasetti, Tanvi Govil and Rajesh Sani
Geosciences 2026, 16(1), 48; https://doi.org/10.3390/geosciences16010048 - 21 Jan 2026
Viewed by 83
Abstract
Freeze-thaw (F-T) cycles in seasonally frozen regions induce progressive volumetric strains leading to degradation of soils’ mechanical properties and performance of earthen infrastructure. Conventional chemical stabilization techniques often are not adaptive to cyclic thermal stresses and do not address the fundamental phase changes [...] Read more.
Freeze-thaw (F-T) cycles in seasonally frozen regions induce progressive volumetric strains leading to degradation of soils’ mechanical properties and performance of earthen infrastructure. Conventional chemical stabilization techniques often are not adaptive to cyclic thermal stresses and do not address the fundamental phase changes of porous media, underscoring the need for sustainable alternatives. This study explores the potential of extracellular polymeric substances (EPS) produced by the psychrophilic bacterium Polaromonas hydrogenivorans as a bio-mediated soil treatment to enhance freeze-thaw durability. Two EPS formulations were examined—EPS 1 (high ice-binding activity) and EPS 2 (low ice-binding activity)—to evaluate their effectiveness in improving volumetric stability and thawing strength of silty soil subjected to ten F-T cycles. Tests were conducted at four moisture contents (12%, 18%, 24%, and 30%) and three EPS concentrations (3, 10, and 20 g/L). Volumetric strain measurements quantified freezing expansion and thawing contraction, while unconfined compressive strength assessed post-thaw mechanical integrity. The untreated soils exhibited maximum net volumetric strains (γNet) of 5.62% and only marginal strength recovery after ten F-T cycles. In contrast, EPS 1 at 20 g/L mitigated volumetric changes across all moisture contents and increased compressive strength to 191.2 kPa. EPS 2 yielded moderate improvements, reducing γNet to 0.98% and enhancing strength to 183.9 kPa at 30% moisture. Lower EPS concentrations (3 and 10 g/L) partially mitigated volumetric strain, with performance strongly dependent on moisture content. These results demonstrate that psychrophilic EPS, particularly EPS 1, effectively suppresses ice formation within soil pores and preserves mechanical structure, offering a sustainable, high-performance solution for stabilizing frost-susceptible soils in cold-regions. Full article
Show Figures

Figure 1

14 pages, 3580 KB  
Article
Inaccuracy in Structural Mechanics Simulation as a Function of Material Models
by Georgi Todorov, Konstantin Kamberov and Konstantin Dimitrov
Modelling 2026, 7(1), 25; https://doi.org/10.3390/modelling7010025 - 20 Jan 2026
Viewed by 137
Abstract
The study is dedicated to the accuracy of engineering analyses of virtual prototypes. In particular, it aims to quantify the importance of material models and data consistent with physical tests. The focus is set on the stress–strain material characteristic that is the basis [...] Read more.
The study is dedicated to the accuracy of engineering analyses of virtual prototypes. In particular, it aims to quantify the importance of material models and data consistent with physical tests. The focus is set on the stress–strain material characteristic that is the basis for correct simulation results, and the deviations of its parameters—elasticity module and yield stress—that are assessed. This is performed in three main steps: laboratory measurement of the material properties of a sample material (aluminum alloy), followed by an engineering analysis of a component produced from the same material, using the determined mechanical characteristics. The third step involves physical tests used to validate the virtual prototyping results by comparing them with the physical test results. The material properties used in the virtual prototype are subjected to a sensitivity analysis to determine their influence on the design’s elastic and plastic behavior. The main conclusions of the study are the importance of these material characteristics for achieving an adequate result. A general recommendation is formed that shows the importance of laboratory testing of material properties before virtual prototyping to avoid any influence of factors as production technology or geometry (specimen thickness). Full article
(This article belongs to the Section Modelling in Mechanics)
Show Figures

