Immune and Inflammatory Properties of Megakaryocytes
Abstract
1. Megakaryocytes: Cellular Origin and Importance
1.1. Introducing Megakaryocytes
1.2. Models of Megakaryocyte Biogenesis Lead to Different Functions
2. Megakaryocyte Presence in and Beyond the Bone Marrow
2.1. Megakaryocytes in Bone Marrow
2.2. Megakaryocytes in Peripheral Blood
2.3. Megakaryocytes in the Spleen
2.4. Megakaryocytes in the Pulmonary System
3. Immune Identity of Megakaryocytes
3.1. Megakaryocytes as Immune Cells
Characteristics | In Bone Marrow | In the Lungs | In Peripheral Circulation | In the Spleen |
---|---|---|---|---|
Functional diversity | Bone marrow (BM) immune MKs regulate inflammatory responses, myeloid leukocyte activation, leukocyte-mediated immunity, and cellular responses to cytokines and interferons [29] | Adult lungs are home to CD42+ mature MKs [53,54,55] | Circulating MKs express various markers specific to platelets and to the lineage, such as CD61, CD41, CD42b, and PF4, of which some take part in coagulation and chemotaxis [38,39] | MKs are primarily associated with extramedullary hematopoiesis (EMH). Splenic MKs can interact with various immune cells, including myeloid cells and T cells [41]. |
Immune gene expression | MKs express immune genes such as, S100A9, IL-1β, TLR2 and TLR4, CTSS, IL1R, IL10R, IFN-γ, HLA-DRA, CD48, and CD148 [55,61] | MKs express MHCII, TLRs, chemokines, and CD74 [53,54,55] | MKs express various immune signaling molecules and receptors, such as S100A8/A9, IL-8, IL-1β, TNFα, TLR2, TLR3, TLR4, ICAM1, and MHCII, as studied in SARS-CoV-2 patients, where these markers were found to be highly upregulated [54,61,65,66] | MKs release cytokines such as TNFα and IL-6, which promote bacterial phagocytosis, and produce immune-functional platelets, which can activate neutrophils and induce NETosis, contributing to microbicidal effects [41,42]. |
Characteristics | In Bone Marrow | In the Lungs | In Peripheral Circulation | In the Spleen |
---|---|---|---|---|
Functional diversity | BM immune MKs participate in immune and inflammatory responses, wound healing, and platelet activation [67] | Immature, low-ploidy MKs express vital immune markers [45]. | MKs participate in innate and adaptive immune responses, antigen processing and presentation, and T cell co-stimulation [38,39,68] | MKs ploidy level is widely distributed (8 N–64 N), and these cells bear immunomodulatory functions, which reduces mortality in a mouse model of sepsis [41] |
Immune gene expression | MKs express various immune genes related to leukocyte-mediated immunity and cytokine- and interferon-mediated cellular responses [30], such as Spi1, Cebp, Irf, CD53, Ccl3, Lsp1, Cxcr4, Ccl4, Il17r, and Cdh1 [69,70] | MKs have high expression of MHCII, TLRs, chemokines, and CD74 [62]. MKs have higher surface expression of immune regulatory molecules responsible for antigen uptake, processing, and presentation to CD4+ T cells, as studied in a lung bacterial infection mouse model [71]. | MKs express typical lineage markers, such as CD61, CD41, CD42b, and PF4 [62] | MKs express B cell markers, myeloid cell markers, MHC II and CD40L, which impart NETosis [42] |
3.2. Megakaryocyte Subpopulations and Their Immune Signature
