Stem-Cell Niches in Health and Disease: Microenvironmental Determinants of Regeneration and Pathology
Abstract
1. Introduction
2. Composition and Architecture of the Stem-Cell Niche
2.1. Cellular Constituents
2.2. Extracellular Matrix Scaffolds and Mechanics
2.3. Tissue-Specific Architectural Variants
3. Molecular Signaling Axes
3.1. A Conserved Pathway Set That Governs Quiescence–Proliferation Balance
3.2. Tissue-Specific Refinements of the Core Pathways
- Rodent incisor. Activin, follistatin, BMPs, and FGFs collectively regulate proliferation and differentiation to ensure continuous tooth growth [84].
- Mammary gland. Stem cells integrate Wnt, EGFR, IGFR, RANK, Hedgehog, and Notch inputs to control ductal expansion, alveolar differentiation, and post-lactational remodeling [85].
- Cardiac niche. Soluble ECM-associated factors such as VEGF, TGF-β, and HIF-1α modulate mesenchymal stem-cell behavior after injury; cardiac fibroblasts remodel the ECM and support myocardial repair [66].
3.3. Mechanotransduction: ECM as a Signaling Reservoir
4. The Pathological Disruption of the Stem-Cell Niche: From Aging and Inflammation to Organ-Specific Disease
4.1. Niche Aging, Stress, and Bidirectional Remodeling
4.2. Organ-Specific Failure Modes and Disease Conversion
Tissue | Principal Dysregulation Mechanism | Disease Consequence | Exemplar Restorative Strategy |
---|---|---|---|
Bone marrow | ROS/HIF-1α-driven vascular distortion (sickle cell disease) | Ineffective erythropoiesis; anemia | Transfusion-mediated HIF-1α reset; MSC-EV therapy to normalize endothelium [92] |
Skin and muscle | Chronic inflammation → FAP+ fibroblast expansion | Fibrosis; satellite cell exhaustion | FAP inhibition (vaccines, CAR-T, and small molecules) [103,104,105,106,107,108,109,110,111,112] |
Heart | Mis-matched cues after cell therapy | Ectopic calcification; arrhythmia | Composite cell sheet/aggregate grafts that preserve ECM and paracrine balance [113,114,115,116,117,118,119] |
Neural | Ageing and neuro-inflammation → ECM degradation | Decline in neurogenesis; cognitive loss | Decellularized 3D scaffolds + IGF-1 delivery (preclinical) [120,121,122,123,124,125,126,127] |
Intestine | Dysbiosis/chronic cytokine load | Barrier failure; IBD | EV cocktails containing Wnt + IL-10 to re-program Paneth support (animal models) [128,129] |
Testis | Blood–testis barrier collapse (CLDN11 loss) | Meiotic arrest; infertility | Autologous SSC transplantation into an intact niche [97,98] |
5. Therapeutic Modulations
5.1. The Rationale for Niche-Centered Therapy
5.2. Targeting Stromal Determinants: FAP Inhibition
5.3. Cytotherapy That Recreates Natural Niche Interactions
5.4. Scaffold Engineering and Microenvironmental Design
5.5. Cell-Free Approaches: Extracellular Vesicle Therapy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Spemann, H.; Mangold, H. Über Induktion von Embryonalanlagen durch Implantation artfremder Organisatoren. Arch. Mikroskop. Anat. Entwicklungsmech. 1924, 100, 599–638. [Google Scholar] [CrossRef]
- Kinsey, D.L. An Experimental Study of Preferential Metastasis. Cancer 1960, 13, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Süss, R.; Kinzel, V.; Scribner, J.D. Host factors in tumor induction. In Cancer: Experiments and Concepts; Süss, R., Kinzel, V., Scribner, J.D., Eds.; Springer: New York, NY, USA, 1973; pp. 63–77. ISBN 978-1-4612-9841-0. [Google Scholar]
- Hyun, Y.-M.; Seo, S.-U.; Choi, W.S.; Kwon, H.-J.; Kim, D.-Y.; Jeong, S.; Kang, G.-Y.; Yi, E.; Kim, M.; Ryu, H.J.; et al. Endogenous DEL-1 restrains melanoma lung metastasis by limiting myeloid cell-associated lung inflammation. Sci. Adv. 2020, 6, eabc4882. [Google Scholar] [CrossRef]
- Bhat, V.; Allan, A.L.; Raouf, A. Role of the microenvironment in regulating normal and cancer stem cell activity: Implications for breast cancer progression and therapy response. Cancers 2019, 11, 1240. [Google Scholar] [CrossRef]
- Mintz, B.; Illmensee, K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. USA 1975, 72, 3585–3589. [Google Scholar] [CrossRef] [PubMed]
- Kenny, P.A.; Bissell, M.J. Tumor reversion: Correction of malignant behavior by microenvironmental cues. Int. J. Cancer 2003, 107, 688–695. [Google Scholar] [CrossRef]
- Martin, G.S. The hunting of the Src. Nat. Rev. Mol. Cell Biol. 2001, 2, 467–475. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef]
- Young, H.E.; Black, A.C., Jr. Adult stem cells. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 2004, 276, 75–102. [Google Scholar] [CrossRef]
- Young, H.E.; Hyer, L.; Black, A.C., Jr.; Robinson, J.S., Jr. Adult stem cells: From bench-top to bedside. In Tissue Regeneration: Where Nano-Structure Meets Biology; Springer: Dordrecht, The Netherlands, 2014; pp. 1–59. [Google Scholar]
- Young, H.E.; Lochner, F.; Lochner, D.; Coleman, J.A.; Young, V.E.; McCommon, G.; Black, A.C., Jr. Primitive stem cells in adult human peripheral blood. J. Stem Cell Res. 2017, 1, 1–8. [Google Scholar] [CrossRef]
- Chu, D.T.; Phuong, T.; Tien, N.; Tran, D.K.; Thanh, V.V.; Quang, T.L.; Truong, D.T.; Pham, V.H.; Ngoc, V.; Chu-Dinh, T.; et al. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int. J. Mol. Sci. 2020, 21, 708. [Google Scholar] [CrossRef] [PubMed]
- Si, Z.; Wang, X.; Sun, C.; Kang, Y.; Xu, J.; Wang, X.; Hui, Y. Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed. Pharmacother. 2019, 114, 108765. [Google Scholar] [CrossRef]
- Mannino, G.; Gennuso, F.; Giurdanella, G.; Conti, F.; Drago, F.; Salomone, S.; Furno, D.L.; Bucolo, C.; Giuffrida, R. Pericyte-like differentiation of human adipose-derived mesenchymal stem cells: An in vitro study. World J. Stem Cells 2020, 12, 1152–1170. [Google Scholar] [CrossRef]
- Szychlinska, M.A.; Calabrese, G.; Ravalli, S.; Parrinello, N.L.; Forte, S.; Castrogiovanni, P.; Pricoco, E.; Imbesi, R.; Castorina, S.; Leonardi, R.; et al. Cycloastragenol as an exogenous enhancer of chondrogenic differentiation of human adipose-derived mesenchymal stem cells: A morphological study. Cells 2020, 9, 347. [Google Scholar] [CrossRef] [PubMed]
