Antioxidant, Anti-Inflammatory, Antagonistic, and Probiotic Properties of Lactic Acid Bacteria Isolated from Traditional Algerian Fermented Wheat
Abstract
1. Introduction
2. Materials and Methods
2.1. Lactic Acid Bacteria Isolates
2.2. Indicator Microorganisms for Antimicrobial Activity Assay
2.3. Phenotypic Identification of the Isolates
2.4. Molecular Identification of Bacteria Using 16S rRNA Gene Sequencing
2.5. Probiotic Properties Assessment
2.5.1. Tolerance to Acidity
2.5.2. Bile Salts Tolerance
2.5.3. Antibiotic Sensitivity
2.5.4. Auto-Aggregation
2.5.5. Co-Aggregation
2.5.6. Hemolytic Activity
2.5.7. Proteolytic Activity
2.6. Determination of Antibacterial Activity Using Microdilution Method
2.7. Assessment of Anti-Inflammatory Properties
2.8. Antioxidant Activity
2.8.1. Evaluation of Ferric Reducing Antioxidant Power (FRAP)
2.8.2. Evaluation of 2,2-Diphenyl-1-Picrylhydrazyl (DPPH•) Scavenging
2.8.3. Lipid Peroxidation Evaluation
2.8.4. Determination of Reduced Glutathione (GSH) Levels
Preparation of Intracellular Extracts of LAB Isolates
GSH Assay
2.9. Statistical Analysis
3. Results
3.1. Identification of Bacterial Isolates
3.1.1. Morphological, Biochemical, and Physiological Characteristics
3.1.2. Molecular Identification
3.2. Tolerance to Acidic pH and Bile Salts
3.3. Antibiotic Sensitivity
3.4. Co-Aggregation and Auto-Aggregation
3.5. Hemolytic Activity
3.6. Proteolytic Activity
3.7. Antibacterial Activity
3.8. Anti-Inflammatory Activity
3.9. Antioxidant Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LAB | Lactic acid Bacteria |
CFU | Colony-forming Unit |
ADH | Arginine dihydrolase |
FRAP | Ferric-reducing antioxidant power |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
GSH | Reduced glutathione |
MDA | Malondialdehyde |
References
- Delzenne, N.M.; Cani, P.D.; Bibiloni, R.; Knauf, C.; Waget, A.; Neyrinck, A.M.; Burcelin, R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 2008, 57, 1470–1481. [Google Scholar] [CrossRef]
- Bandopadhyay, P.; Ganguly, D. Gut dysbiosis and metabolic diseases. Prog. Mol. Bio. Trans. Sci. 2022, 191, 153–174. [Google Scholar] [CrossRef]
- FAO/WHO. Probiotics in Food. Health and Nutritional Properties and Guidelines for the Evaluation; FAO Food and Nutrition Paper No. 85; Food and Agriulture Organization of the United Nation: Rome, Italy; World Health Organization: Geneva, Switzerland, 2006. [Google Scholar]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. The role of probiotics in colorectal cancer management. J. Evid.-Based Complement. Altern. Med. 2020, 12, 2936. [Google Scholar] [CrossRef]
- Yadav, R.; Shukla, P. Probiotics for human health: Current progress and applications. In Recent Advances in Applied Microbiology; Springer: Singapore, 2017; pp. 133–147. [Google Scholar] [CrossRef]
- Zhao, D.; Du, R.; Chen, L.; Pei, F. Regulating gut microbiota by lactic acid bacteria: Effects based on probiotic characteristics and their metabolites. Lausanne: Front. Med. SA 2024, 1–276. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.T.; Bohn, C.; Bourlieu-Lacanal, R.; Boutrou, F.; Carrière, A.; et al. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef] [PubMed]
