Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,323)

Search Parameters:
Keywords = stress relaxation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3450 KiB  
Article
Comparative In Vitro Analysis of Composite Resins Used in Clear Aligner Attachments
by Francesca Gazzani, Denise Bellisario, Chiara Pavoni, Loredana Santo, Paola Cozza and Roberta Lione
Appl. Sci. 2025, 15(15), 8698; https://doi.org/10.3390/app15158698 (registering DOI) - 6 Aug 2025
Abstract
Background: Attachments are essential components in clear aligner therapy, enhancing retention and improving the predictability of tooth movements. Mechanical and wear properties of the composite resins used for attachment reproduction are critical to maintaining their integrity and shape over time. This study aimed [...] Read more.
Background: Attachments are essential components in clear aligner therapy, enhancing retention and improving the predictability of tooth movements. Mechanical and wear properties of the composite resins used for attachment reproduction are critical to maintaining their integrity and shape over time. This study aimed to evaluate and compare the mechanical properties, thermal behavior, and wear performance of the hybrid composite Aligner Connect (AC) and the flowable resin (Connect Flow, CF). Methods: Twenty samples (ten AC and ten CF) were reproduced. All specimens underwent differential scanning calorimetry (DSC), combustion analysis, flat instrumented indentation, compression stress relaxation tests, and tribological analysis. A 3D wear profile reconstruction was performed to assess wear surfaces. Results: DSC and combustion analyses revealed distinct thermal transitions, with CF showing significantly lower Tg values (103.8 °C/81.4 °C) than AC (110.8 °C/89.6 °C) and lower residual mass after combustion (23% vs. 61%), reflecting reduced filler content and greater polymer mobility. AC exhibited superior mechanical properties, with higher maximum load (585.9 ± 22.36 N) and elastic modulus (231.5 ± 9.1 MPa) than CF (290.2 ± 5.52 N; 156 ± 10.5 MPa). Stress relaxation decrease was less pronounced in AC (18 ± 4%) than in CF (20 ± 4%). AC also showed a significantly higher friction coefficient (0.62 ± 0.060) than CF (0.55 ± 0.095), along with greater wear volume (0.012 ± 0.0055 mm3 vs. 0.0070 ± 0.0083 mm3) and maximum depth (36.88 ± 3.642 µm vs. 17.91 ± 3.387 µm). Surface roughness before wear was higher for AC (Ra, 0.577 ± 0.035 µm; Rt, 4.369 ± 0.521 µm) than for CF (Ra, 0.337 ± 0.070 µm; Rt, 2.862 ± 0.549 µm). After wear tests, roughness values converged (Ra, 0.247 ± 0.036 µm for AC; Ra, 0.236 ± 0.019 µm for CF) indicating smoothened and similar surfaces for both composites. Conclusions: The hybrid nanocomposite demonstrated greater properties in terms of stiffness, load-bearing capacity, and structural integrity when compared with flowable resin. Its use may ensure more durable attachment integrity and improved aligner–tooth interface performance over time. Full article
(This article belongs to the Special Issue Innovative Materials and Technologies in Orthodontics)
Show Figures

Figure 1

9 pages, 1868 KiB  
Communication
Research on the Temperature Dependence of Deformation and Residual Stress via Image Relative Method
by Haiyan Li, Lei Zhang, Yudi Mao, Jinlun Zhang, Detian Wan and Yiwang Bao
Coatings 2025, 15(8), 913; https://doi.org/10.3390/coatings15080913 (registering DOI) - 5 Aug 2025
Abstract
Temperature dependence of the deformation behavior and the residual stress in 304 stainless steel beams with single-sided Al2O3 coatings of varying thicknesses are analyzed using the image relative method. The results demonstrate that, due to the mismatch of thermal expansion [...] Read more.
Temperature dependence of the deformation behavior and the residual stress in 304 stainless steel beams with single-sided Al2O3 coatings of varying thicknesses are analyzed using the image relative method. The results demonstrate that, due to the mismatch of thermal expansion coefficient between the coating and substrate, residual stresses were produced, which caused the bending deformation of the single-side coated specimens. Moreover, coating thickness significantly influences the deformation behavior of specimens. Within the elastic deformation regime, the single-side coated specimens would exhibit alternating bending and flattening deformations in response to the fluctuations of temperature. The higher ratio of the coating thickness to the substrate thickness is, the smaller bending curvature of specimens becomes, and the lower residual compressive stresses in the coating are. For the specimens undergoing elastic deformation, residual stresses can be effectively calculated through the Stoney’s formula. However, as the thickness of coating is close to that of substrate (the corresponding specimens would be regarded as the laminated composites), plastic deformation occurs. And the residual stresses in those specimens vary along the direction of the thickness and the length. In addition, the residual stress decreased with increasing temperature because of the stress relaxation. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

