Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway
Abstract
1. Introduction
2. Results
2.1. Isolation and Screening of Soil-Derived Bacteria for Antibacterial Activity
2.2. Purification of Bioactive Compounds of the Na14 Isolate
2.3. Characterization of the Na14 Peptide
2.4. Antimicrobial Activity of the Na14 Peptide
2.5. Time–Kill Kinetics of the Na14 Peptide
2.6. Morphological Changes of Bacterial Cells Induced by the Na14 Peptide
2.7. Effect of Temperature, pH, and Enzyme on Peptide Stability
2.8. Genome Analysis and Bacterial Identification
2.9. Comparative Analysis of NRPS-Encoding Biosynthetic Gene Clusters Involved in AMP Production
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Sample Collection and Bacterial Isolation
4.3. Screening of Antibacterial Activity of Soil Bacteria
4.4. Purification of the Bioactive Compound
4.5. Identification and Analysis of the Na14 Peptide
4.6. Determination of MIC and MBC Values
4.7. Stability Assessment of the Peptide Under Heat, pH, and Proteolytic Enzyme Conditions
4.8. Time–Kill Assay
4.9. Morphological Assessment of Bacterial Cells Treated with AMP Using SEM
4.10. Genomic Analysis and Taxonomic Classification of the Na14 Strain
4.11. Comparative Structural Analysis of NRPS Modules from Genomic Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, W.R.; Arias, C.A. ESKAPE pathogens: Antimicrobial resistance, epidemiology, clinical impact and therapeutics. Nat. Rev. Microbiol. 2024, 22, 598–616. [Google Scholar] [CrossRef]
- GBD 2021 Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef]
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019, 39, 831–859. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef]
- Bucataru, C.; Ciobanasu, C. Antimicrobial peptides: Opportunities and challenges in overcoming resistance. Microbiol. Res. 2024, 286, 127822. [Google Scholar] [CrossRef]
- Slingerland, C.J.; Martin, N.I. Recent advances in the development of polymyxin antibiotics: 2010–2023. ACS Infect. Dis. 2024, 10, 1056–1079. [Google Scholar] [CrossRef] [PubMed]
- Rubio, S.; Martínez-Cámara, S.; de la Fuente, J.L.; Rodríguez-Sáiz, M.; Barredo, J.L. Strain improvement program of Streptomyces roseosporus for daptomycin production. Methods Mol. Biol. 2021, 2296, 351–363. [Google Scholar] [CrossRef]
- Kumar, N.; Bhagwat, P.; Singh, S.; Pillai, S. A review on the diversity of antimicrobial peptides and genome mining strategies for their prediction. Biochimie 2024, 227, 99–115. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.D.T.; Cao, J.; Franco, O.L.; Lu, T.K.; de la Fuente-Nunez, C. Synthetic biology and computer-based frameworks for antimicrobial peptide discovery. ACS Nano 2021, 15, 2143–2164. [Google Scholar] [CrossRef] [PubMed]
- Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein Identification and Analysis Tools on the Expasy Server. In The Proteomics Protocols Handbook, 1st ed.; Walker, J.M., Ed.; Humana Press Inc.: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Guruprasad, K.; Reddy, B.V.; Pandit, M.W. Correlation between stability of a protein and its dipeptide composition: A novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 1990, 4, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, X.; Shukla, R.; Kumar, R.; Weingarth, M.; Breukink, E.; Kuipers, O.P. Brevibacillin 2V, a novel antimicrobial lipopeptide with an exceptionally low hemolytic activity. Front. Microbiol. 2021, 12, 693725. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Division, World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance, 1st ed.; World Health Organization: Geneva, Switzerland, 2024; pp. 1–22.
