Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (791)

Search Parameters:
Keywords = stem niche

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 929 KiB  
Review
From Hypoxia to Bone: Reprogramming the Prostate Cancer Metastatic Cascade
by Melissa Santos, Sarah Koushyar, Dafydd Alwyn Dart and Pinar Uysal-Onganer
Int. J. Mol. Sci. 2025, 26(15), 7452; https://doi.org/10.3390/ijms26157452 - 1 Aug 2025
Viewed by 283
Abstract
Bone is the most frequent site of distant metastasis in advanced prostate cancer (PCa), contributing substantially to patient morbidity and mortality. Hypoxia, a defining feature of the solid tumour microenvironment, plays a pivotal role in driving bone-tropic progression by promoting epithelial-to-mesenchymal transition (EMT), [...] Read more.
Bone is the most frequent site of distant metastasis in advanced prostate cancer (PCa), contributing substantially to patient morbidity and mortality. Hypoxia, a defining feature of the solid tumour microenvironment, plays a pivotal role in driving bone-tropic progression by promoting epithelial-to-mesenchymal transition (EMT), cancer stemness, extracellular matrix (ECM) remodelling, and activation of key signalling pathways such as Wingless/Integrated (Wnt) Wnt/β-catenin and PI3K/Akt. Hypoxia also enhances the secretion of extracellular vesicles (EVs), enriched with pro-metastatic cargos, and upregulates bone-homing molecules including CXCR4, integrins, and PIM kinases, fostering pre-metastatic niche formation and skeletal colonisation. In this review, we analysed current evidence on how hypoxia orchestrates PCa dissemination to bone, focusing on the molecular crosstalk between HIF signalling, Wnt activation, EV-mediated communication, and cellular plasticity. We further explore therapeutic strategies targeting hypoxia-related pathways, such as HIF inhibitors, hypoxia-activated prodrugs, and Wnt antagonists, with an emphasis on overcoming therapy resistance in castration-resistant PCa (CRPC). By examining the mechanistic underpinnings of hypoxia-driven bone metastasis, we highlight promising translational avenues for improving patient outcomes in advanced PCa. Full article
(This article belongs to the Special Issue Hypoxia: Molecular Mechanism and Health Effects)
Show Figures

Graphical abstract

22 pages, 13067 KiB  
Article
Engineering Marrow-Mimetic Hydrogel Platforms Enhance Erythropoiesis: A Mechanobiology-Driven Approach for Transfusion Red Blood Cell Production
by Qinqin Yang, Runjin Liu and Xiang Wang
Gels 2025, 11(8), 594; https://doi.org/10.3390/gels11080594 - 31 Jul 2025
Viewed by 130
Abstract
Red blood cell (RBC) production from bone marrow hematopoietic stem cells (BMHSCs) in vitro overlooks the mechanical signals of the bone marrow niche and overly relies on growth factors. Considering that the fate of hematopoietic stem cells (HSCs) is determined by the natural [...] Read more.
Red blood cell (RBC) production from bone marrow hematopoietic stem cells (BMHSCs) in vitro overlooks the mechanical signals of the bone marrow niche and overly relies on growth factors. Considering that the fate of hematopoietic stem cells (HSCs) is determined by the natural bone marrow microenvironment, differences in mechanical microenvironments provide a reference for the regulation of HSC differentiation. This study seek to reveal the role of mechanobiology cues in erythropoiesis and provide a new perspective for the design of in vitro erythropoiesis platforms. The hydrogel platforms we designed simulate the stiffness gradient of the bone marrow niche to culture HSCs and induce their differentiation into the erythroid system. Cells on the low-stiffness scaffold have higher potential for erythrocyte differentiation and faster differentiation efficiency and promote erythrocyte differentiation after erythropoietin (EPO) restriction. In vivo transplantation experiments demonstrated that these cells have the ability for continuous proliferation and differentiation into mature erythrocytes. By combining mechanical cues with in vitro erythrocyte production, this method is expected to provide insights for in vitro hematopoietic design and offer a scalable cell manufacturing platform for transfusion medicine. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Figure 1