23 pages, 7234 KiB  
Article
Cold Exposure Exacerbates Cardiac Dysfunction in a Model of Heart Failure with Preserved Ejection Fraction in Male and Female C57Bl/6J Mice
by Sara-Ève Thibodeau, Marie-Lune Legros, Emylie-Ann Labbé, Élisabeth Walsh-Wilkinson, Audrey Morin-Grandmont, Sarra Beji, Marie Arsenault, Alexandre Caron and Jacques Couet
Biomedicines 2025, 13(8), 1900; https://doi.org/10.3390/biomedicines13081900 - 4 Aug 2025
Abstract
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with [...] Read more.
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with preserved ejection fraction (HFpEF) (Angiotensin II + High-fat diet for 28 days; MHS), we investigated how housing temperature modulates cardiac remodelling and function in male and female C57Bl/6J mice. Methods: Using the MHS mouse model, we investigated cardiac remodelling and function in 8-week-old C57BL/6J mice of both sexes housed at 10 °C, 22 °C, and 30 °C for four weeks. Control mice were analyzed in parallel. Before the MHS, the animals were allowed to acclimate for a week before the MHS started. Results: Mice housed at 10 °C consumed more food and had increased fat mass compared to those at 22 °C or 30 °C. This was accompanied by increased heart weight, stroke volume, heart rate, and cardiac output. Mice housed at 22 °C and 30 °C were similar for these cardiac parameters. Following MHS, mice at 10 °C and 22 °C developed marked cardiac hypertrophy, whereas thermoneutral housing attenuated this response and reduced left atrial enlargement. Cold-exposed females showed more diastolic dysfunction after MHS (increased E’ wave, E/E’, and isovolumetric relaxation time) than those at 22 °C or 30 °C. Ejection fraction and cardiac output declined significantly at 10 °C after MHS but were preserved at 22 °C and 30 °C in females. Conclusions: Cold housing exacerbates cardiac dysfunction in mice subjected to HFpEF-inducing stress, with pronounced effects in females. In contrast, thermoneutrality limits the cardiac hypertrophic response. Full article
Show Figures

Figure 1

45 pages, 10039 KiB  
Article
Design of an Interactive System by Combining Affective Computing Technology with Music for Stress Relief
by Chao-Ming Wang and Ching-Hsuan Lin
Electronics 2025, 14(15), 3087; https://doi.org/10.3390/electronics14153087 - 1 Aug 2025
Viewed by 368
Abstract
In response to the stress commonly experienced by young people in high-pressure daily environments, a music-based stress-relief interactive system was developed by integrating music-assisted care with emotion-sensing technology. The design principles of the system were established through a literature review on stress, music [...] Read more.
In response to the stress commonly experienced by young people in high-pressure daily environments, a music-based stress-relief interactive system was developed by integrating music-assisted care with emotion-sensing technology. The design principles of the system were established through a literature review on stress, music listening, emotion detection, and interactive devices. A prototype was created accordingly and refined through interviews with four experts and eleven users participating in a preliminary experiment. The system is grounded in a four-stage guided imagery and music framework, along with a static activity model focused on relaxation-based stress management. Emotion detection was achieved using a wearable EEG device (NeuroSky’s MindWave Mobile device) and a two-dimensional emotion model, and the emotional states were translated into visual representations using seasonal and weather metaphors. A formal experiment involving 52 users was conducted. The system was evaluated, and its effectiveness confirmed, through user interviews and questionnaire surveys, with statistical analysis conducted using SPSS 26 and AMOS 23. The findings reveal that: (1) integrating emotion sensing with music listening creates a novel and engaging interactive experience; (2) emotional states can be effectively visualized using nature-inspired metaphors, enhancing user immersion and understanding; and (3) the combination of music listening, guided imagery, and real-time emotional feedback successfully promotes emotional relaxation and increases self-awareness. Full article
(This article belongs to the Special Issue New Trends in Human-Computer Interactions for Smart Devices)
Show Figures