4. Immunoregulatory and Inflammatory Functions of Megakaryocytes in Select Diseases
4.1. In Myeloproliferative Neoplasms
4.2. In Lung Diseases and COVID-19
4.3. In Aging
4.4. In Sepsis
5. Conclusions and Future Prospectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brass, L.F.; Wannemacher, K.M.; Ma, P.; Stalker, T.J. Regulating thrombus growth and stability to achieve an optimal response to injury. J. Thromb. Haemost. 2011, 9 (Suppl. S1), 66–75. [Google Scholar] [CrossRef] [PubMed]
- Machlus, K.R.; Thon, J.N.; Italiano, J.E., Jr. Interpreting the developmental dance of the megakaryocyte: A review of the cellular and molecular processes mediating platelet formation. Br. J. Haematol. 2014, 165, 227–236. [Google Scholar] [CrossRef]
- Deutsch, V.R.; Tomer, A. Megakaryocyte development and platelet production. Br. J. Haematol. 2006, 134, 453–466. [Google Scholar] [CrossRef]
- Ravid, K.; Lu, J.; Zimmet, J.M.; Jones, M.R. Roads to polyploidy: The megakaryocyte example. J. Cell. Physiol. 2002, 190, 7–20. [Google Scholar] [CrossRef]
- Nguyen, H.G.; Ravid, K. Polyploidy: Mechanisms and cancer promotion in hematopoietic and other cells. Adv. Exp. Med. Biol. 2010, 676, 105–122. [Google Scholar] [CrossRef] [PubMed]
- Tilburg, J.; Stone, A.P.; Billingsley, J.M.; Scoville, D.K.; Pavenko, A.; Liang, Y.; Italiano, J.E., Jr.; Machlus, K.R. Spatial transcriptomics of murine bone marrow megakaryocytes at single-cell resolution. Res. Pract. Thromb. Haemost. 2023, 7, 100158. [Google Scholar] [CrossRef] [PubMed]
- Choudry, F.A.; Bagger, F.O.; Macaulay, I.C.; Farrow, S.; Burden, F.; Kempster, C.; McKinney, H.; Olsen, L.R.; Huang, N.; Downes, K.; et al. Transcriptional characterization of human megakaryocyte polyploidization and lineage commitment. J. Thromb. Haemost. 2021, 19, 1236–1249. [Google Scholar] [CrossRef]
- Malara, A.; Abbonante, V.; Di Buduo, C.A.; Tozzi, L.; Currao, M.; Balduini, A. The secret life of a megakaryocyte: Emerging roles in bone marrow homeostasis control. Cell. Mol. Life Sci. 2015, 72, 1517–1536. [Google Scholar] [CrossRef]
- Wang, D.; Xie, J.; Zhao, M. Versatility of megakaryocytes in homeostasis and disease. Blood Sci. 2024, 6, e00212. [Google Scholar] [CrossRef]
- Kosaka, K.; Takayama, N.; Paul, S.K.; Kanashiro, M.A.; Oshima, M.; Fukuyo, M.; Rahmutulla, B.; Tajiri, I.; Mukai, M.; Kubota, Y.; et al. iPSC-derived megakaryocytes and platelets accelerate wound healing and angiogenesis. Stem Cell Res. Ther. 2024, 15, 364. [Google Scholar] [CrossRef]
- Beaulieu, L.M.; Freedman, J.E. The role of inflammation in regulating platelet production and function: Toll-like receptors in platelets and megakaryocytes. Thromb. Res. 2010, 125, 205–209. [Google Scholar] [CrossRef]
- McGrath, K.E.; Palis, J. Hematopoiesis in the yolk sac: More than meets the eye. Exp. Hematol. 2005, 33, 1021–1028. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hong, S.H. Hematopoietic stem cells and their roles in tissue regeneration. Int. J. Stem Cells 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Mann, Z.; Sengar, M.; Verma, Y.K.; Rajalingam, R.; Raghav, P.K. Hematopoietic stem cell factors: Their functional role in self-renewal and clinical aspects. Front. Cell Dev. Biol. 2022, 10, 664261. [Google Scholar] [CrossRef] [PubMed]