- Lo Furno, D.; Mannino, G.; Giuffrida, R.; Gili, E.; Vancheri, C.; Tarico, M.S.; Perrotta, R.E.; Pellitteri, R. Neural differentiation of human adipose-derived mesenchymal stem cells induced by glial cell conditioned media. J. Cell. Physiol. 2018, 233, 7091–7100. [Google Scholar] [CrossRef] [PubMed]
- Sierra-Sanchez, A.; Ordoñez-Luque, A.; Espinosa-Ibanez, O.; Ruiz-Garcia, A.; Arias-Santiago, S. Epithelial in vitro differentiation of mesenchymal stem cells. Curr. Stem Cell Res. Ther. 2018, 13, 409–422. [Google Scholar] [CrossRef]
- Mannino, G.; Russo, C.; Maugeri, G.; Musumeci, G.; Vicario, N.; Tibullo, D.; Giuffrida, R.; Parenti, R.; Lo Furno, D. Adult stem cell niches for tissue homeostasis. J. Cell. Physiol. 2022, 237, 239–257. [Google Scholar] [CrossRef]
- Kunisaki, Y. Pericytes in bone marrow. In Pericyte Biology in Different Organs; Springer: Cham, Switzerland, 2019; pp. 101–114. [Google Scholar] [CrossRef]
- Sanchez-Aguilera, A.; Mendez-Ferrer, S. The hematopoietic stem-cell niche in health and leukemia. Cell. Mol. Life Sci. 2017, 74, 579–590. [Google Scholar] [CrossRef]
- Sadek, A.; Khramtsova, Y.; Yushkov, B. Mast cells as a component of spermatogonial stem cells’ microenvironment. Int. J. Mol. Sci. 2024, 25, 13177. [Google Scholar] [CrossRef]
- Assis-Ribas, T.; Forni, M.F.; Winnischofer, S.M.B.; Sogayar, M.C.; Trombetta-Lima, M. Extracellular matrix dynamics during mesenchymal stem cell differentiation. Dev. Biol. 2018, 437, 63–74. [Google Scholar] [CrossRef]
- Zhang, J.; Niu, C.; Ye, L.; Huang, H.; He, X.; Tong, W.G.; Ross, J.; Haug, J.; Johnson, T.; Feng, J.Q.; et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003, 425, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Calvi, L.M.; Adams, G.B.; Weibrecht, K.W.; Weber, J.M.; Olson, D.P.; Knight, M.C.; Martin, R.P.; Schipani, E.; Divieti, P.; Bringhurst, F.R.; et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003, 425, 841–846. [Google Scholar] [CrossRef]
- Mitsiadis, T.A.; Barrandon, O.; Rochat, A.; Barrandon, Y.; De Bari, C. Stem cell niches in mammals. Exp. Cell Res. 2007, 313, 3377–3385. [Google Scholar] [CrossRef] [PubMed]
- Kiel, M.J.; Yilmaz, Ö.H.; Iwashita, T.; Yilmaz, O.H.; Terhorst, C.; Morrison, S.J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005, 121, 1109–1121. [Google Scholar] [CrossRef]
- Sipkins, D.A.; Wei, X.; Wu, J.W.; Runnels, J.M.; Côté, D.; Means, T.K.; Luster, A.D.; Scadden, D.T.; Lin, C.P. In vivo imaging of specialized bone marrow endothelial microdomains for tumor engraftment. Nature 2005, 435, 969–973. [Google Scholar] [CrossRef] [PubMed]
- Wilson, A.; Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 2006, 6, 93–106. [Google Scholar] [CrossRef]
- Gronthos, S.; Mankani, M.; Brahim, J.; Gehron Robey, P.; Shi, S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2000, 97, 13625–13630. [Google Scholar] [CrossRef]
- Miura, M.; Gronthos, S.; Zhao, M.; Lu, B.; Fisher, L.W.; Gehron Robey, P.; Shi, S. SHED: Stem cells from human exfoliated deciduous teeth. Proc. Natl. Acad. Sci. USA 2003, 100, 5807–5812. [Google Scholar] [CrossRef]
- Seo, B.M.; Miura, M.; Gronthos, S.; Bartold, P.M.; Batouli, S.; Brahim, J.; Young, M.; Robey, P.G.; Wang, C.Y.; Shi, S. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004, 364, 149–155. [Google Scholar] [CrossRef]
- Sonoyama, W.; Liu, Y.; Fang, D.; Yamaza, T.; Seo, B.M.; Zhang, C.; Liu, H.; Gronthos, S.; Wang, C.Y.; Shi, S.; et al. Mesenchymal stem cell–mediated functional tooth regeneration in swine. PLoS ONE 2006, 1, e79. [Google Scholar] [CrossRef]
- Morsczeck, C.; Götz, W.; Schierholz, J.; Zeilhofer, F.; Kuhn, U.; Möhl, C.; Sippel, C.; Hoffmann, K.H. Isolation of precursor cells from human dental follicle of wisdom teeth. Matrix Biol. 2005, 24, 55–65. [Google Scholar] [CrossRef]
- Cicconetti, A.; Sacchetti, B.; Bartoli, A.; Michienzi, S.; Corsi, A.; Funari, A.; Robey, P.G.; Bianco, P.; Riminucci, M. Human maxillary tuberosity and jaw periosteum as sources of osteoprogenitor cells for tissue engineering. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2007, 104, e1–e12. [Google Scholar] [CrossRef] [PubMed]
- Giordano, G.; La Monaca, G.; Annibali, S.; Cicconetti, A.; Ottolenghi, L. Stem cells from oral niches: A review. Ann. Stomatol. 2011, 1–2, 3–8. [Google Scholar] [PubMed]
- Harada, H.; Kettunen, P.; Jung, H.S.; Mustonen, T.; Wang, Y.A.; Thesleff, I. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J. Cell Biol. 1999, 147, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Schepeler, T.; Page, M.E.; Jensen, K.B. Heterogeneity and plasticity of epidermal stem cells. Development 2014, 141, 2559–2567. [Google Scholar] [CrossRef] [PubMed]
- Ito, M.; Liu, Y.; Yang, Z.; Nguyen, J.; Liang, F.; Morris, R.J.; Cotsarelis, G. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat. Med. 2005, 11, 1351–1354. [Google Scholar] [CrossRef]
- Ji, J.; Ho, B.S.; Qian, G.; Xie, X.M.; Bigliardi, P.L.; Bigliardi-Qi, M. Aging in hair follicle stem cells and niche microenvironment. J. Dermatol. 2017, 44, 1097–1104. [Google Scholar] [CrossRef]
- Snippert, H.J.; van der Flier, L.G.; Sato, T.; van Es, J.H.; van den Born, M.; Kroon-Veenboer, C.; Barker, N.; Klein, A.M.; van Rheenen, J.; Simons, B.D.; et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 2010, 143, 134–144. [Google Scholar] [CrossRef]
- Schellenberg, E.G. Expectancy in melody: Tests of the implication-realization model. Cognition 1996, 58, 75–125. [Google Scholar] [CrossRef]
- Meran, L.; Baulies, A.; Li, V.S.W. Intestinal stem cell niche: The extracellular matrix and cellular components. Stem Cells Int. 2017, 2017, 7970385. [Google Scholar] [CrossRef]
- Grossmann, J.; Walther, K.; Artinger, M.; Kiessling, S.; Scholmerich, J. Apoptotic signaling during initiation of detachment-induced apoptosis (“anoikis”) of primary human intestinal epithelial cells. Cell Growth Differ. 2001, 12, 147–155. [Google Scholar] [PubMed]