- Seyedsayamdost, M.R. Toward a global picture of bacterial secondary metabolism. J. Ind. Microbiol. Biotechnol. 2019, 46, 301–311. [Google Scholar] [CrossRef] [PubMed]
- Choyam, S.; Jain, P.M.; Kammara, R. Characterization of a potent new-generation antimicrobial peptide of Bacillus. Front. Microbiol. 2021, 12, 710741. [Google Scholar] [CrossRef] [PubMed]
- Barale, S.S.; Ghane, S.G.; Sonawane, K.D. Purification and characterization of antibacterial surfactin isoforms produced by Bacillus velezensis SK. AMB Express 2022, 12, 7. [Google Scholar] [CrossRef]
- Decker, A.P.; Mechesso, A.F.; Wang, G. Expanding the landscape of amino acid-rich antimicrobial peptides: Definition, deployment in nature, implications for peptide design and therapeutic potential. Int. J. Mol. Sci. 2022, 23, 12874. [Google Scholar] [CrossRef]
- Santoro, A.; Buonocore, M.; Grimaldi, M.; Napolitano, E.; D’Ursi, A.M. Monitoring the conformational changes of the Aβ (25−35) peptide in SDS micelles: A matter of time. Int. J. Mol. Sci. 2023, 24, 971. [Google Scholar] [CrossRef]
- Liu, Y.; Han, P.; Jia, Y.; Chen, Z.; Li, S.; Ma, A. Antibacterial regularity mining beneath the systematic activity database of lipopeptides Brevilaterins: An instructive activity handbook for its food application. Foods 2022, 11, 2991. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Shukla, R.; Kumar, R.; Weingarth, M.; Breukink, E.; Kuipers, O.P. Brevibacillin 2V exerts its bactericidal activity via binding to lipid II and permeabilizing cellular membranes. Front. Microbiol. 2021, 12, 694847. [Google Scholar] [CrossRef]
- Zhao, X.; Zhong, X.; Yang, S.; Deng, K.; Liu, L.; Song, X.; Zou, Y.; Li, L.; Zhou, X.; Jia, R.; et al. Elucidating the mechanism of action of the Gram-negative-pathogen-selective cyclic antimicrobial lipopeptide Brevicidine. Antimicrob. Agents Chemother. 2023, 67, e0001023. [Google Scholar] [CrossRef]
- Nagarajan, D.; Nagarajan, T.; Roy, N.; Kulkarni, O.; Ravichandran, S.; Mishra, M.; Chakravortty, D.; Chandra, N. Computational antimicrobial peptide design and evaluation against multidrug-resistant clinical isolates of bacteria. J. Biol. Chem. 2018, 293, 3492–3509. [Google Scholar] [CrossRef]
- Liu, J.; Chen, F.; Wang, X.; Peng, H.; Zhang, H.; Wang, K.J. The synergistic effect of mud crab antimicrobial peptides Sphistin and Sph12-38 with antibiotics azithromycin and rifampicin enhances bactericidal activity against Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol. 2020, 10, 572849. [Google Scholar] [CrossRef]
- Lata, M.; Telang, V.; Gupta, P.; Pant, G.; Kalyan, M.; Arockiaraj, J.; Pasupuleti, M. Synthetic short cryptic antimicrobial peptides as templates for the development of novel biotherapeutics against WHO priority pathogen. Int. J. Pept. Res. Ther. 2024, 30, 57. [Google Scholar] [CrossRef]
- Liu, Y.; Zai, X.; Weng, G.; Ma, X.; Deng, D. Brevibacillus laterosporus: A probiotic with important applications in crop and animal production. Microorganisms 2024, 12, 564. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, L.; Lu, F.; Bie, X.; Zhao, H.; Zhang, C.; Lu, Z.; Lu, Y. Discovery of a novel antimicrobial lipopeptide, Brevibacillin V, from Brevibacillus laterosporus fmb70 and its application on the preservation of skim milk. J. Agric. Food. Chem. 2019, 67, 12452–12460. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, X.; Han, P.; Liu, Y.; Hong, D.; Li, S.; Ma, A.; Jia, Y. Discovery of novel antimicrobial peptides, Brevilaterin V, from Brevibacillus laterosporus S62-9 after regulated by exogenously-added L-valine. LWT 2022, 155, 112962. [Google Scholar] [CrossRef]