- Woolthuis, C.M.; Park, C.Y. Hematopoietic stem/progenitor cell commitment to the megakaryocyte lineage. Blood. 2016, 127, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Velten, L.; Haas, S.F.; Raffel, S.; Blaszkiewicz, S.; Islam, S.; Hennig, B.P.; Hirche, C.; Lutz, C.; Buss, E.C.; Nowak, D.; et al. Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell Biol. 2017, 19, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Hirschi, K.K.; Nicoli, S.; Walsh, K. Hematopoiesis lineage tree uprooted: Every cell is a rainbow. Dev. Cell 2017, 41, 7–9. [Google Scholar] [CrossRef]
- Grover, A.; Sanjuan-Pla, A.; Thongjuea, S.; Carrelha, J.; Giustacchini, A.; Gambardella, A.; Macaulay, I.; Mancini, E.; Luis, T.C.; Mead, A.; et al. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 2016, 7, 11075. [Google Scholar] [CrossRef]
- Fisher, M.H.; Di Paola, J. Genomics and transcriptomics of megakaryocytes and platelets: Implications for health and disease. Res. Pract. Thromb. Haemost. 2018, 2, 630–639. [Google Scholar] [CrossRef]
- Li, J.J.; Liu, J.; Li, Y.E.; Chen, L.V.; Cheng, H.; Li, Y.; Cheng, T.; Wang, Q.F.; Zhou, B.O. Differentiation route determines the functional outputs of adult megakaryopoiesis. Immunity 2024, 57, 478–494 e476. [Google Scholar] [CrossRef]
- Haas, S.; Hansson, J.; Klimmeck, D.; Loeffler, D.; Velten, L.; Uckelmann, H.; Wurzer, S.; Prendergast, A.M.; Schnell, A.; Hexel, K.; et al. Inflammation-Induced Emergency Megakaryopoiesis Driven by Hematopoietic Stem Cell-like Megakaryocyte Progenitors. Cell Stem Cell 2015, 17, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Orkin, S.H.; Zon, L.I. Hematopoiesis: An evolving paradigm for stem cell biology. Cell 2008, 132, 631–644. [Google Scholar] [CrossRef]
- Jagannathan-Bogdan, M.; Zon, L.I. Hematopoiesis. Development 2013, 140, 2463–2467. [Google Scholar] [CrossRef]
- Psaila, B.; Wang, G.; Rodriguez-Meira, A.; Li, R.; Heuston, E.F.; Murphy, L.; Yee, D.; Hitchcock, I.S.; Sousos, N.; O’Sullivan, J.; et al. Single-cell analyses reveal megakaryocyte-biased hematopoiesis in myelofibrosis and identify mutant clone-specific targets. Mol. Cell 2020, 78, 477–492.e478. [Google Scholar] [CrossRef]
- Catlin, S.N.; Busque, L.; Gale, R.E.; Guttorp, P.; Abkowitz, J.L. The replication rate of human hematopoietic stem cells in vivo. Blood 2011, 117, 4460–4466. [Google Scholar] [CrossRef]
- Abkowitz, J.L.; Golinelli, D.; Harrison, D.E.; Guttorp, P. In vivo kinetics of murine hemopoietic stem cells. Blood 2000, 96, 3399–3405. [Google Scholar] [CrossRef]
- Heazlewood, S.Y.; Ahmad, T.; Cao, B.; Cao, H.; Domingues, M.; Sun, X.; Heazlewood, C.K.; Li, S.; Williams, B.; Fulton, M.; et al. High ploidy large cytoplasmic megakaryocytes are hematopoietic stem cells regulators and essential for platelet production. Nat. Commun. 2023, 14, 2099. [Google Scholar] [CrossRef] [PubMed]
- de Graaf, C.A.; Metcalf, D. Thrombopoietin and hematopoietic stem cells. Cell Cycle 2011, 10, 1582–1589. [Google Scholar] [CrossRef] [PubMed]
- Gostynska, S.; Venkatesan, T.; Subramani, K.; Cortez, B.; Robertson, A.; Subrahmanian, S.; Dube, P.; Ahamed, J. Megakaryocyte/platelet-derived TGF-beta1 inhibits megakaryopoiesis in bone marrow by regulating thrombopoietin production in liver. Blood Adv. 2022, 6, 3321–3328. [Google Scholar] [CrossRef]