- Ashaolu, T.J. Immune boosting functional foods and their mechanisms: A critical evaluation of probiotics and prebiotics. Biomed. Pharmacother. 2020, 130, 110625. [Google Scholar] [CrossRef]
- Lortal, S.; El Mecherfi, K.E.; Mariotti, F.; Eutamène, H.; Rul, F.; Champomier-Vergès, M.C.; Savary-Auzeloux, I. Aliments fermentés & bénéfices santé: Un défi pour la recherche. Cah. Nut. Diét. 2020, 55, 136–148. [Google Scholar]
- Ben Mehel, B.B.; Bousbahi, S.; Gérard, P.; Bousbahi, S. Impact nutritionnel d’un blé fermenté type Hamoum sur la translocation bactérienne intestinale chez le rat malnutri en phase de réalimentation. Nut. Clin. Métabol. 2019, 33, 102. [Google Scholar] [CrossRef]
- Nithya, A.; Misra, S.; Panigrahi, C.; Dalbhagat, C.G.; Mishra, H.N. Probiotic potential of fermented foods and their role in non-communicable diseases management: An understanding through recent clinical evidences. Food Chem. Adv. 2023, 3, 100381. [Google Scholar] [CrossRef]
- Labioui, H.; Elmoualdi, L.; El Yachioui, M.; Ouhssine, M. Sélection de souches de bactéries lactiques antibactériennes. Bull. Soc. Pharm. Bordx. 2005, 144, 237–250. [Google Scholar]
- Delarras, C. Pratique en Microbiologie de Laboratoire: Recherche de Bactéries et de Levures-Moisissures; Lavoisier-Tec & Doc: Paris, France, 2014; p. 476. [Google Scholar]
- Badis, A.; Laouabdia-Sellami, N.; Guetarni, D.; Kihal, M.; Ouzrout, R. Caractérisation phénotypique des bactéries lactiques isolées à partir du lait cru de chève de deux populations caprines locales «arabia et kabyle». Sci. Technol. 2005, 23, 30–37. [Google Scholar]
- Idoui, T.; Boudjerda, J.; Leghouchi, E.; Karam, N.E. Lactic acid bacteria from “Sheep’s Dhan”, a traditional butter: Isolation, identification and major technological traits. Grasas y Aceites 2009, 60, 177–183. [Google Scholar] [CrossRef]
- Lemoine, F.; Correia, D.; Lefort, V.; Doppelt-Azeroual, O.; Mareuil, F.; Cohen-Boulakia, S. NPhylogeny.fr: New generation phylogenetic services for non-specialists. Nucleic Acids Res. 2019, 47, W260–W265. [Google Scholar] [CrossRef]
- Anandharaj, M.; Sivasankari, B.; Santhanakaruppu, R.; Manimaran, M.; Rani, R.P.; Sivakumar, S. Determining the probiotic potential of cholesterol-reducing Lactobacillus and Weissella strains isolated from gherkins (fermented cucumber) and south Indian fermented koozh. Rese. Microbiol. 2015, 166, 428–439. [Google Scholar] [CrossRef]
- Tarique, M.; Abdalla, A.; Masad, R.; Al-Sbiei, A.; Kizhakkayil, J.; Osaili, T.; Olaimat, A.; Liu, S.Q.; Fernandez-Cabezudo, M.; al-Ramadi, B.; et al. Potential probiotics and postbiotic characteristics including immunomodulatory effects of lactic acid bacteria isolated from traditional yogurt-like products. Lebensm. Wiss. Technol. 2022, 159, 113207. [Google Scholar] [CrossRef]
- Cockerill, F.R.; Wikler, M.A.; Alder, J.; Dudley, M.N.; Eliopoulos, G.M.; Ferraro, M.J.; Hardy, D.Y.; Hecht, D.W.; Hindler, J.A.; Patel, J.B.; et al. Performance standards for antimicrobial susceptibility testing; twenty-second informational supplement. Clin. Lab. Stand. Inst. 2012, 32, M100-S22. [Google Scholar]
- Abdulla, A.A.; Abed, T.A.; Saeed, A.M. Adhesion, autoaggregation and hydrophobicity of six Lactobacillus strains. Br. Microbiol. Res. J. 2014, 4, 381–391. [Google Scholar] [CrossRef]
