Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,139)

Search Parameters:
Keywords = strain rates dependence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4111 KiB  
Article
Composition-Dependent Creep Resistance and Strain Rate Sensitivity of BCC Mg-Sc Alloy Studied via Nano-Indentation on Diffusion Couple
by Chenyue Liu, Guanglong Xu and Fuwen Chen
Materials 2025, 18(16), 3828; https://doi.org/10.3390/ma18163828 - 15 Aug 2025
Viewed by 43
Abstract
Mg-Sc body-centered cubic (BCC) phase-structured alloys not only exhibit superior room-temperature ductility and quasi-isotropic deformation behaviors compared to conventional hexagonal close-packed (HCP) Mg alloys in mechanical applications, but they also demonstrate a shape-memory effect that is applicable to intelligent devices. Due to the [...] Read more.
Mg-Sc body-centered cubic (BCC) phase-structured alloys not only exhibit superior room-temperature ductility and quasi-isotropic deformation behaviors compared to conventional hexagonal close-packed (HCP) Mg alloys in mechanical applications, but they also demonstrate a shape-memory effect that is applicable to intelligent devices. Due to the introduction of a dual-phase microstructure feature, the unveiled strengthening/toughening mechanism, and the potential benefit of Sc alloying in BCC creep deformation, it is necessary to investigate the composition and time-dependent creep behaviors of BCC Mg-Sc alloys, such as creep resistance and strain rate sensitivity at room temperature, through nano-indentation on the Mg-Sc diffusion couple. A critical finding is that as the Sc content increases from 23.01 at.% to 33.56 at.%, the BCC Mg-Sc alloy exhibits a progressive enhancement in creep resistance at room temperature, evidenced by the creep stress exponent (n) rising from 49.02 to 66.22. Furthermore, the strain rate sensitivity (m) increases from 0.02 at 26.94 at.% Sc to 0.11 at 32.63 at.% Sc, along with the Sc composition gradient. These phenomena can be attributed to the formation of ordered structures with the increasing Sc concentration, which introduce short-range local barriers to dislocation motion, as confirmed through atomic-scale microstructural analysis. Full article
Show Figures

Graphical abstract

15 pages, 689 KiB  
Article
Antioxidant, Anti-Inflammatory, Antagonistic, and Probiotic Properties of Lactic Acid Bacteria Isolated from Traditional Algerian Fermented Wheat
by Rachida Benguiar, Rachida Benaraba, Chayma Farhat, Habib Chouchane, Djilali Boughaddou, Fethi Belalem and Ameur Cherif
Microorganisms 2025, 13(8), 1852; https://doi.org/10.3390/microorganisms13081852 - 8 Aug 2025
Viewed by 297
Abstract
This study focuses on the identification of three lactic acid bacteria isolates obtained from traditional Algerian fermented wheat as well as the evaluation of their biological activities, mainly their probiotic, antimicrobial, anti-inflammatory, and antioxidant properties. These isolates were identified through phenotypic and genotypic [...] Read more.
This study focuses on the identification of three lactic acid bacteria isolates obtained from traditional Algerian fermented wheat as well as the evaluation of their biological activities, mainly their probiotic, antimicrobial, anti-inflammatory, and antioxidant properties. These isolates were identified through phenotypic and genotypic characterizations. It was found that isolate LB3 was Lactiplantibacillus plantarum, while isolates LB1 and LB2 were identified as Weissella confusa. It was observed that the strains LB1, LB2, and LB3 are capable of maintaining their growth at pH 3.0 and in bile salts after 4 h, with individual survival rates ranging from 41% to 90% depending on the strain. Furthermore, their co-aggregation capacity with Staphylococcus aureus ATCC6528 indicated a percentage higher than 50%. The three strains displayed powerful inhibitory effects against pathogenic bacteria, showing inhibition rates of 5% to 40%. They also exhibited significant anti-inflammatory activity ranging from 20% to 39%. All three lactic acid bacteria (LAB) isolates exhibited significant antioxidant activity. Their intact cells demonstrated a high ability to scavenge DPPH radicals and possessed substantial ferric reducing power, while their intracellular extracts showed high levels of glutathione (GSH). Additionally, they exerted a protective effect against plasma lipid peroxidation, with inhibition rates ranging from 20% to 39%. These findings suggest that these strains possess promising probiotic potential as future therapeutic agents to be used in the development of novel functional fermented foods. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