- Ning, Y.; Han, P.; Ma, J.; Liu, Y.; Fu, Y.; Wang, Z.; Jia, Y. Characterization of brevilaterins, multiple antimicrobial peptides simultaneously produced by Brevibacillus laterosporus S62-9, and their application in real food system. Food Biosci. 2021, 42, 101091. [Google Scholar] [CrossRef]
- Miljkovic, M.; Jovanovic, S.; O’Connor, P.M.; Mirkovic, N.; Jovcic, B.; Filipic, B.; Dinic, M.; Studholme, D.J.; Fira, D.; Cotter, P.D.; et al. Brevibacillus laterosporus strains BGSP7, BGSP9 and BGSP11 isolated from silage produce broad spectrum multi-antimicrobials. PLoS ONE 2019, 14, e0216773. [Google Scholar] [CrossRef] [PubMed]
- Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z.C. Current knowledge and perspectives of Paenibacillus: A review. Microb. Cell Fact. 2016, 15, 203. [Google Scholar] [CrossRef] [PubMed]
- Huang, E.; Yousef, A.E. Biosynthesis of paenibacillin, a lantibiotic with N-terminal acetylation, by Paenibacillus polymyxa. Microbiol. Res. 2015, 181, 15–21. [Google Scholar] [CrossRef]
- Lohans, C.T.; Huang, Z.; Van Belkum, M.J.; Giroud, M.; Sit, C.S.; Steels, E.M.; Zheng, J.; Whittal, R.M.; McMullen, L.M.; Vederas, J.C. Structural characterization of the highly cyclized lantibiotic paenicidin A via a partial desulfurization/reduction strategy. J. Am. Chem. Soc. 2012, 134, 19540–19543. [Google Scholar] [CrossRef]
- Baindara, P.; Chaudhry, V.; Mittal, G.; Liao, L.M.; Matos, C.O.; Khatri, N.; Franco, O.L.; Patil, P.B.; Korpole, S. Characterization of the antimicrobial peptide penisin, a class Ia novel lantibiotic from Paenibacillus sp. strain A3. Antimicrob. Agents Chemother. 2016, 60, 580–591. [Google Scholar] [CrossRef]
- Tambadou, F.; Caradec, T.; Gagez, A.-L.; Bonnet, A.; Sopéna, V.; Bridiau, N.; Thiéry, V.; Didelot, S.; Barthélémy, C.; Chevrot, R. Characterization of the colistin (polymyxin E1 and E2) biosynthetic gene cluster. Arch. Microbiol. 2015, 197, 521–532. [Google Scholar] [CrossRef]
- Martin, N.I.; Hu, H.; Moake, M.M.; Churey, J.J.; Whittal, R.; Worobo, R.W.; Vederas, J.C. Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 2003, 278, 13124–13132. [Google Scholar] [CrossRef]
- Cochrane, S.A.; Vederas, J.C. Lipopeptides from Bacillus and Paenibacillus spp.: A gold mine of antibiotic candidates. Med. Res. Rev. 2016, 36, 4–31. [Google Scholar] [CrossRef]
- Pawlowski, A.C.; Westman, E.L.; Koteva, K.; Waglechner, N.; Wright, G.D. The complex resistomes of Paenibacillaceae reflect diverse antibiotic chemical ecologies. ISME J. 2018, 12, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Kessler, N.; Schuhmann, H.; Morneweg, S.; Linne, U.; Marahiel, M.A. The linear pentadecapeptide gramicidin is assembled by four multimodular nonribosomal peptide synthetases that comprise 16 modules with 56 catalytic domains. J. Biol. Chem. 2004, 279, 7413–7419. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; Wang, Z. APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Ballard, J.; Jiang, Y.W. Structure and biosynthesis of the BT peptide antibiotic from Brevibacillus texasporus. Appl. Environ. Microbiol. 2005, 71, 8519–8530. [Google Scholar] [CrossRef]
- Barsby, T.; Kelly, M.T.; Gagné, S.M.; Andersen, R.J. Bogorol A produced in culture by a marine Bacillus sp. reveals a novel template for cationic peptide antibiotics. Org. Lett. 2001, 3, 437–440. [Google Scholar] [CrossRef]