- Eckly, A.; Scandola, C.; Oprescu, A.; Michel, D.; Rinckel, J.Y.; Proamer, F.; Hoffmann, D.; Receveur, N.; Leon, C.; Bear, J.E.; et al. Megakaryocytes use in vivo podosome-like structures working collectively to penetrate the endothelial barrier of bone marrow sinusoids. J. Thromb. Haemost. 2020, 18, 2987–3001. [Google Scholar] [CrossRef]
- Psaila, B.; Lyden, D.; Roberts, I. Megakaryocytes, malignancy and bone marrow vascular niches. J. Thromb. Haemost. 2012, 10, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Noetzli, L.J.; French, S.L.; Machlus, K.R. New insights into the differentiation of megakaryocytes from hematopoietic progenitors. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1288–1300. [Google Scholar] [CrossRef]
- Whitby, L. The significance of megakaryocytes in the peripheral circulation. Blood 1948, 3, 934–938. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Zhao, J.; Chen, Y.; Peng, Z.; An, R.; Lu, Y.; Li, J. Clinical and molecular characteristics of megakaryocytes in myelodysplastic syndrome. Glob. Med. Genet. 2024, 11, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Di Buduo, C.A.; Miguel, C.P.; Balduini, A. Inside-to-outside and back to the future of megakaryopoiesis. Res. Pract. Thromb. Haemost. 2023, 7, 100197. [Google Scholar] [CrossRef]
- Hearn, J.I.; Alhilali, M.; Kim, M.; Kalev-Zylinska, M.L.; Poulsen, R.C. N-methyl-D-aspartate receptor regulates the circadian clock in megakaryocytic cells and impacts cell proliferation through BMAL1. Platelets 2023, 34, 2206918. [Google Scholar] [CrossRef]
- Garg, N.; Gupta, R.J.; Kumar, S. Megakaryocytes in peripheral blood smears. Turk. J. Haematol. 2019, 36, 212–213. [Google Scholar] [CrossRef]
- Cunin, P.; Nigrovic, P.A. Megakaryocytes as immune cells. J. Leukoc. Biol. 2019, 105, 1111–1121. [Google Scholar] [CrossRef]
- Zhang, W.; Yan, C.; Liu, X.; Yang, P.; Wang, J.; Chen, Y.; Liu, W.; Li, S.; Zhang, X.; Dong, G.; et al. Global characterization of megakaryocytes in bone marrow, peripheral blood, and cord blood by single-cell RNA sequencing. Cancer Gene Ther. 2022, 29, 1636–1647. [Google Scholar] [CrossRef]
- Slayton, W.B.; Georgelas, A.; Pierce, L.J.; Elenitoba-Johnson, K.S.; Perry, S.S.; Marx, M.; Spangrude, G.J. The spleen is a major site of megakaryopoiesis following transplantation of murine hematopoietic stem cells. Blood 2002, 100, 3975–3982. [Google Scholar] [CrossRef]
- Valet, C.; Magnen, M.; Qiu, L.; Cleary, S.J.; Wang, K.M.; Ranucci, S.; Grockowiak, E.; Boudra, R.; Conrad, C.; Seo, Y.; et al. Sepsis promotes splenic production of a protective platelet pool with high CD40 ligand expression. J. Clin. Investig. 2022, 132, e153920. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, O.E.; Borregaard, N. Neutrophil extracellular traps-the dark side of neutrophils. J. Clin. Investig. 2016, 126, 1612–1620. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.K.; Murphy, G.J. The lung is a megakaryocyte outpost that can defend against thrombocytopenic attack. J. Clin. Investig. 2024, 134, e186111. [Google Scholar] [CrossRef]