18 pages, 4624 KiB  
Article
Andrographis paniculata Extract Supports Skin Homeostasis by Enhancing Epidermal Stem Cell Function and Reinforcing Their Extracellular Niche
by Roberta Lotti, Laetitia Cattuzzato, Xuefeng Huang, David Garandeau, Elisabetta Palazzo, Marika Quadri, Cécile Delluc, Eddy Magdeleine, Xiaojing Li, Mathilde Frechet and Alessandra Marconi
Cells 2025, 14(15), 1176; https://doi.org/10.3390/cells14151176 - 30 Jul 2025
Viewed by 395
Abstract
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human [...] Read more.
Skin aging is characterized by compromised epidermal homeostasis and dermo-epidermal junction (DEJ) integrity, resulting in reduced stem cell potential and impaired tissue regeneration. This study investigated the effects of Andrographis paniculata extract (APE) on keratinocyte stem cells (KSCs) and DEJ composition in human skin. Using human skin explants and cell culture models, we demonstrated that APE treatment enhances DEJ composition by increasing Collagen IV and Laminin production while decreasing MMP-9 expression, without altering epidermal structure or differentiation. In the same model, APE preserved stemness potential by upregulating markers related to niche components (collagen XVII and β1-integrin), proliferation (Ki-67 and KRT15), and stem cell capacity (Survivin and LRIG1). In vitro studies revealed that APE selectively stimulated KSC proliferation without affecting transit amplifying cells and promoted Collagen IV and Laminin secretion, particularly in KSCs. Furthermore, in a co-culture model simulating a compromised DEJ (UVB-induced), APE increased Laminin production in KSCs, suggesting a protective effect against photo-damage. These findings indicate that APE enhances DEJ composition and preserves stem cell potential, highlighting its promise as a candidate for skin anti-aging strategies targeting stem cell maintenance and extracellular matrix stability to promote skin regeneration and repair. Full article
Show Figures

Graphical abstract

32 pages, 7358 KiB  
Article
XYLT1 Deficiency of Human Mesenchymal Stem Cells: Impact on Osteogenic, Chondrogenic, and Adipogenic Differentiation
by Thanh-Diep Ly, Vanessa Schmidt, Matthias Kühle, Kai Oliver Böker, Bastian Fischer, Cornelius Knabbe and Isabel Faust-Hinse
Int. J. Mol. Sci. 2025, 26(15), 7363; https://doi.org/10.3390/ijms26157363 - 30 Jul 2025
Viewed by 183
Abstract
Xylosyltransferase-I (XT-I) plays a crucial role in skeletal development and cartilage integrity. An XT-I deficiency is linked to severe bone disorders, such as Desbuquois dysplasia type 2. While animal models have provided insights into XT-I’s role during skeletal development, its specific effects on [...] Read more.
Xylosyltransferase-I (XT-I) plays a crucial role in skeletal development and cartilage integrity. An XT-I deficiency is linked to severe bone disorders, such as Desbuquois dysplasia type 2. While animal models have provided insights into XT-I’s role during skeletal development, its specific effects on adult bone homeostasis, particularly in human mesenchymal stem cell (hMSC) differentiation, remain unclear. This study investigates how XT-I deficiency impacts the differentiation of hMSCs into chondrocytes, osteoblasts, and adipocytes—key processes in bone formation and repair. The aim of this study was to elucidate for the first time the molecular mechanisms by which XT-I deficiency leads to impaired bone homeostasis. Using CRISPR-Cas9-mediated gene editing, we generated XYLT1 knockdown (KD) hMSCs to assess their differentiation potential. Our findings revealed significant disruption in the chondrogenic differentiation in KD hMSCs, characterized by the altered expression of regulatory factors and extracellular matrix components, suggesting premature chondrocyte hypertrophy. Despite the presence of perilipin-coated lipid droplets in the adipogenic pathway, the overall leptin mRNA and protein expression was reduced in KD hMSCs, indicating a compromised lipid metabolism. Conversely, osteogenic differentiation was largely unaffected, with KD and wild-type hMSCs exhibiting comparable mineralization processes, indicating that critical aspects of osteogenesis were preserved despite the XYLT1 deficiency. In summary, these results underscore XT-I’s pivotal role in regulating differentiation pathways within the bone marrow niche, influencing cellular functions critical for skeletal health. A deeper insight into bone biology may pave the way for the development of innovative therapeutic approaches to improve bone health and treat skeletal disorders. Full article
(This article belongs to the Special Issue Molecular Insight into Bone Diseases)
Show Figures