Figure 1

21 pages, 4114 KB  
Article
Energy Evolution of Far-Field Surrounding Rock Under True Triaxial Compression Conditions: Taking Fissured Sandstone as an Example
by Fan Feng, Yuanpu Li, Chenglin Li, Jiadong Qiu, Tong Zhang and Shaojie Chen
Processes 2026, 14(2), 356; https://doi.org/10.3390/pr14020356 - 20 Jan 2026
Viewed by 106
Abstract
Fissured rock masses are widespread in deep underground mining engineering, and they are prone to inducing instability and failure during excavation activities. Borehole pressure relief is one of the most effective measures with which to control dynamic disaster in high-stress roadways. After pressure [...] Read more.
Fissured rock masses are widespread in deep underground mining engineering, and they are prone to inducing instability and failure during excavation activities. Borehole pressure relief is one of the most effective measures with which to control dynamic disaster in high-stress roadways. After pressure relief, redistribution of stress leads to stress concentration in the far-field surrounding rock (far away from working face), which can be represented by true triaxial compression state. However, current research on the energy evolution behavior of fissured rock masses under far-field conditions remains relatively limited. This study analyzes the energy evolution process, peak energy characteristics, and laws of energy storage and dissipation in fractured sandstone under different fissure dip angles (θ, 30°, 45°, 60°, 90°), with intermediate principal stresses (σ2, 10, 20, … 120 MPa) and minimum principal stresses (σ3, 10, 20, … 50 MPa). The results indicate that the curve of dissipated energy ratio versus maximum principal strain becomes more distinctly concave as θ increases under true triaxial compression. The growth rate of the dissipated energy ratio and dissipated energy with maximum principal strain gradually decreases when σ3 is high, and the fissured sandstone is prone to exhibiting ductile failure, leading to a reduced energy dissipation rate. The peak elastic strain energy of fissured sandstone increases gradually with increasing σ2 and shows a linear characteristic. The energy storage and dissipation law is nonlinear with increasing peak total energy for the fissured sandstone with different values of θ. However, the law exhibits a linear trend under varying σ2 and σ3. This study provides a new approach and insight into the failure characteristics of deep fissured sandstone and aims to offer theoretical guidance for the layout and construction safety of roadways or mining panels in far-field surrounding rock in future engineering practices. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

17 pages, 2302 KB  
Article
Mycorrhizal Inoculation Enhances Drought Tolerance in Potato (Solanum tuberosum L.) by Modulating Antioxidant Enzyme Activity and Related Gene Expression
by Souad Ettlili, Ricardo Aroca, Naceur Djebali, Sonia Labidi and Faysal Ben Jeddi
Biology 2026, 15(2), 180; https://doi.org/10.3390/biology15020180 - 19 Jan 2026
Viewed by 116
Abstract
Potato (Solanum tuberosum L.) is one of the most widely cultivated crops in the world; however, drought is a major constraint to its productivity. Arbuscular mycorrhizal fungi (AMF) have been shown to improve plant resistance under conditions of water stress. However, their [...] Read more.
Potato (Solanum tuberosum L.) is one of the most widely cultivated crops in the world; however, drought is a major constraint to its productivity. Arbuscular mycorrhizal fungi (AMF) have been shown to improve plant resistance under conditions of water stress. However, their effects on potato plants are poorly studied. The purpose of this study was to evaluate the potential of two AMF inocula (two different strains of the AMF species Rhizophagus irregularis with different origin: Southern Spain MI1 and Tunisia MI2) on potato tolerance to drought stress through the determination of growth parameters, photosynthetic parameters, and antioxidant systems, under well-watered (WW; field capacity) and drought stress (DS; 50% of field capacity) conditions. Therefore, the experiment consisted of two factors: AMF strain and watering regime. The results showed that under drought stress conditions, AMF inoculation considerably stimulated photosynthetic performance as compared with non-inoculated controls. Moreover, leaf superoxide dismutase (SOD) and catalase (CAT) activities of inoculated plants were higher in WW conditions, but unchanged in DS conditions. Inoculated plants had significantly higher ascorbate peroxidase (APX) and glutathione reductase (GR) activities than non-inoculated plants under DS conditions. Also, expression of some antioxidant enzyme genes were upregulated by inoculation. Lipid peroxidation content of inoculated plants was lower than that of non-inoculated. Furthermore, there was a high positive correlation between mycorrhizal root colonization (RC) and almost all the measured parameters. The results of this study indicated that AMF inoculation could enhance potato plant tolerance to water stress through the induction of antioxidant mechanisms implicated in scavenging oxygen-free radicals. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

