Multi-Scale Modeling in Forming Limits Analysis of SUS430/Al1050/TA1 Laminates: Integrating Crystal Plasticity Finite Element with M–K Theory
Abstract
1. Introduction
2. Materials and Methods
2.1. Initial Texture
2.2. Mechanical Tests
3. CPFE–MK Framework
3.1. Crystal Plasticity Theory
3.2. RVE Generation
3.3. M–K Model
4. Results
4.1. RVE Size Determination
4.2. FLD Analysis
5. Discussion
6. Conclusions
- The size effect on prediction accuracy was investigated through convergence analysis. The grain count and mesh density of the RVE were calibrated by fitting the simulated stress–strain curves against uniaxial tensile data. The optimal size RVE predictions were in good agreement with the tensile results.
- The modified CPFE–MK model is reasonably effective in predicting the FLDs for the SUS430/Al1050/TA1 sheet under two stacking sequences, namely T-S and S-T lay-ups. The predictions were in high agreement, with average absolute errors of less than 6% and 5% for the T-S and S-T lay-ups, respectively, when validated against the Nakazima test results.
- The effects of both initial and deformation-induced textures on the formability of the LMC sheet were analyzed. The beneficial γ-fiber texture in the SUS layer and the detrimental basal texture in the TA1 layer microscopically explain the superior performance of the T-S lay-up over the S-T lay-up. CPFE–MK simulations under various strain paths also revealed enhanced γ-fiber texture and weakened basal texture after deformation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Wang, L.; Zhu, L.; Li, Y.; Yan, Z.; Song, Y.; Cheng, X. Investigation of interfacial structure and dynamic mechanical behavior of titanium alloy laminated composites. J. Mater. Res. Technol. 2022, 21, 5111–5120. [Google Scholar] [CrossRef]
- Wang, Q.; Shen, Y.; Jiang, B.; Tang, A.; Song, J.; Jiang, Z.; Yang, T.; Huang, G.; Pan, F. Enhanced stretch formability at room temperature for Mg-Al-Zn/Mg-Y laminated composite via porthole die extrusion. Mater. Sci. Eng. A 2018, 731, 184–194. [Google Scholar] [CrossRef]
- Xiao, H.; Qi, Z.; Yu, C.; Xu, C. Preparation and properties for Ti/Al clad plates generated by differential temperature rolling. J. Mater. Process. Technol. 2017, 249, 285–290. [Google Scholar] [CrossRef]
- Lu, R.; Liu, Y.; Yan, M.; Sun, J.; Shen, L.; Huang, H. Theoretical, experimental and numerical studies on the deep drawing behavior of Ti/Al composite sheets with different thickness ratios fabricated by roll bonding. J. Mater. Process. Technol. 2021, 297, 117246. [Google Scholar] [CrossRef]
- Moon, C.; Won, J.Y.; Lee, K.; Lee, J.; Kim, S.-W.; Lee, M.-G. Mechanical behavior and interfacial damage of carbon steel-stainless steel corrosion resisted-alloy (CRA) cladded plate: Hybrid analysis based on experiment and finite element modeling. Mater. Sci. Eng. A 2022, 852, 143697. [Google Scholar] [CrossRef]
- Zahedi, A.; Dariani, B.M.; Mirnia, M.J. Experimental determination and numerical prediction of necking and fracture forming limit curves of laminated Al/Cu sheets using a damage plasticity model. Int. J. Mech. Sci. 2019, 153–154, 341–358. [Google Scholar] [CrossRef]
- Marciniak, Z.; Kuczyn’ski, K. Limit Strains in the Processes of Stretch-Forming Sheet Metal. Int. J. Mech. Sci. 1967, 9, 609–620. [Google Scholar] [CrossRef]
- Safdarian, R. Forming limit diagram prediction of tailor welded blank by modified M–K model. Mech. Res. Commun. 2015, 67, 47–57. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Meng, Z.; Chen, L.; Zhao, G. A novel three-dimensional M-K model by integrating GTN model for accurately identifying limit strains of sheet metal. Trans. Nonferr. Met. Soc. China 2023, 33, 1953–1962. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, G.; Li, D.; Jain, M.K.; Peng, Y.; Wu, P. Forming limits of magnesium alloy AZ31B sheet at elevated temperatures. Int. J. Plast. 2020, 135, 102822. [Google Scholar] [CrossRef]