- Musumeci, G.; Castrogiovanni, P.; Coleman, R.; Szychlinska, M.A.; Salvatorelli, L.; Parenti, R.; Magro, G.; Imbesi, R. Somitogenesis: From somite to skeletal muscle. Acta Histochem. 2015, 117, 313–328. [Google Scholar] [CrossRef]
- Dinulovic, I.; Furrer, R.; Handschin, C. Plasticity of the muscle stem cell microenvironment. Adv. Exp. Med. Biol. 2017, 1041, 141–169. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Gaviro, M.V.; Lovell-Badge, R.; Fernandez-Aviles, F.; Lara-Pezzi, E. The vascular stem cell niche. J. Cardiovasc. Transl. Res. 2012, 5, 618–630. [Google Scholar] [CrossRef]
- Le, T.; Chong, J. Cardiac progenitor cells for heart repair. Cell Death Discov. 2016, 2, 16052. [Google Scholar] [CrossRef]
- Urbanek, K.; Cesselli, D.; Rota, M.; Nascimbene, A.; De Angelis, A.; Hosoda, T.; Bearzi, C.; Boni, A.; Bolli, R.; Kajstura, J.; et al. Stem cell niches in the adult mouse heart. Proc. Natl. Acad. Sci. USA 2006, 103, 9226–9231. [Google Scholar] [CrossRef] [PubMed]
- Beltrami, A.P.; Barlucchi, L.; Torella, D.; Baker, M.; Limana, F.; Chimenti, S.; Kasahara, H.; Rota, M.; Musso, E.; Urbanek, K.; et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003, 114, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Di Meglio, F.; Castaldo, C.; Nurzynska, D.; Miraglia, R.; Romano, V.; Russolillo, V.; Giuseppina, L.; Vosa, C.; Montagnani, S. Localization and origin of cardiac CD117-positive cells: Identification of a population of epicardially-derived cells in adult human heart. Ital. J. Anat. Embryol. 2010, 115, 71–78. [Google Scholar]
- Limana, F.; Bertolami, C.; Mangoni, A.; Di Carlo, A.; Avitabile, D.; Mocini, D.; Iannelli, P.; De Mori, R.; Marchetti, C.; Pozzoli, O.; et al. Myocardial infarction induces embryonic reprogramming of epicardial c-kit(+) cells: Role of the pericardial fluid. J. Mol. Cell. Cardiol. 2010, 48, 609–618. [Google Scholar] [CrossRef]
- Vukusic, K.; Sandstedt, M.; Jonsson, M.; Jansson, M.; Oldfors, A.; Jeppsson, A.; Dellgren, G.; Lindahl, A.; Sandstedt, J. The atrioventricular junction: A potential niche region for progenitor cells in the adult human heart. Stem Cells Dev. 2019, 28, 1078–1088. [Google Scholar] [CrossRef]
- Mauretti, A.; Spaans, S.; Bax, N.A.M.; Sahlgren, C.; Bouten, C.V.C. Cardiac progenitor cells and the interplay with their microenvironment. Stem Cells Int. 2017, 2017, 7471582. [Google Scholar] [CrossRef] [PubMed]
- Deb, A.; Ubil, E. Cardiac fibroblast in development and wound healing. J. Mol. Cell. Cardiol. 2014, 70, 47–55. [Google Scholar] [CrossRef]
- Moore-Morris, T.; Guimarães-Camboa, N.; Banerjee, I.; Zambon, A.C.; Kisseleva, T.; Velayoudon, A.; Stallcup, W.B.; Gu, Y.; Dalton, N.D.; Cedenilla, M.; et al. Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J. Clin. Investig. 2014, 124, 2921–2934. [Google Scholar] [CrossRef]
- Andreotti, J.P.; Silva, W.N.; Costa, A.C.; Picoli, C.C.; Bitencourt, F.; Coimbra-Campos, L.; Resende, R.R.; Magno, L.; Romano-Silva, M.A.; Mintz, A.; et al. Neural stem cell niche heterogeneity. Semin. Cell Dev. Biol. 2019, 95, 42–53. [Google Scholar] [CrossRef]
- Kempermann, G.; Song, H.; Gage, F.H. Neurogenesis in the adult hippocampus. Cold Spring Harb. Perspect. Biol. 2015, 7, a018812. [Google Scholar] [CrossRef]
- Riquelme, P.A.; Drapeau, E.; Doetsch, F. Brain micro-ecologies: Neural stem cell niches in the adult mammalian brain. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 123–137. [Google Scholar] [CrossRef] [PubMed]
- Rojczyk-Golebiewska, E.; Palasz, A.; Wiaderkiewicz, R. Hypothalamic subependymal niche: A novel site of adult neurogenesis. Cell. Mol. Neurobiol. 2014, 34, 631–642. [Google Scholar] [CrossRef]
- Clermont, Y. Spermatogenesis in man. A study of the spermatogonial population. Fertil. Steril. 1966, 17, 705–721. [Google Scholar] [CrossRef]
- Zakhidov, S.; Kulibin, A.; Marshak, T. Biology of Stem Cells of the Germ Line; Moscow State University: Moscow, Russia, 2013. [Google Scholar]
- Monfared, M.H.; Minaee, B.; Rastegar, T.; Khrazinejad, E.; Barbarestani, M. Sertoli cell conditioned medium can induce germ-like cells from bone marrow derived mesenchymal stem cells. Iran. J. Basic Med. Sci. 2016, 19, 1186–1193. [Google Scholar]
- de Rooij, D.G. The nature and dynamics of spermatogonial stem cells. Development 2017, 144, 3022–3030. [Google Scholar] [CrossRef]
- Ogawa, T.; Ohmura, M.; Ohbo, K. The niche for spermatogonial stem cells in the mammalian testis. Int. J. Hematol. 2005, 82, 381–388. [Google Scholar] [CrossRef]
- Lloyd-Lewis, B.; Harris, O.B.; Watson, C.J.; Davis, F.M. Mammary stem cells: Premise, properties, and perspectives. Trends Cell Biol. 2017, 27, 556–567. [Google Scholar] [CrossRef]
- Sahin, H.; Wasmuth, H.E. Chemokines in tissue fibrosis. Biochim. Biophys. Acta Mol. Basis Dis. 2013, 1832, 1041–1048. [Google Scholar] [CrossRef] [PubMed]
- Fu, N.Y.; Nolan, E.; Lindeman, G.J.; Visvader, J.E. Stem cells and the differentiation hierarchy in mammary gland development. Physiol. Rev. 2020, 100, 489–523. [Google Scholar] [CrossRef]
- Inman, J.L.; Robertson, C.; Mott, J.D.; Bissell, M.J. Mammary gland development: Cell fate specification, stem cells and the microenvironment. Development 2015, 142, 1028–1042. [Google Scholar] [CrossRef]
- Li, L.; Xie, T. Stem cell niche: Structure and function. Annu. Rev. Cell Dev. Biol. 2005, 21, 605–631. [Google Scholar] [CrossRef] [PubMed]
- Duncan, A.W.; Rattis, F.M.; DiMascio, L.N.; Congdon, K.L.; Pazianos, G.; Zhao, C.; Yoon, K.; Cook, J.M.; Willert, K.; Gaiano, N.; et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat. Immunol. 2005, 6, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Reya, T.; Duncan, A.W.; Ailles, L.; Domen, J.; Scherer, D.C.; Willert, K.; Hintz, L.; Nusse, R.; Weissman, I.L. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003, 423, 409–414. [Google Scholar] [CrossRef]
- Alonso, L.; Fuchs, E. Stem cells in the skin: Waste not, Wnt not. Genes Dev. 2003, 17, 1189–1200. [Google Scholar] [CrossRef]