- Yang, X.; Huang, E.; Yuan, C.; Zhang, L.; Yousef, A.E. Isolation and structural elucidation of brevibacillin, an antimicrobial lipopeptide from Brevibacillus laterosporus that combats drug-resistant Gram-positive bacteria. Appl. Environ. Microbiol. 2016, 82, 2763–2772. [Google Scholar] [CrossRef] [PubMed]
- Berg, J.A.; Merrill, B.D.; Breakwell, D.P.; Hope, S.; Grose, J.H. A PCR-based method for distinguishing between two common beehive bacteria, Paenibacillus larvae and Brevibacillus laterosporus. Appl. Environ. Microbiol. 2018, 84, e01886-18. [Google Scholar] [CrossRef] [PubMed]
- Songnaka, N.; Lertcanawanichakul, M.; Atipairin, A. Promising anti-MRSA activity of Brevibacillus sp. isolated from soil and strain improvement by UV mutagenesis. Sci. Pharm. 2021, 89, 1. [Google Scholar] [CrossRef]
- Somsap, O.; Bangrak, P.; Bhoopong, P.; Lertcanawanichakul, M. Antibacterial activity and purification of bacteriocin produced by Brevibacillus laterosporus SA14. Walailak J. Sci. Tech. 2015, 13, 55–65. [Google Scholar] [CrossRef]
- Songnaka, N.; Lertcanawanichakul, M.; Hutapea, A.M.; Krobthong, S.; Yingchutrakul, Y.; Atipairin, A. Purification and characterization of novel anti-MRSA peptides produced by Brevibacillus sp. SPR-20. Molecules 2022, 27, 8452. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.; Fan, L.; Yan, J.; Jiang, Y.; Doucette, C.; Fillmore, S.; Walker, B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 2018, 8, 10. [Google Scholar] [CrossRef]
- Ogunsile, A.; Songnaka, N.; Sawatdee, S.; Lertcanawanichakul, M.; Krobthong, S.; Yingchutrakul, Y.; Uchiyama, J.; Atipairin, A. Anti-methicillin-resistant Staphylococcus aureus and antibiofilm activity of new peptides produced by a Brevibacillus strain. PeerJ 2023, 11, e16143. [Google Scholar] [CrossRef]
- Gautier, R.; Douguet, D.; Antonny, B.; Drin, G. HELIQUEST: A web server to screen sequences with specific alpha-helical properties. Bioinformatics 2008, 24, 2101–2102. [Google Scholar] [CrossRef]
- Scieuzo, C.; Giglio, F.; Rinaldi, R.; Lekka, M.E.; Cozzolino, F.; Monaco, V.; Monti, M.; Salvia, R.; Falabella, P. In vitro evaluation of the antibacterial activity of the peptide fractions extracted from the hemolymph of Hermetia illucens (Diptera: Stratiomyidae). Insects 2023, 14, 464. [Google Scholar] [CrossRef]
- Radhakrishnan, N.; Kumar, S.D.; Shin, S.Y.; Yang, S. Enhancing selective antimicrobial and antibiofilm activities of melittin through 6-aminohexanoic acid substitution. Biomolecules 2024, 14, 699. [Google Scholar] [CrossRef] [PubMed]
- Sreerama, N.; Woody, R.W. Estimation of protein secondary structure from circular dichroism spectra: Comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal Biochem. 2000, 287, 252–260. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 12th ed.; Clinical and Laboratory Standards Institute: Pittsburgh, PA, USA, 2024. [Google Scholar]
- Kavela, S.; Kakkerla, S.; Thupurani, M.K. Broad-spectrum antimicrobial activity and in vivo efficacy of SK1260 against bacterial pathogens. Front. Microbiol. 2025, 16, 1553693. [Google Scholar] [CrossRef]
- Tripathi, N.; Sapra, A. Gram Staining. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020; [Updated 14 August 2023]. Available online: https://www.ncbi.nlm.nih.gov/books/NBK562156 (accessed on 28 August 2023).
