Phylogenetic Structure Shifts Across Life-History Stages in Response to Microtopography and Competition in Subtropical Forests
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Censuses
2.2. Microtopographic Variables
2.3. Phylogenetic Tree Construction
2.4. Phylogenetic Index and Neighborhood Effects Variables
2.5. Effects of Microtopography and Neighborhood Competition Factors
3. Results
3.1. Community-Wide Phylogenetic Structure
3.2. Effects of Microenvironmental Factors and Competition on Phylogenetic Structure
3.3. Effects of Microtopographic Factors and Interspecific Competition Across Life-History Stages
4. Discussion
4.1. Stochasticity of Community Phylogenetic Structure and Its Drivers
4.2. Ontogenetic Shifts in the Coupled Effects of Environmental Filtering and Competition
4.3. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Trogisch, S.; He, J.-S.; Niklaus, P.A.; Bruelheide, H.; Tang, Z.; Erfmeier, A.; Scherer-Lorenzen, M.; Pietsch, K.A.; Yang, B.; et al. Tree Species Richness Increases Ecosystem Carbon Storage in Subtropical Forests. Proc. R. Soc. B Biol. Sci. 2018, 285, 20181240. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.-L.; Wu, H.; Zhou, C.; Liu, X.; Leng, P.; Yang, P.; Wu, W.; Tang, R.; Shang, G.-F.; et al. Biophysical Impacts of Earth Greening Can Substantially Mitigate Regional Land Surface Temperature Warming. Nat. Commun. 2023, 14, 121. [Google Scholar] [CrossRef] [PubMed]
- Boonman, C.C.F.; Serra-Diaz, J.M.; Hoeks, S.; Guo, W.-Y.; Enquist, B.J.; Maitner, B.; Malhi, Y.; Merow, C.; Buitenwerf, R.; Svenning, J.-C. More than 17,000 Tree Species Are at Risk from Rapid Global Change. Nat. Commun. 2024, 15, 166. [Google Scholar] [CrossRef]
- Diaz, S.; Zafra-Calvo, N.; Purvis, A.; Verburg, P.; Obura, D.; Leadley, P.; Chaplin-Kramer, R.; De Meester, L.; Dulloo, M.; Martín-López, B.; et al. Set Ambitious Goals for Biodiversity and Sustainability. Science 2020, 370, 411–413. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; pp. 35–115. [Google Scholar] [CrossRef]
- Vellend, M. The Theory of Ecological Communities; Monographs in Population Biology; Princeton University Press: Princeton, NJ, USA, 2016; ISBN 978-0-691-16484-7. [Google Scholar]
- McEwan, R.W.; Lin, Y.-C.; Sun, I.-F.; Hsieh, C.-F.; Su, S.-H.; Chang, L.-W.; Song, G.-Z.M.; Wang, H.-H.; Hwong, J.-L.; Lin, K.-C.; et al. Topographic and Biotic Regulation of Aboveground Carbon Storage in Subtropical Broad-Leaved Forests of Taiwan. For. Ecol. Manag. 2011, 262, 1817–1825. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A.P. Resilience, Adaptability and Transformability in Social-Ecological Systems. Ecol. Soc. 2004, 9, art5. [Google Scholar] [CrossRef]
- Qian, H.; Hao, Z.; Zhang, J. Phylogenetic Structure and Phylogenetic Diversity of Angiosperm Assemblages in Forests along an Elevational Gradient in Changbaishan, China. J. Plant Ecol. 2014, 7, 154–165. [Google Scholar] [CrossRef]
- He, X.; Yin, F.; Arif, M.; Zheng, J.; Chen, Y.; Geng, Q.; Ni, X.; Li, C. Diversity Patterns of Plant Communities along an Elevational Gradient in Arid and Semi-Arid Mountain Ecosystems in China. Plants 2024, 13, 2858. [Google Scholar] [CrossRef]