Figure 1

52 pages, 9728 KiB  
Review
Hydrogel Network Architecture Design Space: Impact on Mechanical and Viscoelastic Properties
by Andres F. Roca-Arroyo, Jhonatan A. Gutierrez-Rivera, Logan D. Morton and David A. Castilla-Casadiego
Gels 2025, 11(8), 588; https://doi.org/10.3390/gels11080588 - 30 Jul 2025
Viewed by 333
Abstract
This comprehensive review explores the expansive design space of network architectures and their significant impact on the mechanical and viscoelastic properties of hydrogel systems. By examining the intricate relationships between molecular structure, network connectivity, and resulting bulk properties, we provide critical insights into [...] Read more.
This comprehensive review explores the expansive design space of network architectures and their significant impact on the mechanical and viscoelastic properties of hydrogel systems. By examining the intricate relationships between molecular structure, network connectivity, and resulting bulk properties, we provide critical insights into rational design strategies for tailoring hydrogel mechanics for specific applications. Recent advances in sequence-defined crosslinkers, dynamic covalent chemistries, and biomimetic approaches have significantly expanded the toolbox for creating hydrogels with precisely controlled viscoelasticity, stiffness, and stress relaxation behavior—properties that are crucial for biomedical applications, particularly in tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue State-of-the Art Gel Research in USA)
Show Figures

Graphical abstract

23 pages, 2248 KiB  
Article
Autonomic and Neuroendocrine Reactivity to VR Game Exposure in Children and Adolescents with Obesity: A Factor Analytic Approach to Physiological Reactivity and Eating Behavior
by Cristiana Amalia Onita, Daniela-Viorelia Matei, Laura-Mihaela Trandafir, Diana Petrescu-Miron, Calin Corciova, Robert Fuior, Lorena-Mihaela Manole, Bogdan-Mircea Mihai, Cristina-Gena Dascalu, Monica Tarcea, Stéphane Bouchard and Veronica Mocanu
Nutrients 2025, 17(15), 2492; https://doi.org/10.3390/nu17152492 - 30 Jul 2025
Viewed by 285
Abstract
Background/Objectives: The aim was to identify patterns of autonomic and neuroendocrine reactivity to an immersive virtual reality (VR) social-emotional stressor and explore their associations with perceived stress and eating behavior. Methods: This one-group pretest–posttest study included 30 children and adolescents with [...] Read more.
Background/Objectives: The aim was to identify patterns of autonomic and neuroendocrine reactivity to an immersive virtual reality (VR) social-emotional stressor and explore their associations with perceived stress and eating behavior. Methods: This one-group pretest–posttest study included 30 children and adolescents with obesity (15 boys and 15 girls), aged 8 to 17 years. The VR protocol consisted of two consecutive phases: a 5 min relaxation phase using the Forest application and a 5 min stimulation phase using a cognitively engaging VR game designed to elicit social-emotional stress. Physiological responses were measured using heart rate variability (HRV) indices and salivary stress biomarkers, including cortisol and alpha amylase. Subjective stress and eating responses were assessed via visual analogue scales (VAS) administered immediately post-exposure. The Three-Factor Eating Questionnaire (TFEQ-R21C) was used to evaluate cognitive restraint (CR), uncontrolled eating (UE), and emotional eating (EE). Results: The cortisol reactivity was blunted and may reflect both the attenuated HPA axis responsiveness characteristic of pediatric obesity and the moderate psychological challenge of the VR stressor used in this study. Two distinct autonomic response patterns were identified via exploratory factor analysis: (1) parasympathetic reactivity, associated with increased RMSSD and SDNN and decreased LF/HF, and (2) sympathetic activation, associated with increased heart rate and alpha-amylase levels and reduced RR intervals. Parasympathetic reactivity was correlated with lower perceived stress and anxiety, but also paradoxically with higher uncontrolled eating (UE). In contrast, sympathetic activation was associated with greater cognitive restraint (CR) and higher anxiety ratings. Conclusions: This study demonstrates that immersive VR game exposure elicits measurable autonomic and subjective stress responses in children and adolescents with obesity, and that individual differences in physiological reactivity are relevantly associated with eating behavior traits. The findings suggest that parasympathetic and sympathetic profiles may represent distinct behavioral patterns with implications for targeted intervention. Full article
(This article belongs to the Special Issue A Path Towards Personalized Smart Nutrition)
Show Figures