- Blanpain, C.; Fuchs, E. Epidermal stem cells of the skin. Annu. Rev. Cell Dev. Biol. 2006, 22, 339–373. [Google Scholar] [CrossRef]
- Lowry, W.E.; Blanpain, C.; Nowak, J.A.; Guasch, G.; Lewis, L.; Fuchs, E. Defining the impact of β-catenin/Tcf transactivation on epithelial stem cells. Genes Dev. 2005, 19, 1596–1611. [Google Scholar] [CrossRef]
- Järvinen, E.; Salazar-Ciudad, I.; Birchmeier, W.; Taketo, M.M.; Jernvall, J.; Thesleff, I. Continuous tooth generation in mouse is induced by activated epithelial Wnt/β-catenin signaling. Proc. Natl. Acad. Sci. USA 2006, 103, 18627–18632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Moats-Staats, B.M.; Ye, P.; D’Ercole, A.J. Expression of insulin-like growth factor system genes during the early postnatal neurogenesis in the mouse hippocampus. J. Neurosci. Res. 2007, 85, 1618–1627. [Google Scholar] [CrossRef]
- Chen, C.L.; Huang, W.Y.; Wang, E.H.C.; Tai, K.Y.; Lin, S.J. Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. J. Biomed. Sci. 2020, 27, 43. [Google Scholar] [CrossRef]
- Myung, P.S.; Takeo, M.; Ito, M.; Atit, R.P. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. J. Investig. Dermatol. 2013, 133, 31–41. [Google Scholar] [CrossRef]
- Porter, E.M.; Bevins, C.L.; Ghosh, D.; Ganz, T. The multifaceted Paneth cell. Cell. Mol. Life Sci. 2002, 59, 156–170. [Google Scholar] [CrossRef]
- Sato, T.; van Es, J.H.; Snippert, H.J.; Stange, D.E.; Vries, R.G.; van den Born, M.; Barker, N.; Shroyer, N.F.; van de Wetering, M.; Clevers, H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011, 469, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, H.G.; Winkler, J.; Kempermann, G.; Thal, L.J.; Gage, F.H. Epidermal growth factor and fibroblast growth factor-2 have different effects on neural progenitors in the adult rat brain. J. Neurosci. 1997, 17, 5820–5829. [Google Scholar] [CrossRef] [PubMed]
- Nieto-Estevez, V.; Defterali, C.; Vicario-Abejón, C. IGF-I: A key growth factor that regulates neurogenesis and synaptogenesis from embryonic to adult stages of the brain. Front. Neurosci. 2016, 10, 52. [Google Scholar] [CrossRef]
- Wang, X.P.; Suomalainen, M.; Felszeghy, S.; Zelarayan, L.C.; Alonso, M.T.; Plikus, M.V.; Maas, R.L.; Chuong, C.M.; Schimmang, T.; Thesleff, I. An integrated gene regulatory network controls stem cell proliferation in teeth. PLoS Biol. 2007, 5, e159. [Google Scholar] [CrossRef]
- Ruddy, R.M.; Morshead, C.M. Home sweet home: The neural stem cell niche throughout development and after injury. Cell Tissue Res. 2018, 371, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Comte, I.; Kim, Y.; Young, C.C.; van der Harg, J.M.; Hockberger, P.; Bolam, P.J.; Poirier, F.; Szele, F.G. Galectin-3 maintains cell motility from the subventricular zone to the olfactory bulb. J. Cell Sci. 2011, 124 Pt 14, 2438–2447. [Google Scholar] [CrossRef]
- Muroyama, A.; Lechler, T. Polarity and stratification of the epidermis. Semin. Cell Dev. Biol. 2012, 23, 890–896. [Google Scholar] [CrossRef]
- Dominici, M.; Rasini, V.; Bussolari, R.; Chen, X.; Hofmann, T.J.; Spano, C.; Bernabei, D.; Veronesi, E.; Bertoni, F.; Paolucci, P.; et al. Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 2009, 114, 2333–2343. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, F.; Celso, C.L.; Scadden, D.T. Adult stem cells and their niches. Adv. Exp. Med. Biol. 2010, 695, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, L.O.; Simmons, E.L.; Marks, E.K.; Eldredge, J.H. Recovery from radiation injury. Science 1951, 113, 510–511. [Google Scholar] [CrossRef]
- Grockowiak, E.; Korn, C.; Rak, J.; Lysenko, V.; Hallou, A.; Panvini, F.M.; Williams, M.; Fielding, C.; Fang, Z.; Khatib-Massalha, E.; et al. Different niches for stem cells carrying the same oncogenic driver affect pathogenesis and therapy response in myeloproliferative neoplasms. Nat. Cancer 2023, 8, 1193–1209. [Google Scholar] [CrossRef]
- Park, S.Y.; Matte, A.; Jung, Y.; Ryu, J.; Anand, W.B.; Han, E.Y.; Liu, M.; Carbone, C.; Melisi, D.; Nagasawa, T.; et al. Pathologic angiogenesis in the bone marrow of humanized sickle cell mice is reversed by blood transfusion. Blood 2020, 135, 2071–2084. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, J.; Seidel, K.; Shi, S.; Klein, O.; Sharpe, P.; Chai, Y. Secretion of Shh by a Neurovascular Bundle Niche Supports Mesenchymal Stem Cell Homeostasis in the Adult Mouse Incisor. Cell Stem Cell 2014, 14, 160–173. [Google Scholar] [CrossRef]
- Zheng, C.; Chen, J.; Liu, S.; Jin, Y. Stem cell-based bone and dental regeneration: A view of microenvironmental modulation. Int. J. Oral Sci. 2019, 11, 23. [Google Scholar] [CrossRef]
- Ratajczak, J.; Bronckaers, A.; Dillen, Y.; Gervois, P.; Vangansewinkel, T.; Driesen, R.B.; Wolfs, E.; Lambrichts, I.; Hilkens, P. The neurovascular properties of dental stem cells and their importance in dental tissue engineering. Stem Cells Int. 2016, 2016, 9762871. [Google Scholar] [CrossRef] [PubMed]
- Cutano, V.; Di Giorgio, E.; Minisini, M.; Picco, R.; Dalla, E.; Brancolini, C. HDAC7-mediated control of tumor microenvironment maintains proliferative and stemness competence of human mammary epithelial cells. Mol. Oncol. 2019, 13, 1651–1668. [Google Scholar] [CrossRef] [PubMed]
- Kanatsu-Shinohara, M.; Ogonuki, N.; Matoba, S.; Ogura, A.; Shinohara, T. Autologous transplantation of spermatogonial stem cells restores fertility in congenitally infertile mice. Proc. Natl. Acad. Sci. USA 2020, 117, 7837–7844. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Dobrinski, I.; Avarbock, M.R.; Brinster, R.L. Transplantation of male germ line stem cells restores fertility in infertile mice. Nat. Med. 2000, 6, 29–34. [Google Scholar] [CrossRef] [PubMed Central]
- Zhang, Y.M.; Hartzell, C.; Narlow, M.; Dudley, S.C., Jr. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation 2002, 106, 1294–1299. [Google Scholar] [CrossRef]
- Duffy, H.S. Cardiac connections—The antiarrhythmic solution? N. Engl. J. Med. 2008, 358, 1397–1398. [Google Scholar] [CrossRef]