29 pages, 6672 KiB  
Article
Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway
by Nuttapon Songnaka, Adisorn Ratanaphan, Namfa Sermkaew, Somchai Sawatdee, Sucheewin Krobthong, Chanat Aonbangkhen, Yodying Yingchutrakul and Apichart Atipairin
Antibiotics 2025, 14(8), 805; https://doi.org/10.3390/antibiotics14080805 - 6 Aug 2025
Viewed by 650
Abstract
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) contributes to millions of deaths globally each year, creating an urgent need for new therapeutic agents. Antimicrobial peptides (AMPs) have emerged as promising candidates due to their potential to combat AMR pathogens. This study aimed to evaluate the antimicrobial activity of an AMP from a soil-derived bacterial isolate against Gram-negative bacteria. Method: Soil bacteria were isolated and screened for antimicrobial activity. The bioactive peptide was purified and determined its structure and antimicrobial efficacy. Genomic analysis was conducted to predict the biosynthetic gene clusters (BGCs) responsible for AMP production. Results: Genomic analysis identified the isolate as Paenibacillus sp. Na14, which exhibited low genomic similarity (61.0%) to other known Paenibacillus species, suggesting it may represent a novel species. The AMP from the Na14 strain exhibited heat stability up to 90 °C for 3 h and retained its activity across a broad pH range from 3 to 11. Structural analysis revealed that the Na14 peptide consisted of 14 amino acid residues, adopting an α-helical structure. This peptide exhibited bactericidal activity at concentrations of 2–4 µg/mL within 6–12 h, and its killing rate was concentration-dependent. The peptide was found to disrupt the bacterial membranes. The Na14 peptide shared 64.29% sequence similarity with brevibacillin 2V, an AMP from Brevibacillus sp., which also belongs to the Paenibacillaceae family. Genomic annotation identified BGCs associated with secondary metabolism, with a particular focus on non-ribosomal peptide synthetase (NRPS) gene clusters. Structural modeling of the predicted NRPS enzymes showed high similarity to known NRPS modules in Brevibacillus species. These genomic findings provide evidence supporting the similarity between the Na14 peptide and brevibacillin 2V. Conclusions: This study highlights the discovery of a novel AMP with potent activity against Gram-negative pathogens and provides new insight into conserved AMP biosynthetic enzymes within the Paenibacillaceae family. Full article
Show Figures

Graphical abstract

22 pages, 25395 KiB  
Article
Hot Deformation and Predictive Modelling of β-Ti-15Mo Alloy: Linking Flow Stress, ω-Phase Evolution, and Thermomechanical Behaviour
by Arthur de Bribean Guerra, Alberto Moreira Jorge Junior, Guilherme Yuuki Koga and Claudemiro Bolfarini
Metals 2025, 15(8), 877; https://doi.org/10.3390/met15080877 - 6 Aug 2025
Viewed by 239
Abstract
This study investigates the hot deformation behaviour and flow stress prediction of metastable β-Ti-15Mo alloy, a promising material for biomedical applications requiring strength–modulus optimisation and thermomechanical tunability. Isothermal compression tests were performed within the temperature range of 923–1173 K and at strain rates [...] Read more.
This study investigates the hot deformation behaviour and flow stress prediction of metastable β-Ti-15Mo alloy, a promising material for biomedical applications requiring strength–modulus optimisation and thermomechanical tunability. Isothermal compression tests were performed within the temperature range of 923–1173 K and at strain rates of 0.17, 1.72, and 17.2 s1 to assess the material’s response under industrially relevant hot working conditions. The alloy showed significant sensitivity to temperature and strain rate, with dynamic recovery (DRV) and dynamic recrystallisation (DRX) dominating the softening behaviour depending on the conditions. A strain-compensated Arrhenius-type constitutive model was developed and validated, resulting in an apparent activation energy of approximately 234 kJ/mol. Zener–Hollomon parameter analysis confirmed a transition in deformation mechanisms. Although microstructural and diffraction data suggest possible contributions from nanoscale phase transformations, including ω-phase dissolution at high temperatures, these aspects remain to be fully elucidated. The model offers reliable predictions of flow behaviour and supports optimisation of thermomechanical processing routes for biomedical β-Ti alloys. Full article
(This article belongs to the Special Issue Hot Forming/Processing of Metals and Alloys)
Show Figures