Figure 1

20 pages, 17373 KiB  
Article
The Memory Gene, Murashka, Is a Regulator of Notch Signalling and Controls the Size of the Drosophila Germline Stem Cell Niche
by Thifeen Deen, Hideyuki Shimizu, Marian B. Wilkin and Martin Baron
Biomolecules 2025, 15(8), 1082; https://doi.org/10.3390/biom15081082 - 26 Jul 2025
Viewed by 361
Abstract
We identified Murashka, a RING finger protein, in an oogenesis screen as a regulator of Drosophila ovary germline stem cell niche development. Mutant alleles of murashka exhibited an enlarged niche phenotype reminiscent of increased Notch signalling and displayed genetic interactions with Notch alleles, [...] Read more.
We identified Murashka, a RING finger protein, in an oogenesis screen as a regulator of Drosophila ovary germline stem cell niche development. Mutant alleles of murashka exhibited an enlarged niche phenotype reminiscent of increased Notch signalling and displayed genetic interactions with Notch alleles, and with polychaetoid, a regulator of Notch during niche development. These interactions uncovered both positive and negative impacts on Notch in different genetic backgrounds. In S2 cells, Murashka formed a complex with Notch and colocalised with Notch in the secretory pathway. Murashka expression in S2 cells down-regulated Notch signalling levels but could result in increased fold induction due to the proportionally greater decrease in basal ligand-independent activity. In vivo Murashka expression had different outcomes on different Notch target genes. We observed a decrease in the expression of vestigial along the anterior/posterior boundary of the wing imaginal disc, but not of wingless at the dorsal/ventral boundary. Instead, weak ectopic wingless was observed, which was synergistically increased by the coexpression of Deltex, a positive regulator of ligand-independent signalling. Our results identify a novel developmental role for murashka, a gene previously only associated with a function in long-term memory, and indicate a regulatory role for Murashka through a physical interaction with Notch that has context-dependent outcomes. Murashka adds to a growing number of ubiquitin ligase regulators which interact with Notch at different locations within its secretory and endocytic trafficking pathways. Full article
(This article belongs to the Special Issue Notch and Its Regulation in Health and Disease)
Show Figures

Figure 1

19 pages, 1198 KiB  
Article
Immune Cell–Cytokine Interplay in NSCLC and Melanoma: A Pilot Longitudinal Study of Dynamic Biomarker Interactions
by Alina Miruna Grecea-Balaj, Olga Soritau, Ioana Brie, Maria Perde-Schrepler, Piroska Virág, Nicolae Todor, Tudor Eliade Ciuleanu and Cosmin Andrei Cismaru
Immuno 2025, 5(3), 29; https://doi.org/10.3390/immuno5030029 - 24 Jul 2025
Viewed by 309
Abstract
The tumor microenvironment (TME) in advanced solid tumors is determined by immune checkpoints (PD-1, CTLA-4, and CD95) and cytokine networks (IL-2, IL-10, and TNF-α) that drive CD8+ T cell exhaustion, metabolic reprogramming, and apoptosis resistance, enabling immune evasion. Some studies revealed PD-1/CD95 co-expression [...] Read more.
The tumor microenvironment (TME) in advanced solid tumors is determined by immune checkpoints (PD-1, CTLA-4, and CD95) and cytokine networks (IL-2, IL-10, and TNF-α) that drive CD8+ T cell exhaustion, metabolic reprogramming, and apoptosis resistance, enabling immune evasion. Some studies revealed PD-1/CD95 co-expression is a marker of T cell dysfunction, while CTLA-4 upregulation correlates with suppressed early T cell activation. IL-10 has emerged as a potential biomarker for chemoresistance and tumor aggressivity, consistent with its role in promoting anti-apoptotic signaling in cancer stem cells (CSCs). Engineered IL-2 variants and TNF-α modulation are highlighted as promising strategies to revitalize exhausted CD8+ T cells and disrupt CSC niches. This prospective single-center study investigated the dynamic TME alterations in 16 patients with immunotherapy-naïve stage IV non-small-cell lung cancer (NSCLC) and metastatic melanoma treated with anti-PD-1 nivolumab. The longitudinal immunophenotyping of peripheral blood lymphocytes (via flow cytometry) and serum cytokine analysis (via ELISA) were performed at the baseline, >3, and >6 months post-treatment to evaluate immune checkpoint co-expression (PD-1/CD95 and CTLA-4/CD8+) and the cytokine profiles (IL-2, IL-10, and TNF-α). Full article
Show Figures

