Influence of Using Microbial Transglutaminase on the Physicochemical Properties, Volatile Compounds and Free Amino Acid Composition of Pastırma
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. The Production of Pastırma
2.3. Determination of pH, aw and Thiobarbituric Acid Reactive Substance Content (TBARS) Values
2.4. Determination of Color Values
2.5. Stress–Relaxation and Cutting Tests
2.6. Determination of Volatile Compounds
2.7. Determination of Free Amino Acid Composition
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vasić, K.; Knez, Ž.; Leitgeb, M. Transglutaminase in foods and biotechnology. Int. J. Mol. Sci. 2023, 24, 12402. [Google Scholar] [CrossRef] [PubMed]
- Motoki, M.; Seguro, K. Transglutaminase and its use for food processing. Trends Food Sci. Technol. 1998, 9, 204–210. [Google Scholar] [CrossRef]
- Aktaş, N.; Kilic, B. Effect of microbial transglutaminase on thermal and electrophoretic properties of ground beef. LWT-Food Sci. Technol. 2005, 38, 815–819. [Google Scholar] [CrossRef]
- Gaspar, A.L.C.; Góes-Favoni, S.P. Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chem. 2015, 171, 315–322. [Google Scholar] [CrossRef]
- Fulladosa, E.; Serra, X.; Gou, P.; Arnau, J. Effects of potassium lactate and high pressure on transglutaminase restructured dry-cured hams with reduced salt content. Meat Sci. 2009, 82, 213–218. [Google Scholar] [CrossRef]
- Romero de Ávila, M.D.; Ordóñez, J.A.; de la Hoz, L.; Herrero, A.M.; Cambero, M.I. Microbial transglutaminase for cold-set binding of unsalted/salted pork models and restructured dry ham. Meat Sci. 2010, 84, 747–754. [Google Scholar] [CrossRef]
- Bergamin Filho, W.; Costa, M.D.R.; Felício, P.E.D.; Silveira, E.T.F. Accelerated method of dry-cured ham processing. Food Sci. Technol. 2010, 30, 494–500. [Google Scholar] [CrossRef]
- Jira, W.; Sadeghi-Mehr, A.; Brühhrmann, D.A.; Schwägele, F. Production of dry-cured formed ham with different concentrations of microbial transglutaminase: Mass spectrometric and sensory evaluation. Meat Sci. 2017, 129, 81–87. [Google Scholar] [CrossRef]
- Lee, H.C.; Chin, K.B. Evaluation of various salt levels and different dairy proteins in combination with microbial transglutaminase on the quality characteristics of restructured pork ham. Int. J. Food Sci. Technol. 2011, 46, 1522–1528. [Google Scholar] [CrossRef]
- Lee, C.H.; Chin, K.B. Effect of pork skin gelatin on the physical properties of pork myofibrillar protein gel and restructured ham with microbial transglutaminase. Gels 2022, 8, 822. [Google Scholar] [CrossRef]
- Müller, W.D. Using phosphate and transglutaminase—Influence to quality parameter of cooked ham. Fleischwirtsch 2003, 83, 114–117. [Google Scholar]
- Dimitrakopoulou, M.A.; Ambrosiadis, J.A.; Zetou, F.K.; Bloukas, J.G. Effect of salt and transglutaminase (TG) level and processing conditions on quality characteristics of phosphate-free, cooked, restructured pork shoulder. Meat Sci. 2005, 70, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Kilic, B. Effect of microbial transglutaminase and sodium caseinate on quality of chicken döner kebab. Meat Sci. 2003, 63, 417–421. [Google Scholar] [CrossRef]