Graphical abstract

22 pages, 2219 KiB  
Article
Numerical Modeling of Expansive Soil Behavior Using an Effective Stress-Based Constitutive Relationship for Unsaturated Soils
by Sahand Seyfi, Ali Ghassemi and Rashid Bashir
Geotechnics 2025, 5(3), 53; https://doi.org/10.3390/geotechnics5030053 - 5 Aug 2025
Viewed by 193
Abstract
Previous studies have extensively applied the generalized consolidation theory, which incorporates a two-stress state variable framework, to predict the volumetric behavior of unsaturated expansive soils under varying mechanical stress and matric suction. A key requirement for this approach is a constitutive surface that [...] Read more.
Previous studies have extensively applied the generalized consolidation theory, which incorporates a two-stress state variable framework, to predict the volumetric behavior of unsaturated expansive soils under varying mechanical stress and matric suction. A key requirement for this approach is a constitutive surface that links the soil void ratio to both net stress and matric suction. A large number of fitting parameters are typically needed to accurately fit a two-variable void ratio surface equation to laboratory test data. In this study, a single-stress state variable framework was adopted to describe the void ratio as a function of effective stress for unsaturated soils. The proposed approach was applied to fit void ratio–effective stress constitutive curves to laboratory test data for two different expansive clays. Additionally, a finite element model coupling variably saturated flow and stress–strain analysis was developed to simulate the volume change behavior of expansive clay subjected to moisture fluctuations. The model utilizes suction stress to compute the effective stress field and incorporates the dependency of soil modulus on volumetric water content based on the proposed void ratio–effective stress relationship. The developed numerical model was validated against a benchmark problem in which a layer of Regina expansive clay was subjected to a constant infiltration rate. The results demonstrate the effectiveness of the proposed model in simulating expansive soil deformations under varying moisture conditions over time. Full article
Show Figures

Figure 1

15 pages, 1539 KiB  
Article
Microplastics Induce Structural Color Deterioration in Fish Poecilia reticulata Mediated by Oxidative Stress
by Hong-Yu Ren, Huan-Chao Ma, Rui-Peng He, Cong-Cong Gao, Bin Wen, Jian-Zhong Gao and Zai-Zhong Chen
Fishes 2025, 10(8), 382; https://doi.org/10.3390/fishes10080382 - 5 Aug 2025
Viewed by 279
Abstract
Microplastics (MPs) can affect fish health by inducing oxidative stress, but their impact on structural coloration remains poorly understood. This study investigated the effects of environmentally relevant concentrations (16 and 160 μg/L) of MPs and nanoplastics (NPs) exposure on growth, oxidative stress and [...] Read more.
Microplastics (MPs) can affect fish health by inducing oxidative stress, but their impact on structural coloration remains poorly understood. This study investigated the effects of environmentally relevant concentrations (16 and 160 μg/L) of MPs and nanoplastics (NPs) exposure on growth, oxidative stress and structural coloration in blue strain guppy fish (Poecilia reticulata). Results showed exposure to 160 μg/L MPs significantly reduced specific growth rate of fish compared to controls. Plastic accumulation followed a dose-dependent pattern, especially within gut concentrations. Oxidative stress responses differed between MPs and NPs: 160 μg/L MPs decreased SOD activity in skin and reduced GSH levels, while 160 μg/L NPs increased MDA levels in gut tissues, indicating severe lipid peroxidation. Structural coloration analysis revealed exposure to 160 μg/L MPs decreased lightness and increased yellowness, demonstrating reduced blue coloration. This was accompanied by an increase in skin uric acid content, suggesting that guanine conversion might occur to combat oxidative stress. These findings demonstrate that MPs, particularly at high concentrations, impair growth and induce oxidative stress in guppies. To counteract stress, guanine in iridophores may be converted into uric acid, leading to a decline in structural coloration. This study is the first to reveal that MPs disrupt structural coloration of fish, providing new insights into the ecological risks of plastic pollution on aquatic organisms. Full article
(This article belongs to the Special Issue Impact of Climate Change and Adverse Environments on Aquaculture)
Show Figures