Figure 1

16 pages, 3183 KiB  
Article
Long-Term Hypoxia Upregulates Wnt and TGFβ1 Signaling in Eccrine Sweat Gland Cells In Vitro
by Yanlin Lyu, Hiroko Kato, Qianwen Luo, Naoya Otani, Tateki Kubo, Kiyotoshi Sekiguchi and Fumitaka Fujita
Int. J. Mol. Sci. 2025, 26(14), 6664; https://doi.org/10.3390/ijms26146664 - 11 Jul 2025
Viewed by 235
Abstract
Eccrine sweat glands play a vital role in human thermoregulation; however, their self-repair function is minimal. Therefore, developing methods to regenerate and improve sweat gland function that use cultured sweat gland cells presents an urgent issue. The tissue microenvironment, especially hypoxic niches, essentially [...] Read more.
Eccrine sweat glands play a vital role in human thermoregulation; however, their self-repair function is minimal. Therefore, developing methods to regenerate and improve sweat gland function that use cultured sweat gland cells presents an urgent issue. The tissue microenvironment, especially hypoxic niches, essentially maintain cell stemness, highlighting the importance of oxygen concentration in the culture environment. Therefore, we evaluated the effects of different oxygen environments on human sweat glands and their regulatory mechanisms. Human eccrine sweat glands express HIF-1α and HIF-2α, suggesting that they respond to hypoxia in vivo. Primary human-derived eccrine sweat gland cells were cultured for two weeks using the spheroid culture method at 0.5%, 2%, 10%, and 21% O2 concentration. HIF-1, Wnt/β-Catenin, and TGFβ1 signaling increased in sweat gland cells cultured in 0.5% O2 conditions, along with increased undifferentiated cell marker expression. The results of this study will contribute to in vitro research models of sweat glands and treatment development for damage to sweat glands, including burns. Full article
(This article belongs to the Special Issue Molecular Biology of Hypoxia)
Show Figures

Figure 1

14 pages, 862 KiB  
Review
Immune and Inflammatory Properties of Megakaryocytes
by Shiv Vardan Singh, Audrey Lucerne and Katya Ravid
Cells 2025, 14(14), 1053; https://doi.org/10.3390/cells14141053 - 10 Jul 2025
Viewed by 1159
Abstract
Megakaryocytes (MKs), which primarily develop in bone marrow (BM) from hematopoietic stem cells, are critical for platelet production. Beyond their well-established role in thrombopoiesis, MKs have been identified as important for BM niche maintenance, such as by supporting the growth and differentiation of [...] Read more.
Megakaryocytes (MKs), which primarily develop in bone marrow (BM) from hematopoietic stem cells, are critical for platelet production. Beyond their well-established role in thrombopoiesis, MKs have been identified as important for BM niche maintenance, such as by supporting the growth and differentiation of other cell types. Recently, megakaryopoiesis has been reported as yielding divergent subpopulations of MKs, as evidenced by single-cell RNA sequencing of lung, spleen, or BM resident MKs. Interestingly, these subpopulations constitute a significant proportion of “immune MKs” expressing various classical immune markers and capable of phagocytosing pathogens and contributing to antigen presentation. As such, MKs were also found to regulate inflammation, mainly by secreting various cytokines and chemokines to crosstalk with other cell types. The level and functional signature of these “immune MKs” were found to be altered in various pathological conditions, indicative of their purposeful values in health and diseases. In this review, we survey and highlight newly reported functional immune and inflammatory properties of MKs in health and in select pathologies. Full article
Show Figures