- Mocini, D.; Colivicchi, F.; Santini, M. Stem cell therapy for cardiac arrhythmias. Ital. Heart J. 2005, 6, 267–271. [Google Scholar]
- Yushkov, B.G.; Sarapultsev, A.P. Stem Cells and Cardiac Arrhythmias. Gen. Physiol. Biophys. 2022, 41, 483–498. [Google Scholar] [CrossRef]
- Kelly, T.; Huang, Y.; Simms, A.E.; Mazur, A. Fibroblast activation protein-alpha: A key modulator of the microenvironment in multiple pathologies. Int. Rev. Cell Mol. Biol. 2012, 297, 83–116. [Google Scholar] [CrossRef]
- Unsworth, A.; Anderson, R.; Britt, K. Stromal fibroblasts and the immune microenvironment: Partners in mammary gland biology and pathology? J. Mammary Gland. Biol. Neoplasia 2014, 19, 169–182. [Google Scholar] [CrossRef]
- Lee, K.N.; Jackson, K.W.; Christiansen, V.J.; Lee, C.S.; Chun, J.G.; McKee, P.A. Antiplasmin-cleaving enzyme is a soluble form of fibroblast activation protein. Blood 2006, 107, 1397–1404. [Google Scholar] [CrossRef] [PubMed]
- Loeffler, M.; Kruger, J.A.; Niethammer, A.G.; Reisfeld, R.A. Targeting tumor-associated fibroblasts improves cancer chemotherapy by increasing intratumoral drug uptake. J. Clin. Investig. 2006, 116, 1955–1962. [Google Scholar] [CrossRef]
- Ostermann, E.; Garin-Chesa, P.; Heider, K.H.; Kalat, M.; Lamche, H.; Puri, C.; Kerjaschki, D.; Rettig, W.J.; Adolf, G.R. Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clin. Cancer Res. 2008, 14, 4584–4592. [Google Scholar] [CrossRef]
- Liao, D.; Luo, Y.; Markowitz, D.; Xiang, R.; Reisfeld, R.A. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS ONE 2009, 4, e7965. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.M.; Jung, J.; Aziz, N.; Kissil, J.L.; Pure, E. Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J. Clin. Investig. 2009, 119, 3613–3625. [Google Scholar] [CrossRef]
- Kraman, M.; Bambrough, P.J.; Arnold, J.N.; Roberts, E.W.; Magiera, L.; Jones, J.O.; Gopinathan, A.; Tuveson, D.A.; Fearon, D.T. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 2010, 330, 827–830. [Google Scholar] [CrossRef]
- Wen, Y.; Wang, C.T.; Ma, T.T.; Li, Z.Y.; Zhou, L.N.; Mu, B.; Leng, F.; Shi, H.S.; Li, Y.O.; Wei, Y.Q. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 2010, 101, 2325–2332. [Google Scholar] [CrossRef] [PubMed]
- Maklakova, I.Y.; Tsvirenko, S.V.; Bazarnyi, V.V.; Grebnev, D.Y. Effect of combined transplantation of multipotent mesenchymal stromal cells and stellate liver cells on the morpho-functional state of the liver after adminitration of CCL4. Patol. Fiziol. I Eksperimental’naya Ter. (Pathol. Physiol. Exp. Ther.) 2021, 65, 48–55. [Google Scholar] [CrossRef]
- Yang, J.; Yamato, M.; Nishida, K.; Ohki, T.; Kanzaki, M.; Sekine, H.; Shimizu, T.; Okano, T. Cell delivery in regenerative medicine: The cell sheet engineering approach. J. Control. Release 2006, 116, 193–203. [Google Scholar] [CrossRef]
- Ahrens, C.C.; Dong, Z.; Li, W. Engineering cell aggregates through incorporated polymeric microparticles. Acta Biomater. 2017, 62, 64–81. [Google Scholar] [CrossRef]
- Yang, J.; Yamato, M.; Shimizu, T.; Sekine, H.; Ohashi, K.; Kanzaki, M.; Ohki, T.; Nishida, K.; Okano, T. Reconstruction of functional tissues with cell sheet engineering. Biomaterials 2007, 28, 5033–5043. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.X.; Sui, B.D.; Hu, C.H.; Qiu, X.Y.; Zhao, P.; Jin, Y. Reconstruction of structure and function in tissue engineering of solid organs: Toward simulation of natural development based on decellularization. J. Tissue Eng. Regen. Med. 2018, 12, 1432–1447. [Google Scholar] [CrossRef]
- Kelm, J.M.; Fussenegger, M. Scaffold-free cell delivery for use in regenerative medicine. Adv. Drug Deliv. Rev. 2010, 62, 753–764. [Google Scholar] [CrossRef]
- Chen, F.M.; Sun, H.H.; Lu, H.; Yu, Q. Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials 2012, 33, 6320–6344. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ming, L.; Luo, H.; Liu, W.; Zhang, Y.; Liu, H.; Jin, Y. Integration of a calcined bovine bone and BMSC-sheet 3D scaffold and the promotion of bone regeneration in large defects. Biomaterials 2013, 34, 9998–10006. [Google Scholar] [CrossRef]
- Ho-Shui-Ling, A.; Bolander, J.; Rustom, L.E.; Johnson, A.W.; Luyten, F.P.; Picart, C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials 2018, 180, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.A. From stem cells and cadaveric matrix to engineered organs. Curr. Opin. Biotechnol. 2009, 20, 598–605. [Google Scholar] [CrossRef]
- Tyumentseva, N.V.; Khramtsova, Y.S.; Artashyan, O.S.; Yushkov, B.G. The possibility of using bioprostheses for autoplasty of skull bone defects (an experimental study). Bull. Exp. Biol. Med. 2021, 171, 105–108. [Google Scholar] [CrossRef]
- Tyumentseva, N.V.; Yushkov, B.G.; Medvedeva, S.Y.; Kovalenko, R.Y.; Uzbekov, O.K.; Zhuravlev, V.N. Possibility of using connective tissue prostheses for autoplasty of bladder wall defects. Urologiya 2016, 60–64. [Google Scholar]
- Chereshnev, V.A.; Yushkov, B.G.; Tyumentseva, N.V.; Medvedeva, S.Y.; Khodakov, V.V.; Krohin, D.I.; Mersaidov, K.В. New approaches to obtaining autoprotheses for vascular plastic surgery. Dokl. Akad. Nauk 2006, 408, 211–213. [Google Scholar]
- Fernandes, G.; Yang, S. Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering. Bone Res. 2016, 4, 16036. [Google Scholar] [CrossRef]
- Henkel, J.; Woodruff, M.; Epari, D.; Steck, R.; Glatt, V.; Dickinson, I.C.; Choong, P.F.M.; Schuetz, M.A.; Hutmacher, D.W. Bone regeneration based on tissue engineering conceptions—A 21st century perspective. Bone Res. 2013, 1, 216–248. [Google Scholar] [CrossRef]
- Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone biomaterials and interactions with stem cells. Bone Res. 2017, 5, 17059. [Google Scholar] [CrossRef] [PubMed]