Figure 1

15 pages, 3175 KiB  
Article
Creep Deformation Mechanisms of Gas-Bearing Coal in Deep Mining Environments: Experimental Characterization and Constitutive Modeling
by Xiaolei Sun, Xueqiu He, Liming Qiu, Qiang Liu, Limin Qie and Qian Sun
Processes 2025, 13(8), 2466; https://doi.org/10.3390/pr13082466 - 4 Aug 2025
Viewed by 266
Abstract
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining [...] Read more.
The impact mechanism of long-term creep in gas-containing coal on coal and gas outbursts has not been fully elucidated and remains insufficiently understood for the purpose of disaster engineering control. This investigation conducted triaxial creep experiments on raw coal specimens under controlled confining pressures, axial stresses, and gas pressures. Through systematic analysis of coal’s physical responses across different loading conditions, we developed and validated a novel creep damage constitutive model for gas-saturated coal through laboratory data calibration. The key findings reveal three characteristic creep regimes: (1) a decelerating phase dominates under low stress conditions, (2) progressive transitions to combined decelerating–steady-state creep with increasing stress, and (3) triphasic decelerating–steady–accelerating behavior at critical stress levels. Comparative analysis shows that gas-free specimens exhibit lower cumulative strain than the 0.5 MPa gas-saturated counterparts, with gas presence accelerating creep progression and reducing the time to failure. Measured creep rates demonstrate stress-dependent behavior: primary creep progresses at 0.002–0.011%/min, decaying exponentially to secondary creep rates below 0.001%/min. Steady-state creep rates follow a power law relationship when subject to deviatoric stress (R2 = 0.96). Through the integration of Burgers viscoelastic model with the effective stress principle for porous media, we propose an enhanced constitutive model, incorporating gas adsorption-induced dilatational stresses. This advancement provides a theoretical foundation for predicting time-dependent deformation in deep coal reservoirs and informs monitoring strategies concerning gas-bearing strata stability. This study contributes to the theoretical understanding and engineering monitoring of creep behavior in deep coal rocks. Full article
Show Figures

Figure 1

21 pages, 20135 KiB  
Article
Strain-Rate Effects on the Mechanical Behavior of Basalt-Fiber-Reinforced Polymer Composites: Experimental Investigation and Numerical Validation
by Yuezhao Pang, Chuanlong Wang, Yue Zhao, Houqi Yao and Xianzheng Wang
Materials 2025, 18(15), 3637; https://doi.org/10.3390/ma18153637 - 1 Aug 2025
Viewed by 328
Abstract
Basalt-fiber-reinforced polymer (BFRP) composites, utilizing a natural high-performance inorganic fiber, exhibit excellent weathering resistance, including tolerance to high and low temperatures, salt fog, and acid/alkali corrosion. They also possess superior mechanical properties such as high strength and modulus, making them widely applicable in [...] Read more.
Basalt-fiber-reinforced polymer (BFRP) composites, utilizing a natural high-performance inorganic fiber, exhibit excellent weathering resistance, including tolerance to high and low temperatures, salt fog, and acid/alkali corrosion. They also possess superior mechanical properties such as high strength and modulus, making them widely applicable in aerospace and shipbuilding. This study experimentally investigated the mechanical properties of BFRP plates under various strain rates (10−4 s−1 to 103 s−1) and directions using an electronic universal testing machine and a split Hopkinson pressure bar (SHPB).The results demonstrate significant strain rate dependency and pronounced anisotropy. Based on experimental data, relationships linking the strength of BFRP composites in different directions to strain rate were established. These relationships effectively predict mechanical properties within the tested strain rate range, providing reliable data for numerical simulations and valuable support for structural design and engineering applications. The developed strain rate relationships were successfully validated through finite element simulations of low-velocity impact. Full article
(This article belongs to the Special Issue Mechanical Properties of Advanced Metamaterials)
Show Figures