- Wu, R.; Li, M.; Hu, Q.; Cai, S.; Wang, Z.; Chen, J. Evaluation and simulation on deformation instability mechanism in laminated sheet incremental forming. Procedia Manuf. 2019, 29, 36–44. [Google Scholar] [CrossRef]
- Hashemi, R.; Karajibani, E. Forming limit diagram of Al-Cu two-layer metallic sheets considering the Marciniak and Kuczynski theory. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018, 232, 848–854. [Google Scholar] [CrossRef]
- Yang, Q.; Ghosh, S. A crystal plasticity model for porous HCP crystals in titanium alloys under multiaxial loading conditions. Int. J. Solids Struct. 2022, 238, 111400. [Google Scholar] [CrossRef]
- Zanjani, S.M.; Basti, A.; Ansari, R. Prediction of forming limit diagram for different strain paths in crystalline FCC ideal-orientation material. Mech. Time-Depend. Mater. 2023, 27, 1123–1138. [Google Scholar] [CrossRef]
- Mohammadi, M.; Brahme, A.P.; Mishra, R.K.; Inal, K. Effects of post-necking hardening behavior and equivalent stress–strain curves on the accuracy of M–K based forming limit diagrams. Comput. Mater. Sci. 2014, 85, 316–323. [Google Scholar] [CrossRef]
- Tadano, Y.; Yoshida, K.; Kuroda, M. Plastic flow localization analysis of heterogeneous materials using homogenization-based finite element method. Int. J. Mech. Sci. 2013, 72, 63–74. [Google Scholar] [CrossRef]
- Wu, P.D.; Graf, A.; MacEwen, S.R.; Lloyd, D.J.; Jain, M.; Neale, K.W. On forming limit stress diagram analysis. Int. J. Solids Struct. 2005, 42, 2225–2241. [Google Scholar] [CrossRef]
- Lévesque, J.; Inal, K.; Neale, K.W.; Mishra, R.K. Numerical modeling of formability of extruded magnesium alloy tubes. Int. J. Plast. 2010, 26, 65–83. [Google Scholar] [CrossRef]
- Yang, S.; Dirrenberger, J.; Monteiro, E.; Ranc, N. Representative volume element size determination for viscoplastic properties in polycrystalline materials. Int. J. Solids Struct. 2019, 158, 210–219. [Google Scholar] [CrossRef]
- Amelirad, O.; Assempour, A. Experimental and crystal plasticity evaluation of grain size effect on formability of austenitic stainless steel sheets. J. Manuf. Process. 2019, 47, 310–323. [Google Scholar] [CrossRef]
- Tran, M.T.; Wang, H.; Lee, H.W.; Kim, D.-K. Crystal plasticity finite element analysis of size effect on the formability of ultra-thin ferritic stainless steel sheet for fuel cell bipolar plate. Int. J. Plast. 2022, 154, 103298. [Google Scholar] [CrossRef]
- Wu, P.D.; Lloyd, D.J.; Jain, M.; Neale, K.W.; Huang, Y. Effects of spatial grain orientation distribution and initial surface topography on sheet metal necking. Int. J. Plast. 2007, 23, 1084–1104. [Google Scholar] [CrossRef]
- Azhari, F.; Davids, W.; Chen, H.; Ringer, S.P.; Wallbrink, C.; Sterjovski, Z.; Crawford, B.R.; Agius, D.; Wang, C.H.; Schaffer, G. A Comparison of Statistically Equivalent and Realistic Microstructural Representative Volume Elements. Integr. Mater. Manuf. Innov. 2022, 11, 214. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, X.Y.; Wang, H. Forming Limit Prediction of BCC Materials under Non-Proportional Strain-Path by Using Crystal Plasticity. Appl. Mech. Mater. 2012, 201–202, 1110. [Google Scholar]
- Cyr, E.; Mohammadi, M.; Brahme, A.; Mishra, R.K.; Inal, K. Modeling the formability of aluminum alloys at elevated temperatures using a new thermo-elasto-viscoplastic crystal plasticity framework. Int. J. Mech. Sci. 2017, 128–129, 312–325. [Google Scholar] [CrossRef]
- Hajian, M.; Assempour, A. Numerical study on the effects of main BCC rolling texture components on the formability of sheet metals. Int. J. Adv. Manuf. Technol. 2015, 80, 245–253. [Google Scholar] [CrossRef]
- Lee, W.B.; Chen, Y.P.; To, S. Forming Limits Prediction of FCC Sheet Metal Adopting Crystal Plasticity. Key Eng. Mater. 2007, 340–341, 179–186. [Google Scholar]