- Howell, W.H.; Donahue, D.D. The production of blood platelets in the lungs. J. Exp. Med. 1937, 65, 177–203. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, R.M.; Airo, R.; Pollack, S.; Crosby, W.H. Circulating megakaryocytes and platelet release in the lung. Blood 1965, 26, 720–731. [Google Scholar] [CrossRef]
- Scandola, C.; Erhardt, M.; Rinckel, J.Y.; Proamer, F.; Gachet, C.; Eckly, A. Use of electron microscopy to study megakaryocytes. Platelets 2020, 31, 589–598. [Google Scholar] [CrossRef]
- Yeung, A.K.; Villacorta-Martin, C.; Hon, S.; Rock, J.R.; Murphy, G.J. Lung megakaryocytes display distinct transcriptional and phenotypic properties. Blood Adv. 2020, 4, 6204–6217. [Google Scholar] [CrossRef]
- Livada, A.C.; McGrath, K.E.; Malloy, M.W.; Li, C.; Ture, S.K.; Kingsley, P.D.; Koniski, A.D.; Vit, L.A.; Nolan, K.E.; Mickelsen, D.; et al. Long-lived lung megakaryocytes contribute to platelet recovery in thrombocytopenia models. J. Clin. Investig. 2024, 134, e181111. [Google Scholar] [CrossRef]
- Lefrançais, E.; Ortiz-Muñoz, G.; Caudrillier, A.; Mallavia, B.; Liu, F.; Sayah, D.M.; Thornton, E.E.; Headley, M.B.; David, T.; Coughlin, S.R.; et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017, 544, 105–109. [Google Scholar] [CrossRef]
- Sun, S.; Jin, C.; Si, J.; Lei, Y.; Chen, K.; Cui, Y.; Liu, Z.; Liu, J.; Zhao, M.; Zhang, X.; et al. Single-cell analysis of ploidy and the transcriptome reveals functional and spatial divergency in murine megakaryopoiesis. Blood 2021, 138, 1211–1224. [Google Scholar] [CrossRef]
- Khatib-Massalha, E.; Mendez-Ferrer, S. Megakaryocyte diversity in ontogeny, functions and cell-cell interactions. Front. Oncol. 2022, 12, 840044. [Google Scholar] [CrossRef] [PubMed]
- Valdivia-Mazeyra, M.F.; Salas, C.; Nieves-Alonso, J.M.; Martin-Fragueiro, L.; Barcena, C.; Munoz-Hernandez, P.; Villar-Zarra, K.; Martin-Lopez, J.; Ramasco-Rueda, F.; Fraga, J.; et al. Increased number of pulmonary megakaryocytes in COVID-19 patients with diffuse alveolar damage: An autopsy study with clinical correlation and review of the literature. Virchows Arch. Int. J. Pathol. 2021, 478, 487–496. [Google Scholar] [CrossRef]
- Li, Y.; Chen, K.; Wang, Q.F. Immunological face of megakaryocytes. Front. Med. 2024, 18, 988–1001. [Google Scholar] [CrossRef]
- Gewirtz, A.M.; Boghosian-Sell, L.; Catani, L.; Ratajczak, M.Z.; Shen, Y.M.; Schreiber, A.D. Expression of Fc gamma RII and CD4 receptors by normal human megakaryocytes. Exp. Hematol. 1992, 20, 512–516. [Google Scholar] [PubMed]
- Wu, Z.; Markovic, B.; Chesterman, C.N.; Chong, B.H. Characterization of Fc gamma receptors on human megakaryocytes. Thromb. Haemost. 1996, 75, 661–667. [Google Scholar] [PubMed]
- Arnold, D.M.; Nazi, I.; Toltl, L.J.; Ross, C.; Ivetic, N.; Smith, J.W.; Liu, Y.; Kelton, J.G. Antibody binding to megakaryocytes in vivo in patients with immune thrombocytopenia. Eur. J. Haematol. 2015, 95, 532–537. [Google Scholar] [CrossRef]
- Mathur, M.; Chan, T.M.; Oh, K.H.; Kooienga, L.; Zhuo, M.; Pinto, C.S.; Chacko, B. A proliferation-inducing ligand (april) in the pathogenesis of immunoglobulin a nephropathy: A Review of the Evidence. J. Clin. Med. 2023, 12, 6927. [Google Scholar] [CrossRef]
- Xu, F.; Wang, G.; Zhao, F.; Huang, Y.; Fan, Z.; Mei, S.; Xie, Y.; Wei, L.; Hu, Y.; Wang, C.; et al. IFITM3 Inhibits SARS-CoV-2 Infection and Is Associated with COVID-19 Susceptibility. Viruses 2022, 14, 2553. [Google Scholar] [CrossRef]