- Furuta, T.; Miyaki, S.; Ishitobi, H.; Ogura, T.; Kato, Y.; Kamei, N.; Miyado, K.; Higashi, Y.; Ochi, M. Mesenchymal stem cell-derived exosomes promote fracture healing in a mouse model. Stem Cells Transl. Med. 2016, 5, 1620–1630. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, D.; Chen, C.; Hamamura, K.; Moshaverinia, A.; Yang, R.; Liu, Y.; Jin, Y.; Shi, S. MSC transplantation improves osteopenia via epigenetic regulation of Notch signaling in lupus. Cell Metab. 2015, 22, 606–618. [Google Scholar] [CrossRef]
- Russell, E.S.; Bernstein, S.E. Inborn Anemias in Mice. Progress Report; 1 May 1972–30 April 1973; Jackson Laboratory: Bar Harbor, ME, USA, 1973. [Google Scholar]
- Kitamura, Y.; Go, S. Decreased production of mast cells in S1/S1d anemic mice. Blood 1979, 53, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Miura, Y.; Fujii, S.; Ichinohe, T. Cell-Based and Extracellular Vesicle-Based MSC Therapies for Acute Radiation Syndrome Affecting Organ Systems. J. Radiat. Res. 2024, 65, i80–i87. [Google Scholar] [CrossRef]
- Tang, J.; Wang, X.; Lin, X.; Wu, C. Mesenchymal Stem Cell-Derived Extracellular Vesicles: A Regulator and. Cell Death Discov. 2024, 10, 212. [Google Scholar] [CrossRef]
- Ding, Z.; Greenberg, Z.F.; Serafim, M.F.; Ali, S.; Jamieson, J.C.; Traktuev, D.O.; March, K.; He, M. Understanding Molecular Characteristics of Extracellular Vesicles Derived from Different Types of Mesenchymal Stem Cells for Therapeutic Translation. Extracell. Vesicle 2024, 3, 100034. [Google Scholar] [CrossRef]
- Ho, K.Y.L.; An, K.; Carr, R.L.; Dvoskin, A.D.; Ou, A.Y.J.; Vogl, W.; Tanentzapf, G. Maintenance of Hematopoietic Stem Cell Niche Homeostasis Requires Gap Junction-Mediated Calcium Signaling. Proc. Natl. Acad. Sci. USA 2023, 120, e2303018120. [Google Scholar] [CrossRef]
- Fitzgerald, A.A.; Weiner, L.M. The Role of Fibroblast Activation Protein in Health and Malignancy. Cancer Metastasis Rev. 2020, 39, 783–803. [Google Scholar] [CrossRef] [PubMed]
- Bilinska, A.; Ballal, S.; Bal, C.; Läppchen, T.; Pilatis, E.; Menéndez, E.; Moon, E.S.; Martin, M.; Rösch, F.; Rominger, A.; et al. Improved FAPI-Radiopharmaceutical Pharmacokinetics from the Perspectives of a Dose Escalation Study. Eur. J. Nucl. Med. Mol. Imaging 2025. [Google Scholar] [CrossRef]
- Fendler, W.P.; Pabst, K.M.; Kessler, L.; Fragoso Costa, P.; Ferdinandus, J.; Weber, M.; Lippert, M.; Lueckerath, K.; Umutlu, L.; Kostbade, K.; et al. Safety and Efficacy of 90Y-FAPI-46 Radioligand Therapy in Patients with Advanced Sarcoma and Other Cancer Entities. Clin. Cancer Res. 2022, 28, 4346–4353. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ma, M.; Cao, D.; Zheng, A.; Zhang, Y.; Su, Y.; Wang, J.; Xu, Y.; Zhou, M.; Tang, Y.; et al. Inhibition of Fap Promotes Cardiac Repair by Stabilizing BNP. Circ. Res. 2023, 132, 586–600. [Google Scholar] [CrossRef] [PubMed]
- Kurth, J.; Krause, B.; Lanzafame, H.; Joksch, M.; Fendler, W.; Herrmann, K.; Rösch, F.; Heuschkel, M. Fibroblast Activation Protein-Targeted Radionuclide Therapy of Solid Tumors Using [177Lu]Lu-DOTAGA-Glu-(FAPi)2: Biodistribution and Dosimetry. J. Nucl. Med. 2024, 65, 242022. [Google Scholar]
- Loebel, C.; Burdick, J.A. Engineering Stem and Stromal Cell Therapies for Musculoskeletal Tissue Repair. Cell Stem Cell 2018, 22, 325–339. [Google Scholar] [CrossRef]
- Maklakova, I.Y.; Tsvirenko, S.V.; Bazarny, V.V.; Grebnev, D.Y. The influence of combined transplantation of multipotent mesenchymal stromal cells and hepatic stellate cells on the morphofunctional state of the liver after damage. Pathol. Physiol. Exp. Ther. 2021, 65, 48–55. [Google Scholar]
- Maklakova, I.Y.; Grebnev, D.Y.; Osipenko, A.V. Activation of reparative regeneration of the liver under the influence of combined transplantation of multipotent mesenchymal stromal cells and hepatic stellate cells. Kazan Med. J. 2021, 102, 669–677. [Google Scholar] [CrossRef]
- DuRaine, G.D.; Brown, W.E.; Hu, J.C.; Athanasiou, K.A. Emergence of Scaffold-Free Approaches for Tissue Engineering Musculoskeletal Cartilages. Ann. Biomed. Eng. 2015, 43, 543–554. [Google Scholar] [CrossRef]
- Thummarati, P.; Laiwattanapaisal, W.; Nitta, R.; Fukuda, M.; Hassametto, A.; Kino-oka, M. Recent Advances in Cell Sheet Engineering: From Fabrication to Clinical Translation. Bioengineering 2023, 10, 211. [Google Scholar] [CrossRef]
- Yan, J.; Zhang, C.; Zhao, Y.; Cao, C.; Wu, K.; Zhao, L.; Zhang, Y. Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis. Biomaterials 2014, 35, 7734–7749. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, H.; Yu, K.; Feng, Y.; Wang, Y.; Huang, T.; Lai, K.; Xi, Y.; Yang, G. Light-controlled BMSC sheet–implant complexes with improved osteogenesis via an LRP5/β-catenin/Runx2 regulatory loop. ACS Appl. Mater. Interfaces 2017, 9, 34674–34686. [Google Scholar] [CrossRef] [PubMed]
- Shahin-Shamsabadi, A.; Cappuccitti, J. Muscle-Specific Acellular ECM Fibers Made with Anchored Cell Sheet Engineering Support Regeneration in Rat Models of Volumetric Muscle Loss. Acta Biomater. 2025, in press. [Google Scholar] [CrossRef]
- Shahin-Shamsabadi, A.; Cappuccitti, J. In Vivo-Like Scaffold-Free 3D In Vitro Models of Muscular Dystrophies: The Case for Anchored Cell Sheet Engineering in Personalized Medicine. Adv. Healthc. Mater. 2025, 14, e2404465. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.B.; Priddy, L.B.; Li, M.-T.A.; Guldberg, R.E. Functional Augmentation of Naturally-Derived Materials for Tissue Regeneration. Ann. Biomed. Eng. 2015, 43, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Wang, M.; He, J. A Review of Biomimetic Scaffolds for Bone Regeneration: Toward a Cell-free Strategy. Bioeng. Transl. Med. 2020, 6, e10206. [Google Scholar] [CrossRef]
- Neishabouri, A.; Soltani Khaboushan, A.; Daghigh, F.; Kajbafzadeh, A.-M.; Majidi Zolbin, M. Decellularization in Tissue Engineering and Regenerative Medicine: Evaluation, Modification, and Application Methods. Front. Bioeng. Biotechnol. 2022, 10, 805299. [Google Scholar] [CrossRef]
- Josino, R.; Stimamiglio, M.A. Bioactive Decellularized Extracellular Matrix-Based Hydrogel Supports Human Adipose Tissue-Derived Stem Cell Maintenance and Fibrocartilage Phenotype. Front. Bioeng. Biotechnol. 2023, 11, 1304030. [Google Scholar] [CrossRef]