15 pages, 13171 KB  
Article
Multi-Scale Modeling in Forming Limits Analysis of SUS430/Al1050/TA1 Laminates: Integrating Crystal Plasticity Finite Element with M–K Theory
by Xin Li, Chunguo Liu and Yunfeng Bai
Materials 2026, 19(2), 390; https://doi.org/10.3390/ma19020390 - 18 Jan 2026
Viewed by 313
Abstract
Numerical simulations of the forming limit diagram (FLD) for SUS430/Al1050/TA1 laminated metal composites (LMCs) are conducted through the crystal plasticity finite element (CPFE) model integrated with the Marciniak–Kuczyński (M–K) theory. Representative volume elements (RVEs) that reconstruct the measured crystallographic texture, as characterized by [...] Read more.
Numerical simulations of the forming limit diagram (FLD) for SUS430/Al1050/TA1 laminated metal composites (LMCs) are conducted through the crystal plasticity finite element (CPFE) model integrated with the Marciniak–Kuczyński (M–K) theory. Representative volume elements (RVEs) that reconstruct the measured crystallographic texture, as characterized by electron backscatter diffraction (EBSD), are developed. The optimal grain number and mesh density for the RVE are calibrated through convergence analysis by curve-fitting simulated stress–strain responses to the uniaxial tensile data. The established multi-scale model successfully predicts the FLDs of the SUS430/Al1050/TA1 laminated sheet under two stacking sequences, namely, the SUS layer or the TA1 layer in contact with the die. The Nakazima test results validate the effectiveness of the proposed model as an efficient and accurate predictive tool. This study extends the CPFE–MK framework to multi-layer LMCs, overcoming the limitations of conventional single-layer models, which incorporate FCC, BCC, and HCP crystalline structures. Furthermore, the deformation-induced texture evolution under different loading paths is analyzed, establishing the relationship between micro-scale deformation mechanisms and the macro-scale forming behavior. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

16 pages, 7668 KB  
Article
Heterogeneity of Microstructure and Mechanical Response in Steel–Titanium Multilayer Wires Subjected to Severe Plastic Deformation
by Bartłomiej Pabich, Paulina Lisiecka-Graca, Marcin Kwiecień and Janusz Majta
Metals 2026, 16(1), 106; https://doi.org/10.3390/met16010106 - 17 Jan 2026
Viewed by 180
Abstract
This study addresses the fundamental problem of representing the rheological properties of heterostructured materials composed of metals that differ significantly in their crystal structure, stacking fault energy, and related characteristics. The necessity of accounting for essential strengthening mechanisms is highlighted. The study is [...] Read more.
This study addresses the fundamental problem of representing the rheological properties of heterostructured materials composed of metals that differ significantly in their crystal structure, stacking fault energy, and related characteristics. The necessity of accounting for essential strengthening mechanisms is highlighted. The study is based on experimental results related to the fabrication of a multilayer, heterogeneous system via multistage wire drawing, supported by microstructural analysis, microhardness measurements, and numerical simulations employing various flow-stress models. A discussion is presented regarding the effectiveness of these models in representing the deformation behavior of the investigated materials. The primary materials examined were a multilayer system composed of microalloyed steel and titanium. The obtained results indicate that, in addition to incorporating strengthening mechanisms, it is necessary to consider significant microstructural changes affecting microstructure evolution—particularly grain refinement induced by continuous recrystallization and the effects of strain hardening. Moreover, the findings point to the potential intensification of strengthening associated with pile-up mechanisms, linked to the development of dislocation substructures and the possible fragmentation of the hard phase in the vicinity of the more ductile microalloyed steel phase. In conclusion, the discussion integrates measurements of rheological properties obtained through tensile tests, supported by microstructural analysis, digital image correlation (DIC), and microhardness measurements, which collectively demonstrate the effectiveness of the adopted analytical approach. Full article
(This article belongs to the Special Issue Advances in the Forming and Processing of Metallic Materials)
Show Figures

Figure 1

32 pages, 8438 KB  
Article
Experimental and Numerical Analysis of a Compressed Air Energy Storage System Constructed with Ultra-High-Performance Concrete and Steel
by Greesh Nanda Vaidya, Arya Ebrahimpour and Bruce Savage
J. Exp. Theor. Anal. 2026, 4(1), 5; https://doi.org/10.3390/jeta4010005 - 16 Jan 2026
Viewed by 131
Abstract
This study explores the viability of ultra-high-performance concrete (UHPC) as a structural material for compressed air storage (CAES) systems, combining comprehensive experimental testing and numerical simulations. Scaled (1:20) CAES tanks were designed and tested experimentally under controlled pressure conditions up to 4 MPa [...] Read more.
This study explores the viability of ultra-high-performance concrete (UHPC) as a structural material for compressed air storage (CAES) systems, combining comprehensive experimental testing and numerical simulations. Scaled (1:20) CAES tanks were designed and tested experimentally under controlled pressure conditions up to 4 MPa (580 psi), employing strain gauges to measure strains in steel cylinders both with and without UHPC confinement. Finite element models (FEMs) developed using ANSYS Workbench 2024 simulated experimental conditions, enabling detailed analysis of strain distribution and structural behavior. Experimental and numerical results agreed closely, with hoop strain relative errors between 0.9% (UHPC-confined) and 1.9% (unconfined), confirming the numerical model’s accuracy. Additionally, the study investigated the role of a rubber interface layer integrated between the steel and UHPC, revealing its effectiveness in mitigating localized stress concentrations and enhancing strain distribution. Failure analyses conducted using the von Mises criterion for steel and the Drucker–Prager criterion for UHPC confirmed adequate safety factors, validating the structural integrity under anticipated operational pressures. Principal stresses from numerical analyses were scaled to real-world operational pressures. These thorough results highlight that incorporating rubber enhances the system’s structural performance. Full article
Show Figures