Figure 1

35 pages, 2193 KiB  
Review
How Mechanistic Enzymology Helps Industrial Biocatalysis: The Case for Kinetic Solvent Viscosity Effects
by Gabriel Atampugre Atampugbire, Joanna Afokai Quaye and Giovanni Gadda
Catalysts 2025, 15(8), 736; https://doi.org/10.3390/catal15080736 - 1 Aug 2025
Viewed by 651
Abstract
Biocatalysis is one of the oldest fields that has been used in industrial applications, with one of the earliest purposeful examples being the mass production of acetic acid from an immobilized Acinetobacter strain in the year 1815. Efficiency, specificity, reduced reaction times, lower [...] Read more.
Biocatalysis is one of the oldest fields that has been used in industrial applications, with one of the earliest purposeful examples being the mass production of acetic acid from an immobilized Acinetobacter strain in the year 1815. Efficiency, specificity, reduced reaction times, lower overall costs, and environmental friendliness are some advantages biocatalysis has over conventional chemical synthesis, which has made biocatalysis increasingly used in industry. We highlight three necessary fields that are fundamental to advancing industrial biocatalysis, including biocatalyst engineering, solvent engineering, and mechanistic engineering. However, the fundamental mechanism of enzyme function is often overlooked or given less attention, which can limit the engineering process. In this review, we describe how mechanistic enzymology benefits industrial biocatalysis by elucidating key fundamental principles, including the kcat and kcat/Km parameters. Mechanistic enzymology presents a unique field that provides in-depth insights into the molecular mechanisms of enzyme activity and includes areas such as reaction kinetics, catalytic mechanisms, structural analysis, substrate specificity, and protein dynamics. In line with the objective of protein engineering to optimize enzyme activity, we summarize a range of strategies reported in the literature aimed at improving the product release rate, the chemical step of catalysis, and the overall catalytic efficiency of enzymes. Further into this review, we delineate kinetic solvent viscosity effects (KSVEs) as a very efficient, cost-effective, and easy-to-perform method to probe different aspects of enzyme reaction mechanisms, including diffusion-dependent kinetic steps and rate-limiting steps. KSVEs are cost-effective because simple kinetic enzyme assays, such as the Michaelis–Menten kinetic approach, can be combined with them without the need for specialized and costly equipment. Other techniques in protein engineering and genetic engineering are also covered in this review. Additionally, we provide information on solvent systems in enzymatic reactions, details on immobilized biocatalysts, and common misconceptions that misguide enzyme design and optimization processes. Full article
(This article belongs to the Special Issue Enzyme Engineering—the Core of Biocatalysis)
Show Figures

Graphical abstract

14 pages, 5622 KiB  
Article
Molecular Dynamics Simulations on the Deformation Behaviors and Mechanical Properties of the γ/γ′ Superalloy with Different Phase Volume Fractions
by Xinmao Qin, Wanjun Yan, Yilong Liang and Fei Li
Crystals 2025, 15(8), 706; https://doi.org/10.3390/cryst15080706 - 31 Jul 2025
Viewed by 268
Abstract
Based on molecular dynamics simulation, we conducted a comprehensive study on the tensile behaviors and properties of the γ(Ni)/γ(Ni3Al) superalloy with varying γ(Ni3Al) phase volume fractions (Vγ) under high-temperature, [...] Read more.
Based on molecular dynamics simulation, we conducted a comprehensive study on the tensile behaviors and properties of the γ(Ni)/γ(Ni3Al) superalloy with varying γ(Ni3Al) phase volume fractions (Vγ) under high-temperature, high-strain-rate service environments. Our investigation revealed that the tensile behavior of the superalloy depends critically on the Vγ. When the Vγ increased from 13.5 to 67%, the system’s tensile strength exhibited a non-monotonic response, peaking at Vγ = 40.3% before progressively decreasing. Conversely, the maximum uniform plastic strain decreased linearly and significantly when Vγ increased. These results establish an atomistically informed framework that elucidates the composition–microstructure–property relationships in γ(Ni)/γ(Ni3Al) superalloys, specifically addressing how Vγ governs variations in deformation mechanisms and mechanical performance. Furthermore, this work provides quantitative design paradigm for optimizing γ(Ni3Al) precipitate architecture and compositional tuning in the Ni-based γ(Ni)/γ(Ni3Al) superalloy. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