- Bodner, K.; Melkonian, A.L.; Barth, A.I.M.; Kudo, T.; Tanouchi, Y.; Covert, M.W. Engineered fluorescent E. coli lysogens allow live-cell imaging of functional prophage induction triggered inside macrophages. Cell Syst. 2020, 10, 254–264.e9. [Google Scholar] [CrossRef]
- Kang, H.K.; Chiang, M.Y.; Ecklund, D.; Zhang, L.; Ramsey-Goldman, R.; Datta, S.K. Megakaryocyte progenitors are the main APCs inducing Th17 response to lupus autoantigens and foreign antigens. J. Immunol. 2012, 188, 5970–5980. [Google Scholar] [CrossRef]
- Shiraki, R.; Inoue, N.; Kawasaki, S.; Takei, A.; Kadotani, M.; Ohnishi, Y.; Ejiri, J.; Kobayashi, S.; Hirata, K.; Kawashima, S.; et al. Expression of Toll-like receptors on human platelets. Thromb. Res. 2004, 113, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Zufferey, A.; Speck, E.R.; Machlus, K.R.; Aslam, R.; Guo, L.; McVey, M.J.; Kim, M.; Kapur, R.; Boilard, E.; Italiano, J.E., Jr.; et al. Mature murine megakaryocytes present antigen-MHC class I molecules to T cells and transfer them to platelets. Blood Adv. 2017, 1, 1773–1785. [Google Scholar] [CrossRef] [PubMed]
- Italiano, J.E., Jr. Unraveling mechanisms that control platelet production. Semin. Thromb. Hemost. 2013, 39, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ayemoba, C.E.; Di Staulo, A.M.; Joves, K.; Leung, E.H.; Patel, C.M.; Maryanovich, M.; Chronis, K.; Pinho, S. Platelet factor 4 (PF4) regulates hematopoietic stem cell aging. Blood 2024, 114, 2. [Google Scholar] [CrossRef]
- De Wispelaere, K.; Freson, K. The analysis of the human megakaryocyte and platelet coding transcriptome in healthy and diseased subjects. Int. J. Mol. Sci. 2022, 23, 7647. [Google Scholar] [CrossRef]
- Gewirtz, A.M.; Xu, W.Y.; Mangan, K.F. Role of natural killer cells, in comparison with T lymphocytes and monocytes, in the regulation of normal human megakaryocytopoiesis in vitro. J. Immunol. 1987, 139, 2915–2924. [Google Scholar] [CrossRef]
- Williams, N.; Jackson, H.; Sheridan, A.P.; Murphy, M.J., Jr.; Elste, A.; Moore, M.A. Regulation of megakaryopoiesis in long-term murine bone marrow cultures. Blood 1978, 51, 245–255. [Google Scholar] [CrossRef]
- Prabahran, A.A.; Wu, L.; Manley, A.L.; Wu, Z.; Gao, S.; Mizumaki, H.; Baena, V.; Syed, Z.A.; Combs, C.A.; Chen, J.; et al. Mature Megakaryocytes Acquire Immune Characteristics in a Mouse Model of Aplastic Anemia. Blood Adv. 2025, 9, 3315–3330. [Google Scholar] [CrossRef]
- Williams, N.; Jackson, H. Regulation of proliferation of murine megakaryocyte progenitor cells by cell cycle. Blood 1978, 52, 163–170. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, M.; Shivdasani, R.A. Expression analysis of primary mouse megakaryocyte differentiation and its application in identifying stage-specific molecular markers and a novel transcriptional target of NF-E2. Blood 2007, 109, 1451–1459. [Google Scholar] [CrossRef]
- Roweth, H.G.; Malloy, M.W.; Goreczny, G.J.; Becker, I.C.; Guo, Q.; Mittendorf, E.A.; Italiano, J.E., Jr.; McAllister, S.S.; Battinelli, E.M. Pro-inflammatory megakaryocyte gene expression in murine models of breast cancer. Sci. Adv. 2022, 8, eabo5224. [Google Scholar] [CrossRef] [PubMed]