Figure 1

12 pages, 5511 KB  
Article
Low Temperature Effect of Resistance Strain Gauge Based on Double-Layer Composite Film
by Mengqiu Li, Zhiyuan Hu, Fengming Ye, Jiaxiang Wang and Zhuoqing Yang
Micromachines 2026, 17(1), 114; https://doi.org/10.3390/mi17010114 - 15 Jan 2026
Viewed by 182
Abstract
Strain gauges play a crucial role in numerous fields such as bridge and building structural health monitoring. However, traditional strain gauges generate spurious signals due to the temperature effect, which in turn affects their measurement accuracy. Herein, we propose a resistance strain gauge [...] Read more.
Strain gauges play a crucial role in numerous fields such as bridge and building structural health monitoring. However, traditional strain gauges generate spurious signals due to the temperature effect, which in turn affects their measurement accuracy. Herein, we propose a resistance strain gauge based on a double-layer composite film, which is characterized by an adjustable resistance temperature coefficient (TCR), an ultra-near-zero temperature effect, and good TCR repeatability. It is precisely through the combination of materials with positive and negative TCR, leveraging their opposing temperature resistance characteristics, that a low temperature effect has been achieved. Compared with the single-layer alloy-based strain gauge, the developed strain gauge based on double-layer composite film has greatly reduced sensitivity to temperature interference, and its TCR can be reduced to a ultra-near-zero value, approximately 0.8 ppm/°C, while the stability of TCR is excellent. In addition, the gauge factor of the strain gauge is 1.83, and it maintains excellent linearity. This work fully highlights the potential application value of the developed strain gauge in stress monitoring of bridges and building structures. Full article
Show Figures

Figure 1

19 pages, 3563 KB  
Article
Numerical and Experimental Study of Laser Surface Modification Using a High-Power Fiber CW Laser
by Evaggelos Kaselouris, Alexandros Gosta, Efstathios Kamposos, Dionysios Rouchotas, George Vernardos, Helen Papadaki, Alexandros Skoulakis, Yannis Orphanos, Makis Bakarezos, Ioannis Fitilis, Nektarios A. Papadogiannis, Michael Tatarakis and Vasilis Dimitriou
Materials 2026, 19(2), 343; https://doi.org/10.3390/ma19020343 - 15 Jan 2026
Viewed by 234
Abstract
This work presents a combined numerical and experimental investigation into the laser machining of aluminum alloy Al 1050 H14 using a high-power Continuous Wave (CW) fiber laser. Advanced three-dimensional, coupled thermal–structural Finite Element Method (FEM) simulations are developed to model key laser–material interaction [...] Read more.
This work presents a combined numerical and experimental investigation into the laser machining of aluminum alloy Al 1050 H14 using a high-power Continuous Wave (CW) fiber laser. Advanced three-dimensional, coupled thermal–structural Finite Element Method (FEM) simulations are developed to model key laser–material interaction processes, including laser-induced plastic deformation, laser etching, and engraving. Cases for both static single-shot and dynamic linear scanning laser beams are investigated. The developed numerical models incorporate a Gaussian heat source and the Johnson–Cook constitutive model to capture elastoplastic, damage, and thermal effects. The simulation results, which provide detailed insights into temperature gradients, displacement fields, and stress–strain evolution, are rigorously validated against experimental data. The experiments are conducted on an integrated setup comprising a 2 kW TRUMPF CW fiber laser hosted on a 3-axis CNC milling machine, with diagnostics including thermal imaging, thermocouples, white-light interferometry, and strain gauges. The strong agreement between simulations and measurements confirms the predictive capability of the developed FEM framework. Overall, this research establishes a reliable computational approach for optimizing laser parameters, such as power, dwell time, and scanning speed, to achieve precise control in metal surface treatment and modification applications. Full article
(This article belongs to the Special Issue Fabrication of Advanced Materials)
Show Figures