- Zayaitz, A.; Hussey, M.A. Endospore Staining Protocol. Am. Soc. Microbiol. 2007, 8, 1–11. Available online: https://www.asmscience.org/content/education/protocol/protocol.3112 (accessed on 28 August 2023).
- Galaxy Community. The Galaxy platform for accessible, reproducible, and collaborative data analyses: 2024 update. Nucleic Acids Res. 2024, 52, W83–W94. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef]
- Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef]
- Meier-Kolthoff, J.P.; Göker, M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019, 10, 2182. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; O’Neill, K.R.; Haft, D.H.; DiCuccio, M.; Chetvernin, V.; Badretdin, A.; Coulouris, G.; Chitsaz, F.; Derbyshire, M.K.; Durkin, A.S.; et al. RefSeq: Expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res. 2021, 49, D1020–D1028. [Google Scholar] [CrossRef]
- Haft, D.H.; DiCuccio, M.; Badretdin, A.; Brover, V.; Chetvernin, V.; O’Neill, K.; Li, W.; Chitsaz, F.; Derbyshire, M.K.; Gonzales, N.R.; et al. RefSeq: An update on prokaryotic genome annotation and curation. Nucleic Acids Res. 2018, 46, D851–D860. [Google Scholar] [CrossRef]
- Tatusova, T.; DiCuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Augustijn, H.E.; Reitz, Z.L.; Biermann, F.; Alanjary, M.; Fetter, A.; Terlouw, B.R.; Metcalf, W.W.; Helfrich, E.J.N.; et al. antiSMASH 7.0: New and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 2023, 51, W46–W50. [Google Scholar] [CrossRef]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- van Kempen, M.; Kim, S.S.; Tumescheit, C.; Mirdita, M.; Lee, J.; Gilchrist, C.L.M.; Söding, J.; Steinegger, M. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 2024, 42, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Paysan-Lafosse, T.; Andreeva, A.; Blum, M.; Chuguransky, S.R.; Grego, T.; Pinto, B.L.; Salazar, G.A.; Bileschi, M.L.; Llinares-López, F.; Meng-Papaxanthos, L.; et al. The Pfam protein families database: Embracing AI/ML. Nucleic Acids Res. 2025, 53, D523–D534. [Google Scholar] [CrossRef] [PubMed]
Sample | Zone of Inhibition (Mean ± SD; n = 3) | ||||
---|---|---|---|---|---|
E. coli TISTR 887 (mm) | P. aeruginosa TISTR 357 (mm) | K. pneumoniae TISTR 1383 (mm) | S. aureus TISTR 517 (mm) | MRSA Strain 2468 (mm) | |
CFS of the Na14 isolate | 18.44 ± 0.26 | 18.34 ± 0.49 | 18.19 ± 0.46 | 11.33 ± 0.41 | 12.45 ± 0.73 |
Colistin (25 μg) | 26.52 ± 0.43 | 29.41 ± 0.65 | 26.67 ± 0.22 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Vancomycin (30 μg) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 28.50 ± 0.22 | 28.96 ± 0.43 |
Purification Step | Volume (mL) | Total Weight (mg) | Arbitrary Activity (AU/mL) | Total Activity (AU) | Specific Activity (AU/mg) | Purification Fold | Yield (%) |
---|---|---|---|---|---|---|---|
Cell-free supernatant | 1000 | 2140.12 | 40 | 40,000 | 18.69 | 1.00 | 100.00 |