18 pages, 6795 KiB  
Article
Strain-Rate-Dependent Tensile Behaviour and Viscoelastic Modelling of Kevlar® 29 Plain-Woven Fabric for Ballistic Applications
by Kun Liu, Ying Feng, Bao Kang, Jie Song, Zhongxin Li, Zhilin Wu and Wei Zhang
Polymers 2025, 17(15), 2097; https://doi.org/10.3390/polym17152097 - 30 Jul 2025
Viewed by 317
Abstract
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal [...] Read more.
Aramid fibre has become a critical material for individual soft body armour due to its lightweight nature and exceptional impact resistance. To investigate its energy absorption mechanism, quasi-static and dynamic tensile experiments were conducted on Kevlar® 29 plain-woven fabric using a universal material testing machine and a Split Hopkinson Tensile Bar (SHTB) apparatus. Tensile mechanical responses were obtained under various strain rates. Fracture morphology was characterised using scanning electron microscopy (SEM) and ultra-depth three-dimensional microscopy, followed by an analysis of microstructural damage patterns. Considering the strain rate effect, a viscoelastic constitutive model was developed. The results indicate that the tensile mechanical properties of Kevlar® 29 plain-woven fabric are strain-rate dependent. Tensile strength, elastic modulus, and toughness increase with strain rate, whereas fracture strain decreases. Under quasi-static loading, the fracture surface exhibits plastic flow, with slight axial splitting and tapered fibre ends, indicating ductile failure. In contrast, dynamic loading leads to pronounced axial splitting with reduced split depth, simultaneous rupture of fibre skin and core layers, and fibrillation phenomena, suggesting brittle fracture characteristics. The modified three-element viscoelastic constitutive model effectively captures the strain-rate effect and accurately describes the tensile behaviour of the plain-woven fabric across different strain rates. These findings provide valuable data support for research on ballistic mechanisms and the performance optimisation of protective materials. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

20 pages, 6318 KiB  
Article
Mesoscale Damage Evolution, Localization, and Failure in Solid Propellants Under Strain Rate and Temperature Effects
by Bo Gao, Youcai Xiao, Wanqian Yu, Kepeng Qu and Yi Sun
Polymers 2025, 17(15), 2093; https://doi.org/10.3390/polym17152093 - 30 Jul 2025
Viewed by 248
Abstract
High-energy solid propellants are multiphase engineering materials, whose mechanical behavior is predominantly governed by the characteristics of embedded crystalline particles. While microstructural influences have been extensively examined, quantitative correlations between microstructure and macroscopic mechanical properties remain underexplored. This work develops a cohesive finite [...] Read more.
High-energy solid propellants are multiphase engineering materials, whose mechanical behavior is predominantly governed by the characteristics of embedded crystalline particles. While microstructural influences have been extensively examined, quantitative correlations between microstructure and macroscopic mechanical properties remain underexplored. This work develops a cohesive finite element method (CFEM) framework to quantify the thermomechanical response of high-energy solid propellants at the microstructural scale. The analysis focuses on impact loading at strain rates ranging from 103 to 104 s−1, accounting for large deformation, thermomechanical coupling, and microcrack-induced failure. Damage evolution under impact conditions was evaluated using a combined neural network-based inverse identification method and a three-dimensional cohesive finite element model to determine temperature-dependent bilinear-polynomial cohesive parameters. Results demonstrate a strong dependence of the propellant’s mechanical behavior on both strain rate and temperature. Validation against experimental data confirms that the proposed temperature-sensitive CFEM accurately predicts both damage progression and macroscopic mechanical responses. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

19 pages, 3984 KiB  
Article
Probabilistic Projections of South Korea’s Population Decline and Subnational Dynamics
by Jeongsoo Kim
Forecasting 2025, 7(3), 40; https://doi.org/10.3390/forecast7030040 - 22 Jul 2025
Viewed by 1624
Abstract
This study adapts the United Nations’ methodology for national probabilistic population projections to subnational contexts. The Bayesian approach used by the UN addresses data collection complexities effectively. By applying hierarchical model assumptions, national projections can be extended to subnational levels. There is a [...] Read more.
This study adapts the United Nations’ methodology for national probabilistic population projections to subnational contexts. The Bayesian approach used by the UN addresses data collection complexities effectively. By applying hierarchical model assumptions, national projections can be extended to subnational levels. There is a significant demand for subnational projections with uncertainty measures, especially in South Korea, where low fertility rates have led to rapid population decline, impacting economic and social conditions. The Bayesian hierarchical model predicts South Korea’s population will peak in 2024 and then decline sharply, potentially reaching 30 million by 2100 or below 20 million in lower projections. Seoul’s population may reduce to one-third of its 2020 size by 2100. Persistently low fertility rates result in a high dependency ratio and accelerated aging, particularly in Seoul and Gyeonggi-do. Although old-age dependency ratios might improve slightly by 2100, economic challenges such as reduced purchasing power and socio-economic strain from an aging population and declining fertility remain significant. A probabilistic approach can enhance resource allocation strategies to support the aging population at both national and subnational levels. Full article
Show Figures