- Choi, Y.S.; Jeong, T.J.; Kim, H.W.; Hwang, K.E.; Sung, J.M.; Seo, D.H.; Kim, Y.B.; Kim, C.J. Combined effects of sea mustard and transglutaminase on the quality characteristics of reduced-salt frankfurters. J. Food Process. Preserv. 2017, 41, e12945. [Google Scholar] [CrossRef]
- Palhares, P.C.; do Carmo, L.R.; Andrade, B.F.; Ramos, A.D.L.S.; Piccoli, R.H.; Ramos, E.M. Use of glucono-delta-lactone in the accelerated processing of boneless dry-cured lamb hams. Int. J. Food Sci. Technol. 2023, 58, 2270–2279. [Google Scholar] [CrossRef]
- Hazar, F.Y.; Kaban, G.; Kaya, M. The effects of transglutaminase on the qualitative properties of different pastırma types. LWT 2021, 145, 111289. [Google Scholar] [CrossRef]
- Kaban, G. Changes in the composition of volatile compounds and in microbiological and physicochemical parameters during pastırma processing. Meat Sci. 2009, 82, 17–23. [Google Scholar] [CrossRef]
- Kaya, M.; Oral, Z.F.Y.; Kaban, G. Pastırma. Production of Traditional Mediterranean Meat Products; Lorenzo, J.M., Domínguez, R., Pateiro, M., Munekata, P.E.S., Eds.; Springer, Humana Press: New York, NY, USA, 2022; pp. 143–152. [Google Scholar]
- Kilic, B.; Richards, M.P. Lipid oxidation in poultry doner kebap: Pro-oxidative and anti-oxidative factors. J. Food Sci. 2003, 68, 686–689. [Google Scholar] [CrossRef]
- Antoine, F.R.; Wei, C.I.; Littell, R.C.; Marshall, M.R. HPLC method for analysis of free amino acids in fish using ο-phthaldialdehyde precolumn derivatization. J. Agric. Food Chem. 1999, 47, 5100–5107. [Google Scholar] [CrossRef]
- ChiPlot. Available online: https://www.chiplot.online/ (accessed on 25 May 2025).
- Turkish Food Codex Regulation. The Communique on Meat, Prepared Meat Mixtures, and Meat Products; No: 30670, 2018/52. 29.01; Ministry of Agricultural and Forestry: Ankara, Türkiye, 2019. [Google Scholar]
- Lorenzo, J.M.; Carballo, J. Changes in physico-chemical properties and volatile compounds throughout the manufacturing process of dry-cured foal loin. Meat Sci. 2015, 99, 44–51. [Google Scholar] [CrossRef]
- Hazar, F.Y.; Kaban, G.; Kaya, M. Volatile compounds of pastırma under different curing processes. J. Food Process. Preserv. 2019, 43, e14040. [Google Scholar] [CrossRef]
- Zhu, Y.; Rinzema, A.; Tramper, J.; Bol, J. Microbial transglutaminase—A review of its production and application in food processing. Appl. Microbiol. Biotechnol. 1995, 44, 277–282. [Google Scholar] [CrossRef]
- Ersöz, F.; Aykın Dinçer, E.; Türkanoğlu Özçelik, A.; İnan, M. Effect of recombinant transglutaminase on the quality characteristics of cooked beef meatballs. Kafkas Univ. Vet. Fak. Derg. 2021, 27, 209–215. [Google Scholar] [CrossRef]
- Çakıcı, N.; Aksu, M.I.; Erdemir, E. A survey of the physico-chemical and microbiological quality of different pastırma types: A dry-cured meat product. CyTA-J. Food 2015, 13, 196–203. [Google Scholar] [CrossRef]