- Abushelaibi, A.; Al-Mahadin, S.; El-Tarabily, K.; Shah, N.P.; Ayyash, M. Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT–Food. Sci. Technol. 2017, 79, 316–325. [Google Scholar] [CrossRef]
- Argyri, A.A.; Zoumpopoulou, G.; Karatzas, K.-A.G.; Tsakalidou, E.; Nychas, G.-J.E.; Panagou, E.Z.; Tassou, C.C. Selection of po-tential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food. Microbiol. 2013, 33, 282–291. [Google Scholar] [CrossRef]
- Alapont, C.; Martínez-Culebras, P.V.; López-Mendoza, M.C. Determination of lipolytic and proteolytic activities of mycoflora isolated from dry-cured teruel ham. J. Food. Sci. Technol. 2015, 52, 5250–5256. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Lai, C.C.; Huang, H.L.; Huang, W.Y.; Toh, H.S.; Weng, T.C.; Tang, H.J. Antimicrobial activity of Lactobacillus species against carbapenem-resistant Enterobacteriaceae. Front. Microbiol. 2019, 10, 789. [Google Scholar] [CrossRef]
- Kar, B.; Nepal, A.; Kumar, R.B.; Dolai, N.; Bhattacharya, S.; Upal, K. Antioxidant and anti-inflammatory properties hymenodictyonexcelsum bark. Orient. Pharm. Exp. Med. 2013, 13, 103–114. [Google Scholar] [CrossRef]
- Su, J.; Wang, T.; Li, Y.; Li, J.; Zhang, Y.; Wang, Y.; Li, H. Antioxidant properties of wine lactic acid bacteria: Oenococcusoeni. Appl. Microbiol. Biotechnol. 2015, 99, 5189–5202. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. A procedure to measure the antiradical efficiency of polyphenols. J. Sci. Food Agric. 1998, 76, 270–276. [Google Scholar] [CrossRef]
- Bekkouch, O.; Harnafi, M.; Touiss, I.; Khatib, S.; Harnafi, H.; Alem, C.; Amrani, S. In Vitro Antioxidant and In Vivo Lipid-Lowering Properties of Zingiber officinale Crude Aqueous Extract and Methanolic Fraction: A Follow-Up Study. J. Evid.-Based Complement. Altern. Med. 2019, 9734390. [Google Scholar] [CrossRef]
- Kandler, O.; Weiss, N. Regular, non-sporing gram-positive rods. In Bergey’s Manual of Systematic Bacteriology; Williams and Wilkins Co.: Baltimore, MD, USA, 1986; Volume 1, pp. 1208–1234. [Google Scholar]
- Tahlaïti, H.; Dalache, F.; Homrani, A.; Nemmiche, S. Caractérisation et criblage du potentiel probiotique de bactéries lactiques isolées à partir de blé “Hamoum” traditionnellement fermenté. J. Sud-Asiat. Biol. Exp. 2017, 7, 181–190. [Google Scholar]
- Chadli, A.; Benbouziane, B.; Bouderoua, K.; Bentahar, M.C.; Benabdelmoumene, D. Assessment of potential probiotic properties and biotechnological activities of lactobacillus strains isolated from traditional algerian fermented wheat ELHAMOUM. Asian J. Dairy Food Res. 2024, 1–7. [Google Scholar] [CrossRef]
- de Souza, B.M.S.; Borgonovi, T.F.; Casarotti, S.N.; Todorov, S.D.; Penna, A.L.B. Lactobacillus casei and Lactobacillus fermentum strains isolated from mozzarellacheese: Probiotic potential, safety, acidifying kinetic parameters and viability under gastrointestinal tract conditions. Probiotics Antimicrob. Proteins 2019, 11, 382–396. [Google Scholar] [CrossRef]
- Lakra, A.K.; Domdi, L.; Hanjon, G.; Tilwani, Y.M.; Arul, V. Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter. LWT 2020, 125, 109261. [Google Scholar] [CrossRef]