Graphical abstract

20 pages, 3828 KiB  
Article
Phylogenetic Structure Shifts Across Life-History Stages in Response to Microtopography and Competition in Subtropical Forests
by Weiqi Meng, Haonan Zhang, Lianhao Sun, Jianing Xu, Yajun Qiao and Haidong Li
Plants 2025, 14(14), 2098; https://doi.org/10.3390/plants14142098 - 8 Jul 2025
Viewed by 369
Abstract
This study focuses on a subtropical evergreen broad-leaved forest in China, utilizing a large permanent plot established in the Yaoluoping National Nature Reserve. By integrating data from a full-stem census and total station surveying, we analyzed the phylogenetic structure of the plant community [...] Read more.
This study focuses on a subtropical evergreen broad-leaved forest in China, utilizing a large permanent plot established in the Yaoluoping National Nature Reserve. By integrating data from a full-stem census and total station surveying, we analyzed the phylogenetic structure of the plant community as a whole and across different life-history stages (saplings, juveniles, and adults) while quantitatively assessing microtopographic variables and an interspecific competition index. The results indicate that the overall community in the Yaoluoping plot exhibited a weakly overdispersed pattern, and key microtopographic factors—including aspect, terrain position index (TPI), terrain ruggedness index (TRI), roughness, and flow direction—significantly influenced the evolution of phylogenetic structure. Distinctions were also observed among saplings, juveniles, and adults in phylogenetic structuring across life-history stages. Specifically, saplings displayed a higher degree of phylogenetic clustering, significantly influenced by density, elevation, TPI, and flow direction—suggesting that environmental filtering predominates at this stage, possibly due to lower environmental tolerance, limited dispersal ability, and conspecific negative density dependence. In contrast, juveniles and adults showed a more dispersed phylogenetic structure, with density, interspecific competition, aspect, TRI, TPI, and roughness significantly correlated with phylogenetic patterns, indicating that competition and niche differentiation become increasingly important as trees mature and establish within the community. Interspecific competition was found to play a crucial role in community structuring: the competition index was generally negatively correlated with the net relatedness index (NRI) and nearest taxon index (NTI) in juveniles and adults, implying that intense competition leads to the exclusion of some species and reduces overall diversity, with the strength and significance of competitive effects differing across stages. This study enhances our understanding of the complex interplay between microtopography and interspecific competition in shaping the phylogenetic structure and diversity of subtropical evergreen broad-leaved forests, elucidates the coupled mechanisms among microtopography, phylogenetic structure, and competition, and provides a scientific basis for forest conservation and management. Full article
(This article belongs to the Special Issue Origin and Evolution of the East Asian Flora (EAF)—2nd Edition)
Show Figures