- Wiegand, T.; Wang, X.; Fischer, S.M.; Kraft, N.J.B.; Bourg, N.A.; Brockelman, W.Y.; Cao, G.; Cao, M.; Chanthorn, W.; Chu, C.; et al. Latitudinal Scaling of Aggregation with Abundance and Coexistence in Forests. Nature 2025, 640, 967–973. [Google Scholar] [CrossRef]
- Jin, L.; Liu, J.; Xiao, T.; Li, Q.; Lin, L.; Shao, X.; Ma, C.; Li, B.; Mi, X.; Ren, H.; et al. Plastome-based Phylogeny Improves Community Phylogenetics of Subtropical Forests in China. Mol. Ecol. Resour. 2022, 22, 319–333. [Google Scholar] [CrossRef]
- Hubbell, S.P. The Unified Neutral Theory of Biodiversity and Biogeography; Monographs in Population Biology; Princeton University Press: Princeton, NJ, USA, 2001; Volume 42, ISBN 978-0-691-02129-4. [Google Scholar]
- Webb, C.O.; Ackerly, D.D.; McPeek, M.A.; Donoghue, M.J. Phylogenies and Community Ecology. Annu. Rev. Ecol. Syst. 2002, 33, 475–505. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Lv, Y.; Ni, Y.; Xu, B.; Han, X.; Cao, X.; Yang, Q.; Xu, W.; Qian, Z. How Topography and Neighbor Shape the Fate of Trees in Subtropical Forest Restoration: Environmental Filtering and Resource Competition Drive Natural Regeneration. For. Ecosyst. 2024, 11, 100169. [Google Scholar] [CrossRef]
- Zhang, H.; Zheng, X.; Wu, Y.; Xu, B.; Cui, P.; Zhou, X.; Fang, Y.; Xie, L.; Ding, H. Impact of Microtopography and Neighborhood Effects on Individual Survival across Life History Stages. Plants 2024, 13, 3216. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Wang, Z.; Lian, J.; Ye, W.; Shen, H. New Progress in Community Assembly: Community Phylogenetic Struc-Ture Combining Evolution and Ecology: New Progress in Community Assembly: Community Phylogenetic Struc-Ture Combining Evolution and Ecology. Biodivers. Sci. 2011, 19, 275–283. [Google Scholar] [CrossRef]
- Walker, B.H.; Salt, D. Resilience Practice: Building Capacity to Absorb Disturbance and Maintain Function; Island Press: Washington, DC, USA, 2012; ISBN 978-1-59726-355-9. [Google Scholar]
- Chai, Y.; Yue, M. Research advances in plant community assembly mechanisms. Acta Ecol. Sin. 2016, 36, 4557–4572. [Google Scholar] [CrossRef]
- Webb, C.O.; Ackerly, D.D.; Kembel, S.W. Phylocom: Software for the Analysis of Phylogenetic Community Structure and Trait Evolution. Bioinformatics 2008, 24, 2098–2100. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Davies, T.J. Phylogenies in Ecology: A Guide to Concepts and Methods; Princeton University Press: Princeton, NJ, USA; Oxford, UK, 2016; ISBN 978-0-691-15768-9. [Google Scholar]
- Faith, D.P. Conservation Evaluation and Phylogenetic Diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Webb, C.O. Exploring the Phylogenetic Structure of Ecological Communities: An Example for Rain Forest Trees. Am. Nat. 2000, 156, 145–155. [Google Scholar] [CrossRef]
- Swenson, N.; Enquist, B.; Thompson, J.; Zimmerman, J. The Influence of Spatial and Size Scale on Phylogenetic Relatedness in Tropical Forest Commuities. Ecology 2007, 88, 1770–1780. [Google Scholar] [CrossRef]