Graphical abstract

16 pages, 6909 KB  
Article
A Novel Energy-Based Crack Resistance Assessment Method for Steel Fiber-Reinforced Lightweight Aggregate Concrete via Partially Restrained Ring Tests
by Binbin Zhang, Yongming Zhang and Wenbao Wang
Buildings 2026, 16(2), 299; https://doi.org/10.3390/buildings16020299 - 11 Jan 2026
Viewed by 112
Abstract
Early-age cracking limits the structural use of steel fiber-reinforced lightweight aggregate concrete (SFLWAC), and robust experimental evaluation methods are still needed. This study examines the influence of steel fiber volume fractions (i.e., 0%, 0.5%, 1.0%, and 2.0%) on the cracking performance of SFLWAC [...] Read more.
Early-age cracking limits the structural use of steel fiber-reinforced lightweight aggregate concrete (SFLWAC), and robust experimental evaluation methods are still needed. This study examines the influence of steel fiber volume fractions (i.e., 0%, 0.5%, 1.0%, and 2.0%) on the cracking performance of SFLWAC through mechanical testing, autogenous shrinkage measurements, and two types of partially restrained ring tests, with and without a clapboard. The performance of three crack resistance indices is compared: the strain-based ASTM C1581 index, a stress-based area index, and a newly proposed energy-based index defined as the strain energy accumulation degree (SEAD), i.e., the ratio between the accumulated and critical strain energy density. The 28-day splitting tensile strength was improved by 77.9% and autogenous shrinkage was diminished by 30.7% as steel fiber volume content increased from 0 to 2.0%, thereby improving the resistance to shrinkage-induced cracking. In the partially restrained ring tests, SEAD decreased with increasing fiber content, and crack initiation occurred when SEAD reached an approximately constant threshold, whereas ASTM C1581 and the area index could not consistently rank mixtures when some rings cracked and others remained intact. These results demonstrate that SEAD provides a physically meaningful and unified measure of cracking risk for SFLWAC under partially restrained shrinkage and has the potential to be extended to other fiber-reinforced concretes and shrinkage-related cracking problems. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

32 pages, 3255 KB  
Article
Integrated Blood Biomarker and Neurobehavioural Signatures of Latent Neuroinjury in Experienced Military Breachers Exposed to Repetitive Low-Intensity Blast
by Alex P. Di Battista, Maria Y. Shiu, Oshin Vartanian, Catherine Tenn, Ann Nakashima, Janani Vallikanthan, Timothy Lam and Shawn G. Rhind
Int. J. Mol. Sci. 2026, 27(2), 592; https://doi.org/10.3390/ijms27020592 - 6 Jan 2026
Viewed by 325
Abstract
Repeated exposure to low-level blast overpressure (BOP) during controlled detonations is an emerging occupational health concern for military breachers and Special Operations Forces personnel, given accumulating evidence that chronic exposure may produce subtle, subclinical neurotrauma. This study derived a latent neuroinjury construct integrating [...] Read more.
Repeated exposure to low-level blast overpressure (BOP) during controlled detonations is an emerging occupational health concern for military breachers and Special Operations Forces personnel, given accumulating evidence that chronic exposure may produce subtle, subclinical neurotrauma. This study derived a latent neuroinjury construct integrating three complementary domains of brain health—post-concussive symptoms, working-memory performance, and circulating biomarkers—to determine whether breachers exhibit coherent patterns of neurobiological alteration. Symptom severity was assessed using the Rivermead Post-Concussion Questionnaire (RPQ), and working memory was assessed with the N-Back task and a panel of thirteen neuroproteomic biomarkers was measured reflecting astroglial activation, neuronal and axonal injury, oxidative stress, inflammatory signaling, and neurotrophic regulation. Experienced Canadian Armed Forces breachers with extensive occupational BOP exposure were compared with unexposed controls. Bayesian latent-variable modeling provided probabilistic evidence for a chronic, subclinical neurobiological signal, with the strongest contributions arising from self-reported symptoms and smaller but consistent contributions from the biomarker domain. Working-memory performance did not load substantively on the latent factor. Several RPQ items and circulating biomarkers showed robust loadings, and the latent neuroinjury factor was elevated in breachers relative to controls (97% posterior probability). The pattern is broadly consistent with subclinical neurobiological stress in the absence of measurable cognitive impairment, suggesting early or compensated physiological alterations rather than overt dysfunction. This multidomain, biomarker-informed framework provides a mechanistically grounded and scalable approach for identifying subtle neurobiological strain in military personnel routinely exposed to repetitive low-level blast. It may offer value for risk stratification, operational health surveillance, and the longitudinal monitoring of neurobiological change in high-risk occupations. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

Back to TopTop