Figure 1

17 pages, 351 KiB  
Review
Stem-Cell Niches in Health and Disease: Microenvironmental Determinants of Regeneration and Pathology
by Boris Yushkov, Valerii Chereshnev, Elena Korneva, Victoria Yushkova and Alexey Sarapultsev
Cells 2025, 14(13), 981; https://doi.org/10.3390/cells14130981 - 26 Jun 2025
Viewed by 838
Abstract
Stem-cell behavior is governed not solely by intrinsic genetic programs but by highly specialized microenvironments—or niches—that integrate structural, biochemical, and mechanical cues to regulate quiescence, self-renewal, and differentiation. This review traces the evolution of stem-cell niche biology from foundational embryological discoveries to its [...] Read more.
Stem-cell behavior is governed not solely by intrinsic genetic programs but by highly specialized microenvironments—or niches—that integrate structural, biochemical, and mechanical cues to regulate quiescence, self-renewal, and differentiation. This review traces the evolution of stem-cell niche biology from foundational embryological discoveries to its current role as a central determinant in tissue regeneration and disease. We describe the cellular and extracellular matrix architectures that define adult stem-cell niches across diverse organs and dissect conserved signaling axes—including Wnt, BMP, and Notch—that orchestrate lineage commitment. Emphasis is placed on how aging, inflammation, fibrosis, and metabolic stress disrupt niche function, converting supportive environments into autonomous drivers of pathology. We then examine emerging therapeutic strategies that shift the regenerative paradigm from a stem-cell-centric to a niche-centric model. These include stromal targeting (e.g., FAP inhibition), which are engineered scaffolds that replicate native niche mechanics, extracellular vesicles that deliver paracrine cues, and composite constructs that preserve endogenous cell–matrix interactions. Particular attention is given to cardiac, hematopoietic, reproductive, and neurogenic niches, where clinical failures often reflect niche misalignment rather than intrinsic stem-cell deficits. We argue that successful regenerative interventions must treat stem cells and their microenvironment as an inseparable therapeutic unit. Future advances will depend on high-resolution niche mapping, mechanobiologically informed scaffold design, and niche-targeted clinical trials. Re-programming pathological niches may unlock regenerative outcomes that surpass classical cell therapies, marking a new era of microenvironmentally integrated medicine. Full article
(This article belongs to the Special Issue Stem Cells and Beyond: Innovations in Tissue Repair and Regeneration)
24 pages, 1404 KiB  
Review
Hippocampal Neurogenesis in Alzheimer’s Disease: Multimodal Therapeutics and the Neurogenic Impairment Index Framework
by Li Ma, Qian Wei, Ming Jiang, Yanyan Wu, Xia Liu, Qinghu Yang, Zhantao Bai and Liang Yang
Int. J. Mol. Sci. 2025, 26(13), 6105; https://doi.org/10.3390/ijms26136105 - 25 Jun 2025
Viewed by 713
Abstract
Alzheimer’s disease (AD) is characterized by progressive cognitive decline strongly associated with impaired adult hippocampal neurogenesis (AHN). Mounting evidence suggests that this impairment results from both the intrinsic dysfunction of neural stem cells (NSCs)—such as transcriptional alterations in quiescent states—and extrinsic niche disruptions, [...] Read more.
Alzheimer’s disease (AD) is characterized by progressive cognitive decline strongly associated with impaired adult hippocampal neurogenesis (AHN). Mounting evidence suggests that this impairment results from both the intrinsic dysfunction of neural stem cells (NSCs)—such as transcriptional alterations in quiescent states—and extrinsic niche disruptions, including the dysregulation of the Reelin signaling pathway and heightened neuroinflammation. Notably, AHN deficits may precede classical amyloid-β and Tau pathology, supporting their potential as early biomarkers of disease progression. In this review, we synthesize recent advances in therapeutic strategies aimed at restoring AHN, encompassing pharmacological agents, natural products, and non-pharmacological interventions such as environmental enrichment and dietary modulation. Emerging approaches—including BDNF-targeted nanocarriers, NSC-derived extracellular vesicles, and multimodal lifestyle interventions—highlight the translational promise of enhancing neurogenesis in models of familial AD. We further propose the Neurogenesis Impairment Index (NII)—a novel composite metric that quantifies hippocampal neurogenic capacity relative to amyloid burden, while adjusting for demographic and cognitive variables. By integrating neurogenic potential, cognitive performance, and pathological load, NII provides a framework for stratifying disease severity and guiding personalized therapeutic approaches. Despite ongoing challenges—such as interspecies differences in neurogenesis rates and the limitations of stem cell-based therapies—this integrative perspective offers a promising avenue to bridge mechanistic insights with clinical innovation in the development of next-generation AD treatments. Full article
Show Figures