- Zhu, Y.; Comita, L.S.; Hubbell, S.P.; Ma, K. Conspecific and Phylogenetic Density-dependent Survival Differs across Life Stages in a Tropical Forest. J. Ecol. 2015, 103, 957–966. [Google Scholar] [CrossRef]
- Fichtner, A.; Härdtle, W.; Li, Y.; Bruelheide, H.; Kunz, M.; Von Oheimb, G. From Competition to Facilitation: How Tree Species Respond to Neighbourhood Diversity. Ecol. Lett. 2017, 20, 892–900. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Mi, X.; Ma, K. A Mechanism of Plant Species Coexistence: The Negative Density-Dependent Hypothesis. Biodivers. Sci. 2009, 17, 594–604. [Google Scholar] [CrossRef]
- Kraft, N.J.B.; Godoy, O.; Levine, J.M. Plant Functional Traits and the Multidimensional Nature of Species Coexistence. Proc. Natl. Acad. Sci. USA 2015, 112, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Zhou, J.; Yang, S.; Chu, B.; Ma, S.; Zhu, H.; Hua, L. The Effects of Topographical Factors on the Distribution of Plant Communities in a Mountain Meadow on the Tibetan Plateau as a Foundation for Target-Oriented Management. Ecol. Indic. 2019, 106, 105532. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, H.; Qiao, Y.; Yuan, H.; Xu, W.; Xia, X. Effects of Microtopography on Neighborhood Diversity and Competition in Subtropical Forests. Plants 2025, 14, 870. [Google Scholar] [CrossRef]
- Muscarella, R.; Uriarte, M.; Forero-Montaña, J.; Comita, L.S.; Swenson, N.G.; Thompson, J.; Nytch, C.J.; Jonckheere, I.; Zimmerman, J.K. Life-history Trade-offs during the Seed-to-seedling Transition in a Subtropical Wet Forest Community. J. Ecol. 2013, 101, 171–182. [Google Scholar] [CrossRef]
- Coomes, D.A.; Kunstler, G.; Canham, C.D.; Wright, E. A Greater Range of Shade-tolerance Niches in Nutrient-rich Forests: An Explanation for Positive Richness–Productivity Relationships? J. Ecol. 2009, 97, 705–717. [Google Scholar] [CrossRef]
- Cavender-Bares, J.; Kozak, K.H.; Fine, P.V.A.; Kembel, S.W. The Merging of Community Ecology and Phylogenetic Biology. Ecol. Lett. 2009, 12, 693–715. [Google Scholar] [CrossRef]
- Wiens, J.J.; Graham, C.H. Niche Conservatism: Integrating Evolution, Ecology, and Conservation Biology. Annu. Rev. Ecol. Evol. Syst. 2005, 36, 519–539. [Google Scholar] [CrossRef]
- Kraft, N.J.; Cornwell, W.K.; Webb, C.O.; Ackerly, D.D. Trait Evolution, Community Assembly, and the Phylogenetic Structure of Ecological Communities. Am. Nat. 2007, 170, 271. [Google Scholar] [CrossRef]
- Blomberg, S.P.; Garland, T.; Ives, A.R. Testing for Phylogenetic Signal in Comparative Data: Behavioral Traits Are More Labile. Evolution 2003, 57, 717. [Google Scholar] [CrossRef] [PubMed]
- Baldeck, C.A.; Kembel, S.W.; Harms, K.E.; Yavitt, J.B.; John, R.; Turner, B.L.; Madawala, S.; Gunatilleke, N.; Gunatilleke, S.; Bunyavejchewin, S.; et al. Phylogenetic Turnover along Local Environmental Gradients in Tropical Forest Communities. Oecologia 2016, 182, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, G.; Ci, X.; Swenson, N.G.; Cao, M.; Sha, L.; Li, J.; Baskin, C.C.; Slik, J.W.F.; Lin, L. Functional and Phylogenetic Assembly in a Chinese Tropical Tree Community across Size Classes, Spatial Scales and Habitats. Funct. Ecol. 2014, 28, 520–529. [Google Scholar] [CrossRef]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Picante: R Tools for Integrating Phylogenies and Ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef]