- Akköse, A.; Kaban, G.; Karaoğlu, M.M.; Kaya, M. Characteristics of pastırma types produced from water buffalo meat. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 179–185. [Google Scholar] [CrossRef]
- Andres-Bello, A.; García-Segovia, P.; Ramíres, J.A.; Martínez-Monzo, J. Production of cold-setting restructured fish products from gilthead sea bream (Sparus aurata) using microbial transglutaminase and regular and low-salt level. CyTA-J. Food 2011, 9, 121–125. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, X. Modification of myofibrillar protein functional properties prepared by various strategies: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 458–500. [Google Scholar] [CrossRef]
- Kieliszek, M.; Misiewicz, A. Microbial transglutaminase and its application in the food industry. A review. Folia Microbiol. 2014, 59, 241–250. [Google Scholar] [CrossRef]
- Costa, M.R.; Bergamin, W.; Silveira, E.T.F.; Felício, P.E. Colour and texture profiles of boneless restructured dry-cured hams compared to traditional hams. Sci. Agric. 2008, 65, 169–173. [Google Scholar] [CrossRef]
- Li, G.; Li, S.; Wen, Y.; Yang, J.; Wang, P.; Wang, H.; Cui, Y.; Wu, W.; Li, L.; Liu, Z. Correlation between the characteristic flavour and microbial community of Xuanwei ham after ripening. Fermentation 2024, 10, 392. [Google Scholar] [CrossRef]
- Beigbabaei, A.; Dara, A.; Borji, N.; Beigbabaei, K. Surveying the hexanal levels in chips as an indicator of lipid oxidation through “microextraction from the upper space in a microdrop” via gas chromatography. J. Food Meas. Charact. 2025, 19, 4506–4515. [Google Scholar] [CrossRef]
- Toldrá, F.; Flores, M. The role of muscle proteases and lipases in flavor development during the processing of dry-cured ham. Critic. Rev. Food Sci. 1998, 38, 331–352. [Google Scholar] [CrossRef] [PubMed]
- Deniz, E.; Mora, L.; Aristoy, M.C.; Candoğan, K.; Toldrá, F. Free amino acids and bioactive peptides profile of pastırma during its processing. Food Res. Int. 2016, 89, 194–201. [Google Scholar] [CrossRef] [PubMed]
Cutting Test | Stress–Relaxation Test | |
---|---|---|
Probe | Special (cutting) knife sets | P50 |
Sample size (width × length × heigh) (cm) | 1 × 2.5 × 1 | 2 × 2 × 1.4 |
Test speed | 3.33 (mm/s) | 120 (mm/min) |
Post-test speed | 10 (mm/s) | 180 (mm/min) |
Target mode | Distance | Strain |
Strain distance−1 | 40 mm | 25% |
Trigger force | 10 g | 5 g |
Transglutaminase (%) | p | SEM | ||||
---|---|---|---|---|---|---|
Control | 0.25 | 0.50 | 1.0 | |||
aw | 0.867 | 0.846 | 0.850 | 0.860 | 0.160 | 0.004 |
pH | 5.89 b,c | 5.95 a | 5.87 c | 5.93 a,b | 0.021 | 0.011 |
TBARS (µmol MDA/kg) | 30.06 a | 21.09 b | 18.70 c | 15.94 d | <0.01 | 1.307 |
L* | 37.57 | 37.46 | 38.12 | 39.48 | 0.566 | 0.557 |
a* | 37.30 b | 40.86 a | 38.85 b | 37.63 b | 0.001 | 0.403 |
b* | 22.16 | 24.59 | 23.13 | 22.79 | 0.181 | 0.396 |
Transglutaminase (%) | Cutting | Stress–Relaxation | ||
---|---|---|---|---|
Max. Cutting Force (N) | Max. Force (N) | Relaxation Time (s) | Min. Force (N) | |
Control | 18.71 b | 82.25 c | 80.42 | 25.54 |
0.25 | 22.91 a | 100.74 b | 80.65 | 33.73 |
0.50 | 22.20 a | 132.02 a | 109.79 | 37.76 |