Figure 1

44 pages, 3494 KiB  
Review
Cancer Stem Cells Connecting to Immunotherapy: Key Insights, Challenges, and Potential Treatment Opportunities
by Sivapar V. Mathan and Rana P. Singh
Cancers 2025, 17(13), 2100; https://doi.org/10.3390/cancers17132100 - 23 Jun 2025
Viewed by 984
Abstract
Cancer continues to pose a significant challenge to global health, resulting in millions of deaths annually despite advancements in treatments like surgery, chemotherapy, and radiotherapy. A key factor complicating successful outcomes is the presence of cancer stem cells (CSCs), which possess distinctive features [...] Read more.
Cancer continues to pose a significant challenge to global health, resulting in millions of deaths annually despite advancements in treatments like surgery, chemotherapy, and radiotherapy. A key factor complicating successful outcomes is the presence of cancer stem cells (CSCs), which possess distinctive features that facilitate tumor initiation and progression as well as resistance to therapies. These cells are adept at evading conventional treatments and can hinder the effectiveness of immunotherapy, often manipulating the tumor microenvironment to suppress immune responses. This review delves into the complex interplay between CSCs and immune cells, emphasizing their contributions to tumor heterogeneity and therapeutic resistance. By investigating the CSC niche in which these cells thrive and their complex interactions with the immune system, we aim to reveal new therapeutic avenues that could enhance patient outcomes and minimize the risk of recurrence. CSCs are characterized by remarkable self-renewal and plasticity, allowing them to transition between stem-like and differentiated states in response to various stimuli. Their existence within the CSC niche confers immune protection and maintains stem-like properties while promoting immune evasion. Activating key signaling pathways and specific surface markers is crucial in developing CSC traits, pointing to potential strategies for effective tumor eradication. Conventional therapies often fail to eliminate CSCs, which can lead to tumor recurrence. Therefore, innovative immunotherapeutic strategies such as dendritic cell vaccines (DC vaccines), chimeric antigen receptor (CAR) engineered T cells, and immune checkpoint inhibitors (ICIs) are under examination. This review sheds light on CSC’s roles across different malignancies, highlighting the necessity for innovative targeted approaches in cancer treatment. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

21 pages, 1412 KiB  
Review
Multi-Omics Perspectives on Testicular Aging: Unraveling Germline Dysregulation, Niche Dysfunction, and Epigenetic Remodeling
by Aris Kaltsas
Cells 2025, 14(12), 899; https://doi.org/10.3390/cells14120899 - 13 Jun 2025
Viewed by 919
Abstract
Male reproductive aging proceeds gradually and involves complex alterations across germ cells, somatic cells, and the testicular niche. Multi-omics analyses highlight shifts in spermatogonial stem cell dynamics, diminished sperm quantity and quality, and reconfigured support from Sertoli and Leydig cells. These somatic cells [...] Read more.
Male reproductive aging proceeds gradually and involves complex alterations across germ cells, somatic cells, and the testicular niche. Multi-omics analyses highlight shifts in spermatogonial stem cell dynamics, diminished sperm quantity and quality, and reconfigured support from Sertoli and Leydig cells. These somatic cells show numerical declines and exhibit senescence-associated changes that amplify inflammatory signals and compromise blood–testis barrier integrity. Concurrently, fibrosis and heightened immune cell infiltration disrupt intercellular communication, contributing to further deterioration of spermatogenesis. Epigenetic remodeling—including DNA methylation drift, histone modification imbalances, and altered small non-coding RNA profiles—adds another dimension, reducing sperm integrity and potentially exerting transgenerational effects on offspring health. Observed hormonal changes, such as reduced testosterone and INSL3 production by aging Leydig cells, reflect the additional weakening of testicular function. These multifactorial processes collectively underlie the drop in male fertility and the increased incidence of adverse outcomes, such as miscarriages and developmental anomalies in the offspring of older fathers. Research into mitigation strategies, including interventions targeting senescent cells, oxidative stress, and inflammatory pathways, may slow or reverse key mechanisms of testicular aging. These findings underscore the importance of understanding the molecular hallmarks of male reproductive aging for preserving fertility and safeguarding offspring well-being. Full article
Show Figures