- Burns, J.H.; Strauss, S.Y. More Closely Related Species Are More Ecologically Similar in an Experimental Test. Proc. Natl. Acad. Sci. USA 2011, 108, 5302–5307. [Google Scholar] [CrossRef]
- Swenson, N.G. Phylogenetic Beta Diversity Metrics, Trait Evolution and Inferring the Functional Beta Diversity of Communities. PLoS ONE 2011, 6, e21264. [Google Scholar] [CrossRef]
- Gonzalez, A.; Germain, R.M.; Srivastava, D.S.; Filotas, E.; Dee, L.E.; Gravel, D.; Thompson, P.L.; Isbell, F.; Wang, S.; Kéfi, S.; et al. Scaling-up Biodiversity-ecosystem Functioning Research. Ecol. Lett. 2020, 23, 757–776. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Xu, X.; Kardol, P.; Hu, D. Microtopography-Induced Ecohydrological Effects Alter Plant Community Structure. Geoderma 2019, 362, 114119. [Google Scholar] [CrossRef]
- Van Couwenberghe, R.; Collet, C.; Lacombe, E.; Gégout, J.-C. Abundance Response of Western European Forest Species along Canopy Openness and Soil pH Gradients. For. Ecol. Manag. 2011, 262, 1483–1490. [Google Scholar] [CrossRef]
- McNichol, B.; Wang, R.; Hefner, A.; Helzer, C.; McMahon, S.; Russo, S. Topography-Driven Microclimate Gradients Shape Forest Structure, Diversity, and Composition in a Temperate Refugial Forest. Plant-Environ. Interact. 2024, 5, e10153. [Google Scholar] [CrossRef]
- Valencia, R.; Foster, R.B.; Villa, G.; Condit, R.; Svenning, J.; Hernández, C.; Romoleroux, K.; Losos, E.; Magård, E.; Balslev, H. Tree Species Distributions and Local Habitat Variation in the Amazon: Large Forest Plot in Eastern Ecuador. J. Ecol. 2004, 92, 214–229. [Google Scholar] [CrossRef]
- Jin, Y.; Qian, H.V. PhyloMaker2:An Updated and Enlarged R Package That Can Generate Very Large Phylogenies for Vascular Plants. Plant Divers. 2022, 44, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Davies, S.J.; Abiem, I.; Abu Salim, K.; Aguilar, S.; Allen, D.; Alonso, A.; Anderson-Teixeira, K.; Andrade, A.; Arellano, G.; Ashton, P.S.; et al. ForestGEO: Understanding Forest Diversity and Dynamics through a Global Observatory Network. Biol. Conserv. 2021, 253, 108907. [Google Scholar] [CrossRef]
- Baddeley, A.; Turner, R. Spatstat: An R Package for Analyzing Spatial Point Patterns. J. Stat. Softw. 2005, 12, 1–42. [Google Scholar] [CrossRef]
- Smith, S.A.; Brown, J.W. Constructing a Broadly Inclusive Seed Plant Phylogeny. Am. J. Bot. 2018, 105, 302–314. [Google Scholar] [CrossRef]
- Zanne, A.E.; Tank, D.C.; Cornwell, W.K.; Eastman, J.M.; Smith, S.A.; FitzJohn, R.G.; McGlinn, D.J.; O’Meara, B.C.; Moles, A.T.; Reich, P.B. Corrigendum: Three Keys to the Radiation of Angiosperms into Freezing Environments. Nature 2015, 521, 380. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, B.; Liu, S.; Feng, Z.; Jiang, K. Plantlist: Looking up the Status of Plant Scientific Names Based on the Plant List Database, Searching the Chinese Names and Making Checklists of Plants. 2022. Available online: https://github.com/helixcn/plantlist/ (accessed on 17 May 2025).
- Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T. ggtree: An r Package for Visualization and Annotation of Phylogenetic Trees with Their Covariates and Other Associated Data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Hegyi, F. A Simulation Model for Managing Jack-Pine Stands. R. Coll. For. 1974, 30, 74–90. [Google Scholar]
- Santo-Silva, E.E.; Almeida, W.R.; Tabarelli, M.; Peres, C.A. Habitat Fragmentation and the Future Structure of Tree Assemblages in a Fragmented Atlantic Forest Landscape. Plant Ecol. 2016, 217, 1129–1140. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Simpson, E.; Fraser, I.; Woolf, H.; Pearse, W. Variation in Near-surface Soil Temperature Drives Plant Assemblage Differentiation across Aspect. Ecol. Evol. 2024, 14, e11656. [Google Scholar] [CrossRef] [PubMed]
- Ostonen, I.; Püttsepp, Ü.; Biel, C.; Alberton, O.; Bakker, M.; Löhmus, K.; Majdi, H.; Metcalfe, J.D.; Olsthoorn, A.F.M.; Pronk, A.A.; et al. Specific Root Length as an Indicator of Environmental Change. Plant Biosyst. 2007, 141, 426–442. [Google Scholar] [CrossRef]
- Ettema, C. Spatial Soil Ecology. Trends Ecol. Evol. 2002, 17, 177–183. [Google Scholar] [CrossRef]
- Wright, S.J.; Kitajima, K.; Kraft, N.J.B.; Reich, P.B.; Wright, I.J.; Bunker, D.E.; Condit, R.; Dalling, J.W.; Davies, S.J.; Díaz, S.; et al. Functional Traits and the Growth–Mortality Trade-off in Tropical Trees. Ecology 2010, 91, 3664–3674. [Google Scholar] [CrossRef]
- Frey, B.R.; Ashton, M.S.; McKenna, J.J.; Ellum, D.; Finkral, A. Topographic and Temporal Patterns in Tree Seedling Establishment, Growth, and Survival among Masting Species of Southern New England Mixed-Deciduous Forests. For. Ecol. Manag. 2007, 245, 54–63. [Google Scholar] [CrossRef]
- Krishnadas, M.; Beckman, N.G.; Zuluaga, J.C.P.; Zhu, Y.; Whitacre, J.; Wenzel, J.W.; Queenborough, S.A.; Comita, L.S. Environment and Past Land Use Together Predict Functional Diversity in a Temperate Forest. Ecol. Appl. 2018, 28, 2142–2152. [Google Scholar] [CrossRef]
- Luo, W.; Lan, R.; Chen, D.; Zhang, B.; Xi, N.; Li, Y.; Fang, S.; Valverde-Barrantes, O.J.; Eissenstat, D.M.; Chu, C.; et al. Limiting Similarity Shapes the Functional and Phylogenetic Structure of Root Neighborhoods in a Subtropical Forest. New Phytol. 2021, 229, 1078–1090. [Google Scholar] [CrossRef]
- Ma, M.; Baskin, C.C.; Zhao, Y.; An, H. Light Controls Alpine Meadow Community Assembly during Succession by Affecting Species Recruitment from the Seed Bank. Ecol. Appl. 2023, 33, e2782. [Google Scholar] [CrossRef]
- Auslander, M.; Nevo, E.; Inbar, M. The Effects of Slope Orientation on Plant Growth, Developmental Instability and Susceptibility to Herbivores. J. Arid Environ. 2003, 55, 405–416. [Google Scholar] [CrossRef]
- Han, J.; Yin, H.; Xue, J.; Zhang, Z.; Xing, Z.; Wang, S.; Chang, J.; Chen, X.; Yu, B. Vertical Distribution Differences of the Understory Herbs and Their Driving Factors on Shady and Sunny Slopes in High Altitude Mountainous Areas. Front. For. Glob. Change 2023, 6, 1138317. [Google Scholar] [CrossRef]