Salt precipitation | 80 | 212.23 | 160 | 12,800 | 60.31 | 3.23 | 32.00 |
CIEX | 55 | 87.45 | 160 | 8800 | 100.63 | 5.38 | 22.00 |
RPC | 18 | 6.89 | 320 | 5760 | 835.99 | 44.73 | 14.40 |
Solvents | α-Helix | β-Strand | Turn | Random Coil |
---|---|---|---|---|
deionized H2O | 1.7 | 17.8 | 23.7 | 56.8 |
50 mM SDS | 24.4 | 16.0 | 15.7 | 43.9 |
Substance | Gram-Negative Bacteria | |||||
E. coli TISTR 887 | P. aeruginosa TISTR 357 | K. pneumoniae TISTR 1383 | ||||
MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | |
Na14 peptide | 2 | 2 | 2 | 2 | 4 | 4 |
Colistin | 1 | 1 | 2 | 2 | 1 | 1 |
Substance | Gram-Positive Bacteria | |||||
S. aureus TISTR 517 | MRSA strain 2468 | |||||
MIC (µg/mL) | MBC (µg/mL) | MIC (µg/mL) | MBC (µg/mL) | |||
Na14 peptide | >128 | >128 | >128 | >128 | ||
Vancomycin | 2 | 2 | 4 | 4 |
Treatment Condition | Residual Antimicrobial Activity of Na14 Peptide (%) | ||
---|---|---|---|
E. coli TISTR 887 | P. aeruginosa TISTR 357 | K. pneumoniae TISTR 1383 | |
Temperature treatment | |||
Untreated sample | 100.00 ± 1.73 | 100.00 ± 0.37 | 100.00 ± 2.54 |
30 °C | 98.24 ± 1.67 | 98.08 ± 1.11 | 100.89 ± 0.39 |
50 °C | 99.12 ± 1.02 | 98.51 ± 0.37 | 98.21 ± 4.09 |
70 °C | 98.89 ± 2.03 | 98.72 ± 0.64 | 98.66 ± 4.07 |
90 °C | 98.46 ± 1.55 | 97.22 ± 1.62 | 99.11 ± 1.39 |
pH treatment | |||
Untreated sample | 100.00 ± 0.98 | 100.00 ± 2.78 | 100.00 ± 2.08 |
pH 3 | 100.64 ± 2.30 | 99.58 ± 0.74 | 100.43 ± 0.37 |
pH 5 | 100.85 ± 1.95 | 99.36 ± 1.69 | 99.14 ± 1.35 |
pH 7 | 99.36 ± 2.93 | 99.36 ± 3.18 | 98.06 ± 2.34 |
pH 9 | 98.72 ± 1.28 | 98.73 ± 2.30 | 97.62 ± 2.08 |
pH 11 | 98.51 ± 1.33 | 98.30 ± 2.24 | 99.57 ± 2.08 |
Enzymatic treatment | |||
Untreated sample | 100.00 ± 1.89 | 100.00 ± 2.26 | 100.00 ± 1.14 |
Trypsin | 89.25 ± 0.43 * | 88.72 ± 0.75 * | 89.53 ± 1.30 * |
α-Chymotrypsin | 96.50 ± 1.56 * | 93.23 ± 2.60 * | 94.01 ± 1.50 * |
Proteinase K | 96.25 ± 1.30 * | 94.24 ± 1.57 * | 95.51 ± 0.75 * |
Similarity of the Predicted NRPS Module of Na14 to Reference Proteins | Backbone Overlay of Protein Structure (Pink = Reference Protein, Green = Na14’s Predicted Protein) | Surface Overlay of Protein Structure (Pink = Reference protein, Green = Na14’s Predicted Protein) |
---|---|---|
Reference Protein PDB ID: 5ES8 Linear gramicidin synthetase subunit A (thiolation state) Organism: Brevibacillus parabrevis Seq. identity: 39.5% TM-score: 0.83386 RMSD: 6.23 | ||
Reference Protein PDB ID: 6MFZ Linear gramicidin synthetase subunit A (condensation state) Organism: Brevibacillus parabrevis Seq. identity: 31.9% TM-score: 0.75324 RMSD: 14.72 | ||
Reference Protein PDB ID: 2VSQ Surfactin A synthetase C termination module Organism: Bacillus subtilis Seq. identity: 36.6% TM-score: 0.70210 RMSD: 14.25 | ||
Reference Protein PDB ID: 6MFZ Linear gramicidin synthetase subunit A (condensation state) Organism: Brevibacillus parabrevis Seq. identity: 38.7% TM-score: 0.74215 RMSD: 14.05 | ||