Figure 1

12 pages, 475 KiB  
Article
Pelvic Floor Health and Urinary Incontinence in Female Soccer Players: A Comparative Analysis Between Professionals and Physically Active Women: A Cross-Sectional Descriptive Protocol
by Julia M. Sebastian-Rico, María Jesús Muñoz-Fernández, Luis Manuel Martínez-Aranda, África Calvo-Lluch and Manuel Ortega-Becerra
Diagnostics 2025, 15(15), 1881; https://doi.org/10.3390/diagnostics15151881 - 26 Jul 2025
Viewed by 341
Abstract
Background/Objectives: Urinary incontinence (UI), defined as the involuntary loss of urine, is common among female athletes. As more women engage in competitive sports, numerous studies have explored UI in young, nulliparous, and physically active women. The objectives of this study were (i) to [...] Read more.
Background/Objectives: Urinary incontinence (UI), defined as the involuntary loss of urine, is common among female athletes. As more women engage in competitive sports, numerous studies have explored UI in young, nulliparous, and physically active women. The objectives of this study were (i) to analyze the prevalence, severity, and characteristics of UI in professional nulliparous female soccer players and (ii) to compare the status of the pelvic floor muscles (PFMs) between professional soccer players and physically active young women. Methods: This descriptive cross-sectional study included professional soccer players (n = 18) and physically active women (n = 14). UI was assessed using the ICIQ-SF questionnaire, and PFM function was evaluated through intracavitary examination using the PERFECT method. Additional data were collected on body composition and on urinary, bowel, and sexual health. Results: UI affected 35.7% of physically active women and 50% of professional soccer players. Stress urinary incontinence (SUI) was the most common type, present in 100% of affected soccer players and 60% of affected active women. The severity of UI was mostly mild, with no significant differences between groups. PFM assessment revealed deficiencies in control, relaxation, endurance, and rapid contractions, as well as difficulties performing an effective perineal locking (PL) maneuver during increased intra-abdominal pressure. Conclusions: These findings highlight the need for targeted programs focused on strengthening and educating athletes about their PFMs, aiming to prevent UI and improve both performance and quality of life. The study reinforces the importance of preventive strategies for pelvic floor health in sports. Full article
(This article belongs to the Special Issue Diagnosis and Management of Sports Medicine)
Show Figures