1 | 24.61 a | 118.04 a | 85.47 | 34.45 |
p | 0.011 | <0.001 | 0.120 | 0.075 |
SEM | 0.690 | 9.903 | 5.565 | 2.744 |
Volatile Compounds | Transglutaminase (%) | p | SEM | ||||
---|---|---|---|---|---|---|---|
KI | Control | 0.25 | 0.50 | 1.0 | |||
Alcohols | |||||||
Ethanol | 507 | 10.46 | 9.04 | 14.61 | 12.36 | 0.562 | 1.340 |
1-propen-2-ol | 525 | 0.00 | 0.35 | 1.64 | 0.53 | 0.105 | 0.246 |
Aldehydes | |||||||
Acetaldehyde | 623 | 6.99 | 9.09 | 5.27 | 5.45 | 0.312 | 0.802 |
Pentanal | 742 | 5.39 | 4.09 | 9.13 | 6.02 | 0.363 | 0.976 |
2-methyl-2-butenal | 788 | 1.57 | 0.82 | 1.82 | 1.37 | 0.488 | 0.226 |
Hexanal | 849 | 64.86 | 48.68 | 101.89 | 71.07 | 0.368 | 10.159 |
2-hexenal | 902 | 0.25 | 0.25 | 0.33 | 0.29 | 0.941 | 0.047 |
Heptanal | 955 | 4.89 | 3.75 | 7.02 | 5.53 | 0.418 | 0.714 |
2-heptenal | 1019 | 0.26 | 0.16 | 0.09 | 0.51 | 0.328 | 0.080 |
Benzaldehyde | 1026 | 28.38 | 30.08 | 34.03 | 23.13 | 0.266 | 2.122 |
Octanal | 1051 | 8.09 | 6.69 | 11.10 | 8.30 | 0.474 | 1.040 |
2,4-heptadienal | 1076 | 0.90 | 1.09 | 1.28 | 0.78 | 0.905 | 0.226 |
2-octenal | 1133 | 1.60 | 1.72 | 1.91 | 1.33 | 0.818 | 0.197 |
Nonanal | 1143 | 15.19 | 12.67 | 19.34 | 14.64 | 0.418 | 1.502 |
Trans-2-nonenal | 1233 | 1.70 | 1.70 | 1.56 | 1.29 | 0.321 | 0.097 |
2,4-nonadienal | 1305 | 0.26 | 0.37 | 0.41 | 0.45 | 0.773 | 0.061 |
2-methyl-3-phenyl-propanal | 1334 | 2.75 | 1.97 | 1.90 | 1.29 | 0.212 | 0.316 |
Ketones | |||||||
2-cyclopenten-1-one | 602 | 0.89 | 0.77 | 1.21 | 0.06 | 0.135 | 0.177 |
2-pentanone | 746 | 1.61 | 1.25 | 1.76 | 1.12 | 0.789 | 0.229 |
2-heptanone | 946 | 0.49 | 0.52 | 0.71 | 0.52 | 0.592 | 0.059 |
2,3-octanedione | 1025 | 15.07 | 11.09 | 23.32 | 15.66 | 0.372 | 2.397 |
6-methyl-5-hepten-2-one | 1050 | 1.03 | 0.41 | 0.57 | 0.32 | 0.473 | 0.181 |
2-octanone | 1023 | 0.22 | 0.03 | 0.34 | 0.21 | 0.161 | 0.049 |
5-methyl-3-hepten-2-one | 1074 | 1.13 | 1.54 | 1.97 | 0.94 | 0.372 | 0.210 |
3-octen-2-one | 1084 | 1.01 | 1.06 | 1.27 | 0.82 | 0.628 | 0.112 |
3,5-octadien-2-one | 1167 | 1.30 | 1.08 | 0.64 | 0.82 | 0.159 | 0.118 |
Aromatic Hydrocarbons | |||||||
1-methyl-2-(1-methylethyl)-benzene | 1072 | 1.66 | 1.12 | 1.37 | 0.70 | 0.184 | 0.220 |
Styrene | 935 | 0.32 | 0.35 | 0.42 | 0.30 | 0.791 | 0.040 |
Aliphatic Hydrocarbons | |||||||
1,3-pentadiene | 557 | 21.74 | 17.35 | 36.35 | 29.41 | 0.430 | 4.732 |
Hexane | 600 | 27.11 | 23.15 | 25.13 | 22.30 | 0.955 | 3.337 |
Octane | 800 | 0.59 | 0.42 | 0.27 | 0.52 | 0.837 | 0.123 |
Nonane | 900 | 0.30 | 0.30 | 0.43 | 0.34 | 0.599 | 0.038 |
Decane | 1000 | 0.42 | 0.22 | 0.39 | 0.41 | 0.268 | 0.041 |
Undecane | 1100 | 1.10 | 1.05 | 1.40 | 0.80 | 0.621 | 0.146 |
Dodecane | 1200 | 1.01 | 1.21 | 1.26 | 1.07 | 0.948 | 0.170 |
Tridecane | 1300 | 0.58 | 0.47 | 0.75 | 0.71 | 0.890 | 0.124 |
Tetradecane | 1400 | 0.64 | 0.78 | 0.45 | 0.00 | 0.158 | 0.128 |
Sulphur Compounds | |||||||
Allyl mercaptan | 574 | 1.64 | 0.81 | 1.35 | 2.33 | 0.392 | 0.298 |
3-(methylthio)-1-propene | 730 | 0.19 | 0.20 | 0.36 | 0.33 | 0.911 | 0.090 |
3,3’thiobis-1-propene | 888 | 2.63 | 2.50 | 4.19 | 3.36 | 0.763 | 0.599 |