Reference Protein PDB ID: 2VSQ Surfactin A synthetase C termination module Organism: Bacillus subtilis Seq. identity: 36.1% TM-score: 0.70370 RMSD: 14.52 | ||
Reference Protein PDB ID: 2VSQ Surfactin A synthetase C termination module Organism: Bacillus subtilis Seq. identity: 36.4% TM-score: 0.71682 RMSD: 13.99 | ||
Reference Protein PDB ID: 2VSQ Surfactin A synthetase C termination module Organism: Bacillus subtilis Seq. identity: 36.8% TM-score: 0.77661 RMSD: 7.74 | ||
Reference Protein PDB ID: 6P1J Teixobactin-producing nonribosomal peptide synthetase Txo2 serine module Organism: Eleftheria terrae Seq. identity: 27.0% TM-score: 0.77945 RMSD: 10.72 | ||
Reference Protein PDB ID: 2VSQ Surfactin A synthetase C termination module Organism: Bacillus subtilis Seq. identity: 34.0% TM-score: 0.46144 RMSD: 30.72 | ||
Reference Protein PDB ID: 6MFZ Linear gramicidin synthetase subunit A (condensation state) Organism: Brevibacillus parabrevis Seq. identity: 40.2% TM-score: 0.78563 RMSD: 14.37 | ||
Reference Protein PDB ID: 2VSQ Surfactin A synthetase C termination module Organism: Bacillus subtilis Seq. identity: 41.7% TM-score: 0.66952 RMSD: 15.41 | ||
Reference Protein PDB ID: 6MFZ Linear gramicidin synthetase subunit A (condensation state) Organism: Brevibacillus parabrevis Seq. identity: 36.2% TM-score: 0.88822 RMSD: 4.01 | ||
Reference Protein PDB ID: 6MFZ Linear gramicidin synthetase subunit A (condensation state) Organism: Brevibacillus parabrevis Seq. identity: 38.4% TM-score: 0.76129 RMSD: 16.26 | ||
Reference Protein PDB ID: 2VSQ Surfactin A synthetase C termination module Organism: Bacillus subtilis Seq. identity: 33.7% TM-score: 0.63631 RMSD: 13.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Songnaka, N.; Ratanaphan, A.; Sermkaew, N.; Sawatdee, S.; Krobthong, S.; Aonbangkhen, C.; Yingchutrakul, Y.; Atipairin, A. Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway. Antibiotics 2025, 14, 805. https://doi.org/10.3390/antibiotics14080805
Songnaka N, Ratanaphan A, Sermkaew N, Sawatdee S, Krobthong S, Aonbangkhen C, Yingchutrakul Y, Atipairin A. Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway. Antibiotics. 2025; 14(8):805. https://doi.org/10.3390/antibiotics14080805
Chicago/Turabian StyleSongnaka, Nuttapon, Adisorn Ratanaphan, Namfa Sermkaew, Somchai Sawatdee, Sucheewin Krobthong, Chanat Aonbangkhen, Yodying Yingchutrakul, and Apichart Atipairin. 2025. "Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway" Antibiotics 14, no. 8: 805. https://doi.org/10.3390/antibiotics14080805
APA StyleSongnaka, N., Ratanaphan, A., Sermkaew, N., Sawatdee, S., Krobthong, S., Aonbangkhen, C., Yingchutrakul, Y., & Atipairin, A. (2025). Discovery of a Novel Antimicrobial Peptide from Paenibacillus sp. Na14 with Potent Activity Against Gram-Negative Bacteria and Genomic Insights into Its Biosynthetic Pathway. Antibiotics, 14(8), 805. https://doi.org/10.3390/antibiotics14080805