Figure 1

15 pages, 2230 KiB  
Article
Exploring the Rheological Properties of 3D Bioprinted Alginate-Based Hydrogels for Tissue Engineering
by R. Palacín-García, L. Goñi and T. Gómez-del Río
Biomimetics 2025, 10(8), 491; https://doi.org/10.3390/biomimetics10080491 - 24 Jul 2025
Viewed by 439
Abstract
The development of alginate/polyacrylamide hydrogels for various biomedical applications has attracted significant interest, particularly due to their potential use in wound healing and tissue engineering. This study explores the fabrication of these hydrogels via 3D bioprinting with ultraviolet light curing, focusing on how [...] Read more.
The development of alginate/polyacrylamide hydrogels for various biomedical applications has attracted significant interest, particularly due to their potential use in wound healing and tissue engineering. This study explores the fabrication of these hydrogels via 3D bioprinting with ultraviolet light curing, focusing on how the alginate concentration and curing speed impact their mechanical properties. Rheological testing was employed to examine the viscoelastic behavior of alginate/polyacrylamide hydrogels manufactured using a 3D bioprinting technique. The relaxation behavior and dynamic response of these hydrogels were analyzed under torsional stress, with relaxation curves fitted using a two-term Prony series. Fourier Transform Infrared (FTIR) spectroscopy was also employed to assess biocompatibility and the conversion of acrylamide. This study successfully demonstrated the printability of alginate/polyacrylamide hydrogels with varying alginate contents. The rheological results indicated that 3D bioprinted hydrogels exhibited significantly high stiffness, viscoelasticity, and long relaxation times. The curing speed had a minimal impact on these properties. Additionally, the FTIR analysis confirmed the complete conversion of polyacrylamide, ensuring no harmful effects in biological applications. The study concludes that 3D bioprinting significantly enhances the mechanical properties of alginate/polyacrylamide hydrogels, with the alginate concentration playing a key role in the shear modulus. These hydrogels show promising potential for biocompatible applications such as wound healing dressings. Full article
(This article belongs to the Special Issue Biological and Bioinspired Materials and Structures: 2nd Edition)
Show Figures

Figure 1

18 pages, 1266 KiB  
Systematic Review
Effectiveness of Lifestyle-Based Approaches for Adults with Multiple Chemical Sensitivity: A Systematic Review
by Isidro Miguel Martín Pérez, David Alejandro Parra Castillo, Carlos Pastor Ruiz de la Fuente and Sebastián Eustaquio Martín Pérez
Therapeutics 2025, 2(3), 13; https://doi.org/10.3390/therapeutics2030013 - 22 Jul 2025
Viewed by 256
Abstract
Background: Multiple Chemical Sensitivity (MCS) is a complex, disabling condition marked by non-specific symptoms in response to low-level chemical exposures. It often leads to substantial impairments in quality of life, psychological health, and daily functioning. Although non-pharmacological approaches—such as lifestyle and psychological interventions—are [...] Read more.
Background: Multiple Chemical Sensitivity (MCS) is a complex, disabling condition marked by non-specific symptoms in response to low-level chemical exposures. It often leads to substantial impairments in quality of life, psychological health, and daily functioning. Although non-pharmacological approaches—such as lifestyle and psychological interventions—are widely used, their clinical effectiveness remains unclear. Objective: We aim to evaluate the effectiveness of lifestyle-based approaches in improving clinical and psychosocial outcomes in adults with Multiple Chemical Sensitivity. Methods: A systematic review was conducted in accordance with PRISMA guidelines (PROSPERO: CRD420251013537). Literature searches were carried out in MEDLINE (PubMed), CINAHL, Google Scholar, and ResearchGate between March and April 2025. Eligible studies included adults (≥18 years) with a confirmed diagnosis of MCS and reported outcomes such as perceived stress, anxiety, depressive symptoms, or quality of life. Methodological quality and risk of bias were independently assessed using the PEDro scale, NIH Quality Assessment Tool, CEBMa checklist, and Cochrane RoB 2.0. Results: Twelve studies (N = 378) met the inclusion criteria. Cognitive and behavioral therapies demonstrated the most consistent evidence of efficacy, with reductions in symptom severity, maladaptive cognitive patterns, and functional limitations. Mindfulness-based stress reduction showed favorable outcomes, while other mindfulness-based interventions yielded mixed results. Exposure-based therapies contributed to increased chemical tolerance and reduced avoidance behavior. Electromagnetic and biomedical approaches demonstrated preliminary but limited effectiveness. Aromatherapy was well tolerated and perceived as relaxing, though its clinical impact was modest. Conclusions: Cognitive and behavioral therapies appear to be most effective among lifestyle-based interventions for MCS/IEI. However, study heterogeneity limits the generalizability of findings, underscoring the need for more rigorous research. Full article
Show Figures