Figure 1

17 pages, 44923 KiB  
Article
Inhibition of PCSK9 Attenuates Liver Endothelial Cell Activation Induced by Colorectal Cancer Stem Cells During Liver Metastasis
by Ander Martin, Daniela Gerovska, Marcos J. Arauzo-Bravo, Maitane Duarte García-Escudero, Helena García García, Iratxe Bañares, Naroa Fontal, Geraldine Siegfried, Serge Evrad, Simon Pernot, Abdel-Majid Khatib and Iker Badiola
Cancers 2025, 17(12), 1977; https://doi.org/10.3390/cancers17121977 - 13 Jun 2025
Viewed by 763
Abstract
Background: Colorectal cancer (CRC) is among the most prevalent and lethal cancers globally, with liver metastasis representing the leading cause of CRC-related mortality. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has recently gained attention due to its overexpression in colorectal tumor tissues and its [...] Read more.
Background: Colorectal cancer (CRC) is among the most prevalent and lethal cancers globally, with liver metastasis representing the leading cause of CRC-related mortality. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has recently gained attention due to its overexpression in colorectal tumor tissues and its potential role in driving metastatic progression. This aims to investigate the involvement of PCSK9 in the liver metastatic niche, focusing on its effects on liver sinusoidal endothelial cells (LSECs), key components of the liver microenvironment. Methods: LSECs were stimulated with conditioned media derived from differentiated colorectal cancer cells and cancer stem cells (CSCs), the latter generated by reprogramming SW620 and CT26 cell lines. RNA sequencing was used to profile gene expression in LSECs. PCSK9 mRNA and protein levels were quantified by qPCR and Western blotting, respectively. PCSK9 expression in CRC liver metastases was evaluated by immunofluorescent staining. Results: PCSK9 was detected in both human and murine LSECs and significantly upregulated following exposure to CSC-conditioned media. Immunofluorescent staining confirmed PCSK9 expression in LSECs within CRC liver metastases. Total RNA sequencing revealed that a pre-treatment of LSECs with the PCSK9 inhibitor PF-06446864 prior to CSC stimulation seems to reduce the expression of microRNAs linked to cell migration and proliferation. Functional assays demonstrated that CSC-conditioned media enhanced LSEC proliferation and migration, effects reversed by PCSK9 inhibition. Conclusions: PCSK9 promotes the activation of LSECs in response to colorectal CSCs, contributing to a pro-metastatic phenotype. These findings highlight PCSK9 as a potential therapeutic target in colorectal liver metastasis. Full article
Show Figures

Figure 1

29 pages, 1761 KiB  
Review
The Role of Extracellular Vesicles in the Control of Vascular Checkpoints for Cancer Metastasis
by Fang Cheng Wong and Janusz Rak
Cancers 2025, 17(12), 1966; https://doi.org/10.3390/cancers17121966 - 12 Jun 2025
Viewed by 929
Abstract
Systemic cancer progression culminating in metastatic disease is implicitly dependent on tumour cell interactions with the vascular system. Indeed, different facets of the micro- and macro-vasculature can be regarded as rate-limiting ‘vascular checkpoints’ in the process of cancer dissemination. The underlying complex communication [...] Read more.
Systemic cancer progression culminating in metastatic disease is implicitly dependent on tumour cell interactions with the vascular system. Indeed, different facets of the micro- and macro-vasculature can be regarded as rate-limiting ‘vascular checkpoints’ in the process of cancer dissemination. The underlying complex communication networks drive tumour neovascularization, angiogenesis, immunoregulation, activation of the coagulation system, angiocrine interactions, and non-angiogenic vascular responses across multiple cancer types. Yet, each cancer may represent a unique vascular interaction scenario raising a prospect of targeted modulation of blood and lymphatic vessels for therapeutic purposes, beyond the traditional notion of tumour anti-angiogenesis. While the emphasis of studies aiming to understand this circuitry has traditionally been on soluble, or ‘mono-molecular’ mediators, the rise of the particulate secretome encompassing heterogeneous subpopulations of extracellular vesicles (EVs; including exosomes) and particles (EPs) brings another dimension into the tumour–vascular communication web during the process of metastasis. EVs and EPs are nanosized cellular fragments, the unique nature of which lies in their ability to encapsulate, protect and deliver to target cells a range of bioactive molecular entities (proteins, RNA, DNA) assembled in ways that enable them to exert a wide spectrum of biological activities. EVs and EPs penetrate through biological barriers and are capable of intracellular uptake. Their emerging vascular functions in metastatic or infiltrative cancers are exemplified by their roles in pre-metastatic niche formation, thrombosis, vasectasia or angiocrine regulation of cancer stem cells. Here, we survey some of the related evidence supporting the biological, diagnostic and interventional significance of EVs/EPs (EVPs) in disseminated neoplastic disease. Full article
(This article belongs to the Special Issue Exosomes in Cancer Metastasis)
Show Figures

Figure 1

Back to TopTop