- Giobbe, G.G.; Crowley, C.; Luni, C.; Campinoti, S.; Khedr, M.; Kretzschmar, K.; De Santis, M.M.; Zambaiti, E.; Michielin, F.; Meran, L.; et al. Extracellular Matrix Hydrogel Derived from Decellularized Tissues Enables Endodermal Organoid Culture. Nat. Commun. 2019, 10, 5658. [Google Scholar] [CrossRef]
- Khan, A.R.; Gholap, A.D.; Grewal, N.S.; Jun, Z.; Khalid, M.; Zhang, H.-J. Advances in Smart Hybrid Scaffolds: A Strategic Approach for Regenerative Clinical Applications. Eng. Regen. 2025, 6, 85–110. [Google Scholar] [CrossRef]
- Huang, D.; Li, Z.; Li, G.; Zhou, F.; Wang, G.; Ren, X.; Su, J. Biomimetic Structural Design in 3D-Printed Scaffolds for Bone Tissue Engineering. Mater. Today Bio 2025, 32, 101664. [Google Scholar] [CrossRef]
- Jo, Y.K.; Choi, B.-H.; Zhou, C.; Jun, S.H.; Cha, H.J. Cell Recognitive Bioadhesive-Based Osteogenic Barrier Coating with Localized Delivery of Bone Morphogenetic Protein-2 for Accelerated Guided Bone Regeneration. Bioeng. Transl. Med. 2023, 8, e10493. [Google Scholar] [CrossRef] [PubMed]
- Hao, Z.-W.; Zhang, Z.-Y.; Wang, Z.-P.; Wang, Y.; Chen, J.-Y.; Chen, T.-H.; Shi, G.; Li, H.-K.; Wang, J.-W.; Dong, M.-C.; et al. Bioactive Peptides and Proteins for Tissue Repair: Microenvironment Modulation, Rational Delivery, and Clinical Potential. Mil. Med. Res. 2024, 11, 75. [Google Scholar] [CrossRef] [PubMed]
- Tanvir, M.A.H.; Khaleque, M.A.; Kim, G.-H.; Yoo, W.-Y.; Kim, Y.-Y. The Role of Bioceramics for Bone Regeneration: History, Mechanisms, and Future Perspectives. Biomimetics 2024, 9, 230. [Google Scholar] [CrossRef] [PubMed]
- Bose, S.; Roy, M.; Bandyopadhyay, A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012, 30, 546–554. [Google Scholar] [CrossRef]
- Volponi, A.A.; Pang, Y.; Sharpe, P.T. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 2010, 20, 715–722. [Google Scholar] [CrossRef]
- Sui, B.D.; Hu, C.H.; Liu, A.Q.; Zheng, C.X.; Xuan, K.; Jin, Y. Stem cell-based bone regeneration in diseased microenvironments: Challenges and solutions. Biomaterials 2019, 196, 18–30. [Google Scholar] [CrossRef]
- Chen, C.; Wang, D.; Moshaverinia, A.; Liu, D.; Kou, X.; Yu, W.; Yang, R.; Sun, L.; Shi, S. Mesenchymal stem cell transplantation in tight-skin mice identifies miR-151-5p as a therapeutic target for systemic sclerosis. Cell Res. 2017, 27, 559–577. [Google Scholar] [CrossRef]
- Meng, L.; Zhao, P.; Jiang, Y.; You, J.; Xu, Z.; Yu, K.; Boccaccini, A.R.; Ma, J.; Zheng, K. Extracellular and Intracellular Effects of Bioactive Glass Nanoparticles on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells and Bone Regeneration in Zebrafish Osteoporosis Model. Acta Biomater. 2024, 174, 412–427. [Google Scholar] [CrossRef]
- Ojansivu, M.; Vanhatupa, S.; Björkvik, L.; Häkkänen, H.; Kellomäki, M.; Autio, R.; Ihalainen, J.A.; Hupa, L.; Miettinen, S. Bioactive Glass Ions as Strong Enhancers of Osteogenic Differentiation in Human Adipose Stem Cells. Acta Biomater. 2015, 21, 190–203. [Google Scholar] [CrossRef]
- Li, M.; Fang, F.; Sun, M.; Zhang, Y.; Hu, M.; Zhang, J. Extracellular Vesicles as Bioactive Nanotherapeutics: An Emerging Paradigm for Regenerative Medicine. Theranostics 2022, 12, 4879–4903. [Google Scholar] [CrossRef] [PubMed]
- Lotfy, A.; AboQuella, N.M.; Wang, H. Mesenchymal Stromal/Stem Cell (MSC)-Derived Exosomes in Clinical Trials. Stem Cell Res. Ther. 2023, 14, 66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, D.; Zhou, C.; Bai, M.; Wan, Y.; Zheng, Q.; Fan, Z.; Wang, X.; Yang, C. Engineered Extracellular Vesicles for Tissue Repair and Regeneration. Burns Trauma 2024, 12, tkae062. [Google Scholar] [CrossRef]
- Herrmann, M.; Diederichs, S.; Melnik, S.; Riegger, J.; Trivanović, D.; Li, S.; Jenei-Lanzl, Z.; Brenner, R.E.; Huber-Lang, M.; Zaucke, F.; et al. Extracellular Vesicles in Musculoskeletal Pathologies and Regeneration. Front. Bioeng. Biotechnol. 2021, 8, 624096. [Google Scholar] [CrossRef]
- Mas-Bargues, C.; Huete-Acevedo, J.; Arnal-Forné, M.; Sireno, L.; Pérez, V.; Borrás, C. Extracellular Vesicles as Epigenetic Regulators of Redox Homeostasis: A Systematic Review and Meta-Analysis. Antioxidants 2025, 14, 532. [Google Scholar] [CrossRef]
- Karnas, E.; Dudek, P.; Zuba-Surma, E.K. Stem Cell- Derived Extracellular Vesicles as New Tools in Regenerative Medicine—Immunomodulatory Role and Future Perspectives. Front. Immunol. 2023, 14, 1120175. [Google Scholar] [CrossRef]
- Fernández-Pérez, A.G.; Herrera-González, A.; López-Naranjo, E.J.; Martínez-Álvarez, I.A.; Uribe-Rodríguez, D.; Ramírez-Arreola, D.E.; Sánchez-Peña, M.J.; Navarro-Partida, J. Extracellular Vesicles from Different Mesenchymal Stem Cell Types Exhibit Distinctive Surface Protein Profiling and Molecular Characteristics: A Comparative Analysis. Int. J. Mol. Sci. 2025, 26, 3393. [Google Scholar] [CrossRef] [PubMed]
- Bertolino, G.M.; Maumus, M.; Jorgensen, C.; Noël, D. Recent Advances in Extracellular Vesicle-Based Therapies Using Induced Pluripotent Stem Cell-Derived Mesenchymal Stromal Cells. Biomedicines 2022, 10, 2281. [Google Scholar] [CrossRef]
- Lukomska, B.; Stanaszek, L.; Zuba-Surma, E.; Legosz, P.; Sarzynska, S.; Drela, K. Challenges and Controversies in Human Mesenchymal Stem Cell Therapy. Stem Cells Int. 2019, 2019, 9628536. [Google Scholar] [CrossRef]
- Rangel, E.B.; Gomes, S.A.; Dulce, R.A.; Premer, C.; Rodrigues, C.O.; Kanashiro-Takeuchi, R.M.; Oskouei, B.; Carvalho, D.A.; Ruiz, P.; Reiser, J.; et al. C-Kit+ Cells Isolated from Developing Kidneys Are a Novel Population of Stem Cells with Regenerative Potential. Stem Cells 2013, 31, 1644–1656. [Google Scholar] [CrossRef]
- Mehanna, R.A.; Essawy, M.M.; Barkat, M.A.; Awaad, A.K.; Thabet, E.H.; Hamed, H.A.; Elkafrawy, H.; Khalil, N.A.; Sallam, A.; Kholief, M.A.; et al. Cardiac Stem Cells: Current Knowledge and Future Prospects. World J. Stem Cells 2022, 14, 1–40. [Google Scholar] [CrossRef]