Methyl 2-propenyl disulfide | 954 | 2.11 | 1.95 | 2.73 | 2.15 | 0.790 | 0.274 |
Diallyl disulphide | 1038 | 17.90 | 18.56 | 22.32 | 22.39 | 0.800 | 1.901 |
Esters | |||||||
2,4-hexadienoic acid methyl ester | 1075 | 3.69 | 3.11 | 2.95 | 2.35 | 0.248 | 0.284 |
Ethyl acetate | 639 | 1.49 | 1.62 | 2.12 | 1.50 | 0.892 | 0.293 |
Furanes | |||||||
2-butyl furan | 896 | 0.15 | 0.12 | 0.36 | 0.23 | 0.222 | 0.042 |
2-pentyl-furan | 1018 | 0.99 | 0.83 | 1.51 | 0.83 | 0.390 | 0.150 |
Nitrogenous Compounds | |||||||
1-methyl-1H-pyrrole | 786 | 0.50 | 0.42 | 0.23 | 0.37 | 0.812 | 0.090 |
Acids | |||||||
Acetic acid | 710 | 3.73 | 3.03 | 2.59 | 2.16 | 0.445 | 0.332 |
Amino Acids | Transglutaminase (%) | p | SEM | |||
---|---|---|---|---|---|---|
Control | 0.25 | 0.50 | 1.0 | |||
Aspartic Acid | 32.28 | 30.31 | 31.79 | 25.89 | 0.465 | 1.593 |
Glutamic Acid | 151.95 | 155.82 | 207.49 | 195.08 | 0.072 | 27.559 |
Serine | 25.75 | 27.39 | 34.88 | 30.99 | 0.874 | 5.430 |
Histidine | 36.22 | 32.27 | 28.04 | 33.25 | 0.702 | 2.225 |
Glycine | 52.13 | 36.48 | 68.16 | 66.08 | 0.239 | 9.158 |
Threonine | 101.28 | 106.05 | 31.76 | 69.41 | 0.214 | 13.637 |
Arginine | 256.20 a | 192.17 b | 255.57 a | 274.64 a | 0.015 | 11.334 |
Alanine | 125.68 | 119.68 | 124.75 | 125.24 | 0.132 | 1.616 |
Tyrosine | 131.15 | 110.86 | 153.74 | 143.39 | 0.140 | 7.671 |
Cystine | 248.10 c | 279.34 bc | 331.22 a | 298.20 ab | 0.003 | 20.097 |
Valine | 230.27 | 229.72 | 239.61 | 236.01 | 0.945 | 5.919 |
Methionine | 121.75 | 93.84 | 108.69 | 112.10 | 0.347 | 8.842 |
Phenylalanine | 76.85 a | 91.64 a | 48.82 b | 57.48 b | <0.001 | 5.082 |
Isoleucine | 15.49 | 14.41 | 15.18 | 13.76 | 0.912 | 0.987 |
Leucine | 50.62 | 44.67 | 44.28 | 37.83 | 0.351 | 3.459 |
Lysine | 108.67 | 89.30 | 115.97 | 117.59 | 0.254 | 7.811 |
Proline | 10.38 a | 6.41 b | 7.58 ab | 10.42 a | 0.020 | 1.008 |
Σ FAA | 1774.76 | 1660.35 | 1847.51 | 1847.35 | 0.557 | 42.937 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suncak, F.Y.H.; Kaban, G.; Kaya, M. Influence of Using Microbial Transglutaminase on the Physicochemical Properties, Volatile Compounds and Free Amino Acid Composition of Pastırma. Appl. Sci. 2025, 15, 7959. https://doi.org/10.3390/app15147959
Suncak FYH, Kaban G, Kaya M. Influence of Using Microbial Transglutaminase on the Physicochemical Properties, Volatile Compounds and Free Amino Acid Composition of Pastırma. Applied Sciences. 2025; 15(14):7959. https://doi.org/10.3390/app15147959
Chicago/Turabian StyleSuncak, Fatma Yağmur Hazar, Güzin Kaban, and Mükerrem Kaya. 2025. "Influence of Using Microbial Transglutaminase on the Physicochemical Properties, Volatile Compounds and Free Amino Acid Composition of Pastırma" Applied Sciences 15, no. 14: 7959. https://doi.org/10.3390/app15147959
APA StyleSuncak, F. Y. H., Kaban, G., & Kaya, M. (2025). Influence of Using Microbial Transglutaminase on the Physicochemical Properties, Volatile Compounds and Free Amino Acid Composition of Pastırma. Applied Sciences, 15(14), 7959. https://doi.org/10.3390/app15147959