Figure 1

10 pages, 2670 KiB  
Article
High-Temperature-Resistant High-Entropy Oxide Protective Coatings for Piezoelectric Thin Films
by Huayong Hu, Jie Liu, Liqing Chao, Xiangdong Ma, Jun Zhang, Yanbing Zhang and Bing Yang
Coatings 2025, 15(8), 861; https://doi.org/10.3390/coatings15080861 - 22 Jul 2025
Viewed by 300
Abstract
By introducing oxygen doping, the structure of an AlCrNbSiTiN coating was optimized, and its high-temperature oxidation resistance was improved. As the oxygen content incorporated increases, the coating changes from an FCC structure to an amorphous or spinel structure. Meanwhile, stress relaxation occurred, and [...] Read more.
By introducing oxygen doping, the structure of an AlCrNbSiTiN coating was optimized, and its high-temperature oxidation resistance was improved. As the oxygen content incorporated increases, the coating changes from an FCC structure to an amorphous or spinel structure. Meanwhile, stress relaxation occurred, and the hardness of the coating dropped to 12 gpa. Oxygen-doped coatings exhibit excellent oxidation resistance; this is especially the case for oxidized coatings, whose structure remains stable up to 900 °C in an oxidizing environment. Full article
(This article belongs to the Special Issue Advanced Thin Films of High-Entropy Alloys)
Show Figures

Figure 1

17 pages, 6308 KiB  
Article
Effect of Heat Treatment on Microstructure and Mechanical Properties of (TiB + TiC) /Ti-6Al-4V Composites Fabricated by Directed Energy Deposition
by Hai Gu, Guoqing Dai, Jie Jiang, Zulei Liang, Jianhua Sun, Jie Zhang and Bin Li
Metals 2025, 15(7), 806; https://doi.org/10.3390/met15070806 - 18 Jul 2025
Viewed by 263
Abstract
The titanium matrix composites (TMCs) fabricated via Directed Energy Deposition (DED) effectively overcome the issue of coarse columnar grains typically observed in additively manufactured titanium alloys. In this study, systematic annealing heat treatments were applied to in situ (TiB + TiC)/Ti-6Al-4V composites to [...] Read more.
The titanium matrix composites (TMCs) fabricated via Directed Energy Deposition (DED) effectively overcome the issue of coarse columnar grains typically observed in additively manufactured titanium alloys. In this study, systematic annealing heat treatments were applied to in situ (TiB + TiC)/Ti-6Al-4V composites to refine the microstructure and tailor mechanical properties. The results reveal that the plate-like α phase in the as-deposited composites gradually transforms into an equiaxed morphology with increasing annealing temperature and holding time. Notably, when the annealing temperature exceeds 1000 °C, significant coarsening of the TiC phase is observed, while the TiB phase remains morphologically stable. Annealing promotes decomposition of acicular martensite and stress relaxation, leading to a reduction in hardness compared to the as-deposited state. However, the reticulated distribution of the TiB and TiC reinforcement phases contributes to enhanced tensile performance. Specifically, the as-deposited composite achieves a tensile strength of 1109 MPa in the XOY direction, representing a 21.6% improvement over the as-cast counterpart, while maintaining a ductility of 2.47%. These findings demonstrate that post-deposition annealing is an effective strategy to regulate microstructure and achieve a desirable balance between strength and ductility in DED-fabricated titanium matrix composites. Full article
Show Figures