- Peirce, D.; Asaro, R.J.; Needleman, A. Material rate dependence and localized deformation in crystalline solids. Acta Metall. 1983, 31, 1951–1976. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, J.; Zhao, X.; Chen, J.; Li, Z. Influence of void defects on impact properties of CFRP laminates based on multi-scale simulation method. Int. J. Impact Eng. 2023, 180, 104706. [Google Scholar] [CrossRef]
- Li, M.; Liu, C.; Li, X. Numerical research on springback law of tension-compression yield asymmetry sheet in multi-point forming. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2023, 237, 505–518. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, X.; Liu, M.; Liu, Z.; Luo, B.; Yu, K.; Li, Q.; Ran, J.; Zhao, P. Effect of hot rolling finishing temperature and intermediate annealing on the microstructure, texture evolution, and comprehensive properties of Al-Mg-Si alloy. J. Alloys Compd. 2024, 970, 172525. [Google Scholar] [CrossRef]
- Ismaeel, A.; Li, X.; Xu, D.; Zhang, J.; Yang, R. Effect of texture on the fatigue crack initiation of a Dual-Phase Titanium alloy. J. Mater. Res. Technol. 2024, 33, 6319–6327. [Google Scholar] [CrossRef]
- Gao, F.; Liu, Z.; Liu, H.; Wang, G. Texture evolution and formability under different hot rolling conditions in ultra purified 17%Cr ferritic stainless steels. Mater. Charact. 2013, 75, 93–100. [Google Scholar] [CrossRef]
- Khatirkar, R.K.; Kumar, S. Comparison of recrystallization textures in interstitial free and interstitial free high strength steels. Mater. Chem. Phys. 2011, 127, 128–136. [Google Scholar] [CrossRef]
- Huang, X.; Suzuki, K.; Chino, Y. Improvement of stretch formability of pure titanium sheet by differential speed rolling. Scr. Mater. 2010, 63, 473–476. [Google Scholar] [CrossRef]
- Ao, D.; Gao, J.; Chu, X.; Lin, S.; Lin, J. Formability and deformation mechanism of Ti-6Al-4V sheet under electropulsing assisted incremental forming. Int. J. Solids Struct. 2020, 202, 357–367. [Google Scholar] [CrossRef]












| Material | (s−1) | h0 (MPa) | τ0(MPa) | τs (MPa) | m |
|---|---|---|---|---|---|
| SUS430 | 1 | 110 | 81 | 122 | 0.05 |
| Al1050 | 1 | 63 | 49 | 83 | 0.05 |
| TA1 Bas<a> | 0.001 | 19 | 188 | 230 | 0.05 |
| TA1 Pri<a> | 0.001 | 37 | 74 | 92 | 0.05 |
| TA1 Py<a> | 1 | 320 | 695 | 884 | 0.05 |
| TA1 Py1<c + a> | 1 | 320 | 622 | 807 | 0.05 |
| TA1 Py2<c + a> | 0.001 | 18.8 | 630 | 788 | 0.05 |
| Tw (ten.) | 1 | 245 | 184 | 296 | 0.05 |
| Tw (com.) | 1 | 245 | 358 | 496 | 0.05 |
| T-S Error | S-T Error | ||
|---|---|---|---|
| Sample1 | Major strain | 2.8% | 1.5% |
| Minor strain | 3.4% | 3.1% | |
| Sample2 | Major strain | 2.7% | 0.4% |
| Minor strain | 3.2% | 0.3% | |
| Sample3 | Major strain | 1.8% | 1.6% |
| Minor strain | 5.3% | 2.2% | |
| Sample4 | Major strain | 3.1% | 4% |
| Minor strain | 5.2% | 4.6% | |
| Sample5 | Major strain | 2.9% | 3.7% |
| Minor strain | 5.7% | 4.8% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, X.; Liu, C.; Bai, Y. Multi-Scale Modeling in Forming Limits Analysis of SUS430/Al1050/TA1 Laminates: Integrating Crystal Plasticity Finite Element with M–K Theory. Materials 2026, 19, 390. https://doi.org/10.3390/ma19020390
Li X, Liu C, Bai Y. Multi-Scale Modeling in Forming Limits Analysis of SUS430/Al1050/TA1 Laminates: Integrating Crystal Plasticity Finite Element with M–K Theory. Materials. 2026; 19(2):390. https://doi.org/10.3390/ma19020390
Chicago/Turabian StyleLi, Xin, Chunguo Liu, and Yunfeng Bai. 2026. "Multi-Scale Modeling in Forming Limits Analysis of SUS430/Al1050/TA1 Laminates: Integrating Crystal Plasticity Finite Element with M–K Theory" Materials 19, no. 2: 390. https://doi.org/10.3390/ma19020390
APA StyleLi, X., Liu, C., & Bai, Y. (2026). Multi-Scale Modeling in Forming Limits Analysis of SUS430/Al1050/TA1 Laminates: Integrating Crystal Plasticity Finite Element with M–K Theory. Materials, 19(2), 390. https://doi.org/10.3390/ma19020390