Figure 1

12 pages, 732 KiB  
Article
Umbilical Cord Tensile Strength Under Varying Strain Rates
by Maria Antonietta Castaldi, Pietro Villa, Alfredo Castaldi and Salvatore Giovanni Castaldi
Bioengineering 2025, 12(8), 789; https://doi.org/10.3390/bioengineering12080789 - 22 Jul 2025
Viewed by 281
Abstract
The tensile strength of the umbilical cord (UC) is influenced by its composition—including collagen, elastin, and hyaluronan—contributing to its unique biomechanical properties. This experimental in vitro study aimed to evaluate the UC’s mechanical behavior under varying strain rates and to characterize its viscoelastic [...] Read more.
The tensile strength of the umbilical cord (UC) is influenced by its composition—including collagen, elastin, and hyaluronan—contributing to its unique biomechanical properties. This experimental in vitro study aimed to evaluate the UC’s mechanical behavior under varying strain rates and to characterize its viscoelastic response. Twenty-nine UC specimens, each 40 mm in length, were subjected to uniaxial tensile testing and randomly assigned to three traction speed groups: Group A (n = 10) at 8 mm/min, Group B (n = 7) at 12 mm/min, and Group C (n = 12) at 16 mm/min. Four different parameters were analyzed: the ultimate tensile strength and its corresponding elongation, the elastic modulus defined as the slope of the linear initial portion of the stress–strain plot, and the elongation at the end of the test (at break). While elongation and elongation at break did not differ significantly between groups (one-way ANOVA), Group C showed a significantly higher ultimate tensile strength (p = 0.047). A linear relationship was observed between test speed and stiffness (elastic modulus), with the following regression equation: y = 0.3078e4.425x. These findings confirm that the UC exhibits nonlinear viscoelastic properties and strain-rate-dependent stiffening, resembling non-Newtonian behavior. This novel insight may have clinical relevance during operative deliveries, where traction speed is often overlooked but may play a role in preserving cord integrity and improving neonatal outcomes. Full article
(This article belongs to the Section Biosignal Processing)
Show Figures

Figure 1

15 pages, 7394 KiB  
Communication
Experimental Investigation of Delayed Fracture Initiation in Advanced High-Strength Steel Under Accelerated Bending
by Kyucheol Jeong, Jaewook Lee and Jonghun Yoon
Materials 2025, 18(14), 3415; https://doi.org/10.3390/ma18143415 - 21 Jul 2025
Viewed by 342
Abstract
Predicting bending fractures in advanced high-strength steel (AHSS) is challenging due to complex microstructural behaviors and strain rate dependencies, particularly in industrial forming processes. Current models and standards primarily focus on quasi-static tension or slow bending speeds, leaving a gap in understanding the [...] Read more.
Predicting bending fractures in advanced high-strength steel (AHSS) is challenging due to complex microstructural behaviors and strain rate dependencies, particularly in industrial forming processes. Current models and standards primarily focus on quasi-static tension or slow bending speeds, leaving a gap in understanding the accelerated failure of AHSS without necking. In this study, direct bending experiments were conducted on dual-phase, complex-phase, and martensitic AHSS grades under varying bending speeds and radii. Since the bending crack is irrelevant to the load drop, surface crack evolution was measured using three-dimensional surface profile analysis. The results showed that accelerated bending significantly delayed crack initiation across all tested materials, with small-radius bending showing reduced strain localization due to strain rate hardening. Larger-radius bending benefited primarily from increased fracture strain. Full article
(This article belongs to the Special Issue Advanced High-Strength Steels: Processing and Characterization)
Show Figures

Figure 1

Back to TopTop