- Angelescu, I.R.; Zamfir, M.; Stancu, M.M.; Grosu-Tudor, S.S. Identification and probiotic properties of lactobacilli isolated from two different fermented beverages. Ann. Microbiol. 2019, 69, 1557–1565. [Google Scholar] [CrossRef]
- Doghri, I.; Portier, E.; Desriac, F.; Zhao, J.M.; Bazire, A.; Dufour, A.; Lanneluc, I. Anti-biofilm activity of a low weight proteinaceous molecule from the marine bacterium Pseudoalteromonas sp. IIIA004 against marine bacteria and human pathogen biofilms. Microorganisms 2020, 8, 1295. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Akteruzzaman, M.; Islam, S.S.; Das, B.C.; Siddique, M.P.; Kabir, S.L. Dietary supplementation of Bacillus-based probiotics on the growth performance, gut morphology, intestinal microbiota and immune response in low biosecurity broiler chickens. Vet. Anim. Sci. 2021, 14, 100216. [Google Scholar] [CrossRef] [PubMed]
- N’tcha, C.; Haziz, S.; Agbobatinkpo, P.; Vieira-Dalodé, G.; Boya, B.; Codjia, J.C.; Baba-Moussa, L. Probiotic properties of lactic acid bacteria isolated from a beninese traditional beer’s ferment. Int. J. Appl. Biol. Pharm. Technol. 2016, 7, 314–330. [Google Scholar]
- Arena, M.P.; Capozzi, V.; Russo, P.; Drider, D.; Spano, G.; Fiocco, D. Immunobiosis and probiosis: Antimicrobial activity of lactic acid bacteria with a focus on their antiviral and antifungal properties. Appl. Microbiol. Biotechnol. 2018, 102, 9949–9958. [Google Scholar] [CrossRef]
- Khan, A.N.; Yasmin, H.; Ghazanfar, S.; Hassan, M.N.; Keyani, R.; Khan, I.; Ahmad, A. Antagonistic, Anti-oxidant, Anti-inflammatory and Anti-diabetic Probiotic Potential of Lactobacillus agilis Isolated from the Rhizosphere of the Medicinal Plants. Saudi J. Biol. Sci. 2021, 28, 6069–6076. [Google Scholar] [CrossRef]
- Jain, N.; Mehta, A. Evaluation of Probiotic Properties and Antimicrobial Activity of Enterococcus faecium BM10 KY788342 and Lactobacillus casei GM10 KY794586. Food Pharm. Int. 2017, 1, 84–92. [Google Scholar] [CrossRef]
- Riane, K.; Sifour, M.; Ouled-Haddar, H.; Idoui, T.; Bounar, S.; Boussebt, S. Probiotic properties and antioxidant efficiency of Lactobacillus plantarum 15 isolated from milk. J. Microbiol. Biotechnol. Food Sci. 2021, 516–520. [Google Scholar] [CrossRef]
- DÜz, M.; DoĞan, Y.N.; DoĞan, İ. Antioxidant activitiy of Lactobacillus plantarum, Lactobacillus sake and Lactobacillus curvatus strains isolated from fermented Turkish Sucuk. An. Acad. Bras. Ciênc. 2020, 92, e20200105. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Niu, M.; Song, D.; Song, X.; Zhao, J.; Wu, Y.; Niu, G. Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1. J. Biosci. Bioeng. 2020, 129, 206–214. [Google Scholar] [CrossRef]
- Li, W.; Ji, J.; Chen, X.; Jiang, M.; Rui, X.; Dong, M. Structural elucidation and antioxidant activities of exopolysaccharides from Lactobacillus helveticus MB2-1. Carbohydr. Polym. 2014, 102, 351–359. [Google Scholar] [CrossRef]
- Lin, M.Y.; Chang, F.J. Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Dig. Dis. Sci. 2000, 45, 1617–1622. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Hu, P.; Lou, L.; Zhan, J.; Fan, M.; Li, D.; Liao, Q. Antioxidant activities of lactic acid bacteria for quality improvement of fermented sausage. J. Food Sci. 2017, 82, 2960–2967. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Kang, C.H. Probiotics alleviate oxidative stress in H2O2-exposed hepatocytes and t-BHP-induced C57BL/6 mice. Microorganisms 2022, 10, 234. [Google Scholar] [CrossRef] [PubMed]