Figure 1

15 pages, 3980 KiB  
Article
Four-Dimensional-Printed Woven Metamaterials for Vibration Reduction and Energy Absorption in Aircraft Landing Gear
by Xiong Wang, Changliang Lin, Liang Li, Yang Lu, Xizhe Zhu and Wenjie Wang
Materials 2025, 18(14), 3371; https://doi.org/10.3390/ma18143371 - 18 Jul 2025
Viewed by 332
Abstract
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent [...] Read more.
Addressing the urgent need for lightweight and reusable energy-absorbing materials in aviation impact resistance, this study introduces an innovative multi-directional braided metamaterial design enabled by 4D printing technology. This approach overcomes the dual challenges of intricate manufacturing processes and the limited functionality inherent to traditional textile preforms. Six distinct braided structural units (types 1–6) were devised based on periodic trigonometric functions (Y = A sin(12πX)), and integrated with shape memory polylactic acid (SMP-PLA), thereby achieving a synergistic combination of topological architecture and adaptive response characteristics. Compression tests reveal that reducing strip density to 50–25% (as in types 1–3) markedly enhances energy absorption performance, achieving a maximum specific energy absorption of 3.3 J/g. Three-point bending tests further demonstrate that the yarn amplitude parameter A is inversely correlated with load-bearing capacity; for instance, the type 1 structure (A = 3) withstands a maximum load stress of 8 MPa, representing a 100% increase compared to the type 2 structure (A = 4.5). A multi-branch viscoelastic constitutive model elucidates the temperature-dependent stress relaxation behavior during the glass–rubber phase transition and clarifies the relaxation time conversion mechanism governed by the Williams–Landel–Ferry (WLF) and Arrhenius equations. Experimental results further confirm the shape memory effect, with the type 3 structure fully recovering its original shape within 3 s under thermal stimulation at 80 °C, thus addressing the non-reusability issue of conventional energy-absorbing structures. This work establishes a new paradigm for the design of impact-resistant aviation components, particularly in the context of anti-collision structures and reusable energy absorption systems for eVTOL aircraft. Future research should further investigate the regulation of multi-stimulus response behaviors and microstructural optimization to advance the engineering application of smart textile metamaterials in aviation protection systems. Full article
Show Figures

Figure 1

12 pages, 1033 KiB  
Article
Influence of Using Microbial Transglutaminase on the Physicochemical Properties, Volatile Compounds and Free Amino Acid Composition of Pastırma
by Fatma Yağmur Hazar Suncak, Güzin Kaban and Mükerrem Kaya
Appl. Sci. 2025, 15(14), 7959; https://doi.org/10.3390/app15147959 - 17 Jul 2025
Viewed by 180
Abstract
The effects of different levels of microbial transglutaminase (MTGase) at 0% (control), 0.25%, 0.50% and 1% on the physicochemical properties, volatile compounds and free amino acid composition of pastırma, a Turkish dry-cured meat product, were investigated. The MTGase treatment had no significant effect [...] Read more.
The effects of different levels of microbial transglutaminase (MTGase) at 0% (control), 0.25%, 0.50% and 1% on the physicochemical properties, volatile compounds and free amino acid composition of pastırma, a Turkish dry-cured meat product, were investigated. The MTGase treatment had no significant effect on the aw, L* and b* values of pastırma. The thiobarbituric acid reactive substances value decreased as the MTGase level increased. The maximum cutting force was found to be higher in enzyme-treated pastırma groups compared with the control. Enzyme treatment increased the maximum stress–relaxation force, but no statistical difference was observed between the 0.50% and 1% enzyme treatments. No significant differences were observed between groups in the volatile compound profile. However, in the correlation analysis, the control group showed a close correlation with the 0.25% MTGase group. This was also the case for the 0.5% and 1% MTGase groups. In the samples, glutamic acid, arginine, alanine, cystine and valine were determined to be the dominant free amino acids, and glutamic acid showed a close correlation with valine; lysine with arginine; and cystine with serine. MTGase had no significant effect on the total free amino acid content. Full article
Show Figures