- He, L.; Nguyen, N.B.; Ardehali, R.; Zhou, B. Heart Regeneration by Endogenous Stem Cells and Cardiomyocyte Proliferation: Controversy, Fallacy, and Progress. Circulation 2020, 142, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Hicks, M.R.; Pyle, A.D. The Emergence of the Stem Cell Niche. Trends Cell Biol. 2023, 33, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, S.L.; Barnett, S.C. Therapeutic Potential of Niche-Specific Mesenchymal Stromal Cells for Spinal Cord Injury Repair. Cells 2021, 10, 901. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, Z.; Weng, J.; Pei, D.; Du, X.; He, C.; Lai, P. Challenges and Advances in Clinical Applications of Mesenchymal Stromal Cells. J. Hematol. Oncol. 2021, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Farahzadi, R.; Valipour, B.; Montazersaheb, S.; Fathi, E. Targeting the Stem Cell Niche Micro-Environment as Therapeutic Strategies in Aging. Front. Cell Dev. Biol. 2023, 11, 1162136. [Google Scholar] [CrossRef]
- Gonzalez-Callejo, P.; Guo, Z.; Ziglari, T.; Claudio, N.M.; Nguyen, K.H.; Oshimori, N.; Seras-Franzoso, J.; Pucci, F. Cancer Stem Cell-Derived Extracellular Vesicles Preferentially Target MHC-II-Macrophages and PD1+ T Cells in the Tumor Microenvironment. PLoS ONE 2023, 18, e0279400. [Google Scholar] [CrossRef]
- Pan, Y.; Yuan, C.; Zeng, C.; Sun, C.; Xia, L.; Wang, G.; Chen, X.; Zhang, B.; Liu, J.; Ding, Z.-Y. Cancer Stem Cells and Niches: Challenges in Immunotherapy Resistance. Mol. Cancer 2025, 24, 52. [Google Scholar] [CrossRef]
- Camargo, S.; Moskowitz, O.; Giladi, A.; Levinson, M.; Balaban, R.; Gola, S.; Raizman, A.; Lipczyc, K.; Richter, A.; Keren-Khadmy, N.; et al. Neutrophils Physically Interact with Tumor Cells to Form a Signaling Niche Promoting Breast Cancer Aggressiveness. Nat. Cancer 2025, 6, 540–558. [Google Scholar] [CrossRef]
- Gallant, J.P.; Hintz, H.M.; Gunaratne, G.S.; Breneman, M.T.; Recchia, E.E.; West, J.L.; Ott, K.L.; Heninger, E.; Jackson, A.E.; Luo, N.Y.; et al. Mechanistic Characterization of Cancer-Associated Fibroblast Depletion via an Antibody-Drug Conjugate Targeting Fibroblast Activation Protein. Cancer Res. Commun. 2024, 4, 1481–1494. [Google Scholar] [CrossRef]
- Glabman, R.A.; Choyke, P.L.; Sato, N. Cancer-Associated Fibroblasts: Tumorigenicity and Targeting for Cancer Therapy. Cancers 2022, 14, 3906. [Google Scholar] [CrossRef] [PubMed]
- Tierney, M.T.; Polak, L.; Yang, Y.; Abdusselamoglu, M.D.; Baek, I.; Stewart, K.S.; Fuchs, E. Vitamin A Resolves Lineage Plasticity to Orchestrate Stem Cell Lineage Choices. Science 2024, 383, eadi7342. [Google Scholar] [CrossRef] [PubMed]
- Vining, K.H.; Mooney, D.J. Mechanical Forces Direct Stem Cell Behaviour in Development and Regeneration. Nat. Rev. Mol. Cell Biol. 2017, 18, 728–742. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Gomez, N.; Infarinato, N.; Adam, R.C.; Sribour, M.; Baek, I.; Laurin, M.; Fuchs, E. The Pioneer Factor SOX9 Competes for Epigenetic Factors to Switch Stem Cell Fates. Nat. Cell Biol. 2023, 25, 1185–1195. [Google Scholar] [CrossRef]
Tissue (Representative Niche) | Core Cellular Constituents | ECM/Mechanical Hallmark | Dominant Signaling Axes | Primary Homeostatic Role |
---|---|---|---|---|
Bone marrow (endosteal and perivascular) | Osteoblasts, sinusoidal endothelial cells, CAR cells, LepR+ MSCs, macrophages | 3D trabecular matrix; oxygen and CXCL12 gradients | Wnt ↔ BMP, Notch, Tie2/Ang-1 | Balance quiescence vs. rapid hematopoietic output |
Intestinal crypt | Lgr5+ stem cells, Paneth cells, pericryptal myofibroblasts | 2-D basement membrane; steep Wnt/BMP gradient | Wnt3, Dll4/Notch, EGF, BMP | Continuous epithelial renewal |
Skin (hair follicle bulge) | K15+ bulge stem cells, dermal papilla fibroblasts, melanocyte progenitors | Flexible basement membrane; low stiffness | Wnt/Shh, BMP antagonists | Cyclic hair regeneration and wound repair |
Neural (SVZ/SGZ) | GFAP+ NSCs, endothelial cells, ependymal cells, microglia | Laminin-rich fractal matrix; CSF contact | FGF, EGF, IGF-1, Wnt, BMP | Adult neurogenesis and cognitive plasticity |
Skeletal muscle (satellite) | Pax7+ satellite cells, FAPs, macrophages, endothelial cells | Sub-laminar niche; rapid viscoelastic relaxation | HGF/c-Met, FGF2, Notch, Wnt | Myofiber repair and hypertrophy control |
Heart (sub-epicardial CSC niche) | c-Kit+/Sca1+ CSCs, cardiomyocytes, fibroblasts, vSMCs | Low-stress ECM; anisotropic stiffness | VEGF, TGF-β, HIF-1α, Wnt | Paracrine support and limited cardiomyocyte turnover |
Testis (basal SSC niche) | SSCs, Sertoli cells, peritubular myoid cells | Open niche; type IV collagen–rich BM | GDNF/RET, FGF2, CSF-1 | Continuous spermatogenesis |
Mammary gland (branching points/TEB) | Basal MaSCs, luminal progenitors, fibroblasts, adipocytes, macrophages | Dynamic ECM remodeling during cycles | Wnt, RANKL, EGFR, Hedgehog, Notch | Ductal elongation and alveolar expansion |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yushkov, B.; Chereshnev, V.; Korneva, E.; Yushkova, V.; Sarapultsev, A. Stem-Cell Niches in Health and Disease: Microenvironmental Determinants of Regeneration and Pathology. Cells 2025, 14, 981. https://doi.org/10.3390/cells14130981
Yushkov B, Chereshnev V, Korneva E, Yushkova V, Sarapultsev A. Stem-Cell Niches in Health and Disease: Microenvironmental Determinants of Regeneration and Pathology. Cells. 2025; 14(13):981. https://doi.org/10.3390/cells14130981
Chicago/Turabian StyleYushkov, Boris, Valerii Chereshnev, Elena Korneva, Victoria Yushkova, and Alexey Sarapultsev. 2025. "Stem-Cell Niches in Health and Disease: Microenvironmental Determinants of Regeneration and Pathology" Cells 14, no. 13: 981. https://doi.org/10.3390/cells14130981
APA StyleYushkov, B., Chereshnev, V., Korneva, E., Yushkova, V., & Sarapultsev, A. (2025). Stem-Cell Niches in Health and Disease: Microenvironmental Determinants of Regeneration and Pathology. Cells, 14(13), 981. https://doi.org/10.3390/cells14130981