- Ackerly, D.D.; Schwilk, D.W.; Webb, C.O. Niche Evolution and Adaptive Radiation: Testing the Order of Trait Di-vergence. Ecology 2006, 87, S50–S61. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, G.S.; Webb, C.O. Phylogenetic Signal in Plant Pathogen–Host Range. Proc. Natl. Acad. Sci. USA 2007, 104, 4979–4983. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Queenborough, S.A.; Condit, R.; Hubbell, S.P.; Ma, K.P.; Comita, L.S. Density-dependent Survival Varies with Species Life-history Strategy in a Tropical Forest. Ecol. Lett. 2018, 21, 506–515. [Google Scholar] [CrossRef]
- Zhang, J.-T.; Zhang, M.; Mian, R. Effects of Elevation and Disturbance Gradients on Forest Diversity in the Wulingshan Nature Reserve, North China. Environ. Earth Sci. 2016, 75, 904. [Google Scholar] [CrossRef]
- Ricklefs, R.E.; Renner, S.S. Global Correlations in Tropical Tree Species Richness and Abundance Reject Neutrality. Science 2012, 335, 464–467. [Google Scholar] [CrossRef]
- Reich, P.B.; Sendall, K.M.; Rice, K.; Rich, R.L.; Stefanski, A.; Hobbie, S.E.; Montgomery, R.A. Geographic Range Predicts Photosynthetic and Growth Response to Warming in Co-Occurring Tree Species. Nat. Clim. Change 2015, 5, 148–152. [Google Scholar] [CrossRef]
- Yan, G.; Fan, C.; Zheng, J.; Liu, G.; Yu, J.; Guo, Z.; Cao, W.; Wang, L.; Wang, W.; Meng, Q.; et al. Forest Carbon Stocks Increase with Higher Dominance of Ectomycorrhizal Trees in High Latitude Forests. Nat. Commun. 2024, 15, 5959. [Google Scholar] [CrossRef]
- Álvarez-Yépiz, J.C.; Martínez-Yrízar, A.; Fredericksen, T.S. Special Issue: Resilience of Tropical Dry Forests to Extreme Disturbance Events. For. Ecol. Manag. 2018, 426, 1–6. [Google Scholar] [CrossRef]
- Tschirhart, J. Resource Competition among Plants: From Maximizing Individuals to Community Structure. Ecol. Model. 2002, 148, 191–212. [Google Scholar] [CrossRef]
- Kadowaki, K.; Yamamoto, S.; Sato, H.; Tanabe, A.S.; Hidaka, A.; Toju, H. Mycorrhizal Fungi Mediate the Direction and Strength of Plant–Soil Feedbacks Differently between Arbuscular Mycorrhizal and Ectomycorrhizal Communities. Commun. Biol. 2018, 1, 196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, W.; Zhang, H.; Sun, L.; Xu, J.; Qiao, Y.; Li, H. Phylogenetic Structure Shifts Across Life-History Stages in Response to Microtopography and Competition in Subtropical Forests. Plants 2025, 14, 2098. https://doi.org/10.3390/plants14142098
Meng W, Zhang H, Sun L, Xu J, Qiao Y, Li H. Phylogenetic Structure Shifts Across Life-History Stages in Response to Microtopography and Competition in Subtropical Forests. Plants. 2025; 14(14):2098. https://doi.org/10.3390/plants14142098
Chicago/Turabian StyleMeng, Weiqi, Haonan Zhang, Lianhao Sun, Jianing Xu, Yajun Qiao, and Haidong Li. 2025. "Phylogenetic Structure Shifts Across Life-History Stages in Response to Microtopography and Competition in Subtropical Forests" Plants 14, no. 14: 2098. https://doi.org/10.3390/plants14142098
APA StyleMeng, W., Zhang, H., Sun, L., Xu, J., Qiao, Y., & Li, H. (2025). Phylogenetic Structure Shifts Across Life-History Stages in Response to Microtopography and Competition in Subtropical Forests. Plants, 14(14), 2098. https://doi.org/10.3390/plants14142098