Figure 1

17 pages, 7633 KiB  
Article
Mechanical Behavior Characteristics of Sandstone and Constitutive Models of Energy Damage Under Different Strain Rates
by Wuyan Xu and Cun Zhang
Appl. Sci. 2025, 15(14), 7954; https://doi.org/10.3390/app15147954 - 17 Jul 2025
Viewed by 212
Abstract
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock [...] Read more.
To explore the influence of mine roof on the damage and failure of sandstone surrounding rock under different pressure rates, mechanical experiments with different strain rates were carried out on sandstone rock samples. The strength, deformation, failure, energy and damage characteristics of rock samples with different strain rates were also discussed. The research results show that with the increases in the strain rate, peak stress, and elastic modulus show a monotonically increasing trend, while the peak strain decreases in the reverse direction. At a low strain rate, the proportion of the mass fraction of complete rock blocks in the rock sample is relatively high, and the shape integrity is good, while rock samples with a high strain rate retain more small-sized fragmented rock blocks. This indicates that under high-rate loading, the bifurcation phenomenon of secondary cracks is obvious. The rock samples undergo a failure form dominated by small-sized fragments, with severe damage to the rock samples and significant fractal characteristics of the fragments. At the initial stage of loading, the primary fractures close, and the rock samples mainly dissipate energy in the forms of frictional slip and mineral fragmentation. In the middle stage of loading, the residual fractures are compacted, and the dissipative strain energy keeps increasing continuously. In the later stage of loading, secondary cracks accelerate their expansion, and elastic strain energy is released sharply, eventually leading to brittle failure of the rock sample. Under a low strain rate, secondary cracks slowly expand along the clay–quartz interface and cause intergranular failure of the rock sample. However, a high strain rate inhibits the stress relaxation of the clay, forces the energy to transfer to the quartz crystal, promotes the penetration of secondary cracks through the quartz crystal, and triggers transgranular failure. A constitutive model based on energy damage was further constructed, which can accurately characterize the nonlinear hardening characteristics and strength-deformation laws of rock samples with different strain rates. The evolution process of its energy damage can be divided into the unchanged stage, the slow growth stage, and the accelerated growth stage. The characteristics of this stage reveal the sudden change mechanism from the dissipation of elastic strain energy of rock samples to the unstable propagation of secondary cracks, clarify the cumulative influence of strain rate on damage, and provide a theoretical basis for the dynamic assessment of surrounding rock damage and disaster early warning when the mine roof comes under pressure. Full article
Show Figures

Figure 1

16 pages, 4361 KiB  
Article
Residual Stress Evolution of Graphene-Reinforced AA2195 (Aluminum–Lithium) Composite for Aerospace Structural Hydrogen Fuel Tank Application
by Venkatraman Manokaran, Anthony Xavior Michael, Ashwath Pazhani and Andre Batako
J. Compos. Sci. 2025, 9(7), 369; https://doi.org/10.3390/jcs9070369 - 16 Jul 2025
Viewed by 608
Abstract
This study investigates the fabrication and residual stress behavior of a 0.5 wt.% graphene-reinforced AA2195 aluminum matrix composite, developed for advanced aerospace structural applications. The composite was synthesized via squeeze casting, followed by a multi-pass hot rolling process and subsequent T8 heat treatment. [...] Read more.
This study investigates the fabrication and residual stress behavior of a 0.5 wt.% graphene-reinforced AA2195 aluminum matrix composite, developed for advanced aerospace structural applications. The composite was synthesized via squeeze casting, followed by a multi-pass hot rolling process and subsequent T8 heat treatment. The evolution of residual stress was systematically examined after each rolling pass and during thermal treatments. The successful incorporation of graphene into the matrix was confirmed through Energy-Dispersive Spectroscopy (EDS) analysis. Residual stress measurements after each pass revealed a progressive increase in compressive stress, reaching a maximum of −68 MPa after the fourth hot rolling pass. Prior to the fifth pass, a solution treatment at 530 °C was performed to dissolve coarse precipitates and relieve internal stresses. Cold rolling during the fifth pass reduced the compressive residual stress to −40 MPa, and subsequent artificial aging at 180 °C for 48 h further decreased it to −23 MPa due to recovery and stress relaxation mechanisms. Compared to the unreinforced AA2195 alloy in the T8 condition, which exhibited a tensile residual stress of +29 MPa, the graphene-reinforced composite in the same condition retained a compressive residual stress of −23 MPa. This represents a net improvement of 52 MPa, highlighting the composite’s superior capability to retain compressive residual stress. The presence of graphene significantly influenced the stress distribution by introducing thermal expansion mismatch and acting as a barrier to dislocation motion. Overall, the composite demonstrated enhanced residual stress characteristics, making it a promising candidate for lightweight, fatigue-resistant aerospace components. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

Back to TopTop