Tests | LB1 | LB2 | LB3 |
---|---|---|---|
Gram | + * | + | + |
Cell shape | cocci | cocci | rod |
Catalase | − | − | − |
Fermentation Type | Heterofermentative | Heterofermentative | Homofermentative |
Arginine dihydrolase | + | + | − |
Growth at temperature | |||
10 °C | + | + | + |
30 °C | + | + | + |
45 °C | + | + | + |
Growth in NaCl (%) | |||
6.5 | + | + | + |
9.5 | − | − | − |
Bacterial Strains | pH 3.0 (3 h) | Bile Salts 0.3% (4 h) |
---|---|---|
LB1 | 54.13± 0.001 a | 88.84 ± 1.03 b |
LB2 | 40.23 ± 0.03 b | 75.74 ± 0.71 c |
LB3 | 52.93 ± 0.003 a | 97.54 ± 0.65 a |
Antibiotics | LB1 | LB2 | LB3 |
---|---|---|---|
Chloramphenicol (30 µg) | I | S | S |
Colistin (10 µg) | I | I | I |
Metronidazole (6 µg) | R * | R | R |
Streptomycin (10 µg) | R | R | R |
Penicillin (10 µg) | S | I | R |
Ceftazidime (10 µg) | R | R | R |
Gentamicin (10 µg) | S | S | I |
Strains | Auto-Aggregation % | Co-Aggregation % | |
---|---|---|---|
E. coli | S. aureus | ||
LB1 | 65.5 ± 0.2 b | 6.78 ± 0.16 b | 50.62± 0.36 b |
LB2 | 64.5 ± 0.76 b | 6.19 ± 0.6 b | 50.2 ± 0.55 b |
LB3 | 73.83 ± 0.33 a | 27.85 ± 0.41 a | 60 ± 1.3 a |
Strains | T30 °C | T37 °C |
---|---|---|
LB1 | 23.5 ± 1.42 a | 20 0.44 b |
LB2 | 19.75 ± 0.85 a | 20 ± 0.54 b |
LB3 | 19.5 ± 0.22 a | 19.3 ± 0.2 b |
LB1 | LB2 | LB3 | |
---|---|---|---|
FRAP (µmol/L) | 171.36 ± 17.77 b | 146.97 ± 1.25 b | 311.99 ± 1.55 a |
DPPH (%) | 84.45 ± 0.42 a | 86.75 ± 0.65 a | 80.58 ± 0.15 b |
GSH (µmol/mg) | 1.02 ± 0.03 a | 1.08 ± 0.05 a | 1.12 ± 0.04 b |
Lipid peroxidation (%) | 39.18 ± 0.002 a | 25.63 ±0.003 b | 36 ± 0.001 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benguiar, R.; Benaraba, R.; Farhat, C.; Chouchane, H.; Boughaddou, D.; Belalem, F.; Cherif, A. Antioxidant, Anti-Inflammatory, Antagonistic, and Probiotic Properties of Lactic Acid Bacteria Isolated from Traditional Algerian Fermented Wheat. Microorganisms 2025, 13, 1852. https://doi.org/10.3390/microorganisms13081852
Benguiar R, Benaraba R, Farhat C, Chouchane H, Boughaddou D, Belalem F, Cherif A. Antioxidant, Anti-Inflammatory, Antagonistic, and Probiotic Properties of Lactic Acid Bacteria Isolated from Traditional Algerian Fermented Wheat. Microorganisms. 2025; 13(8):1852. https://doi.org/10.3390/microorganisms13081852
Chicago/Turabian StyleBenguiar, Rachida, Rachida Benaraba, Chayma Farhat, Habib Chouchane, Djilali Boughaddou, Fethi Belalem, and Ameur Cherif. 2025. "Antioxidant, Anti-Inflammatory, Antagonistic, and Probiotic Properties of Lactic Acid Bacteria Isolated from Traditional Algerian Fermented Wheat" Microorganisms 13, no. 8: 1852. https://doi.org/10.3390/microorganisms13081852
APA StyleBenguiar, R., Benaraba, R., Farhat, C., Chouchane, H., Boughaddou, D., Belalem, F., & Cherif, A. (2025). Antioxidant, Anti-Inflammatory, Antagonistic, and Probiotic Properties of Lactic Acid Bacteria Isolated from Traditional Algerian Fermented Wheat. Microorganisms, 13(8), 1852. https://doi.org/10.3390/microorganisms13081852