- Goh, I.; Botting, R.A.; Rose, A.; Webb, S.; Engelbert, J.; Gitton, Y.; Stephenson, E.; Quiroga Londono, M.; Mather, M.; Mende, N.; et al. Yolk sac cell atlas reveals multiorgan functions during human early development. Science 2023, 381, eadd7564. [Google Scholar] [CrossRef] [PubMed]
- Davenport, P.; Liu, Z.J.; Sola-Visner, M. Fetal vs adult megakaryopoiesis. Blood 2022, 139, 3233–3244. [Google Scholar] [CrossRef]
- Lattin, J.E.; Greenwood, K.P.; Daly, N.L.; Kelly, G.; Zidar, D.A.; Clark, R.J.; Thomas, W.G.; Kellie, S.; Craik, D.J.; Hume, D.A.; et al. Beta-arrestin 2 is required for complement C1q expression in macrophages and constrains factor-independent survival. Mol. Immunol. 2009, 47, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Davenport, P.; Liu, Z.J.; Sola-Visner, M. Changes in megakaryopoiesis over ontogeny and their implications in health and disease. Platelets 2020, 31, 692–699. [Google Scholar] [CrossRef]
- Stegner, D.; vanEeuwijk, J.M.M.; Angay, O.; Gorelashvili, M.G.; Semeniak, D.; Pinnecker, J.; Schmithausen, P.; Meyer, I.; Friedrich, M.; Dutting, S.; et al. Thrombopoiesis is spatially regulated by the bone marrow vasculature. Nat. Commun. 2017, 8, 127. [Google Scholar] [CrossRef]
- Qin, J.; Zhang, J.; Jiang, J.; Zhang, B.; Li, J.; Lin, X.; Wang, S.; Zhu, M.; Fan, Z.; Lv, Y.; et al. Direct chemical reprogramming of human cord blood erythroblasts to induced megakaryocytes that produce platelets. Cell Stem Cell 2022, 29, 1229–1245.e7. [Google Scholar] [CrossRef]
- Rodriguez, C.S.; Charo, N.; Tatti, S.; Gomez, R.M.; D’Atri, L.P.; Schattner, M. Regulation of megakaryo/thrombopoiesis by endosomal toll-like receptor 7 and 8 activation of CD34(+) cells in a viral infection model. Res. Pract. Thromb. Haemost. 2023, 7, 100184. [Google Scholar] [CrossRef]
- Pang, L.; Weiss, M.J.; Poncz, M. Megakaryocyte biology and related disorders. J. Clin. Investig. 2005, 115, 3332–3338. [Google Scholar] [CrossRef]
- Shivdasani, R.A. Molecular and transcriptional regulation of megakaryocyte differentiation. Stem Cells. 2001, 19, 397–407. [Google Scholar] [CrossRef]
- Gleitz, H.F.E.; Benabid, A.; Schneider, R.K. Still a burning question: The interplay between inflammation and fibrosis in myeloproliferative neoplasms. Curr. Opin. Hematol. 2021, 28, 364–371. [Google Scholar] [CrossRef]
- Schepers, K.; Pietras, E.M.; Reynaud, D.; Flach, J.; Binnewies, M.; Garg, T.; Wagers, A.J.; Hsiao, E.C.; Passegue, E. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 2013, 13, 285–299. [Google Scholar] [CrossRef] [PubMed]
- Chanprasert, S.; Geddis, A.E.; Barroga, C.; Fox, N.E.; Kaushansky, K. Thrombopoietin (TPO) induces c-myc expression through a PI3K- and MAPK-dependent pathway that is not mediated by Akt, PKCzeta or mTOR in TPO-dependent cell lines and primary megakaryocytes. Cell. Signal. 2006, 18, 1212–1218. [Google Scholar] [CrossRef]
- Wang, Y.; Zuo, X. Cytokines frequently implicated in myeloproliferative neoplasms. Cytokine X 2019, 1, 100005. [Google Scholar] [CrossRef]
- Chen, B.; Mu, C.; Zhang, Z.; He, X.; Liu, X. The love-hate relationship between tgf-beta signaling and the immune system during development and tumorigenesis. Front. Immunol. 2022, 13, 891268. [Google Scholar] [CrossRef]
- Xiao, Y.; Martinez, L.; Zigmond, Z.; Woltmann, D.; Singer, D.V.; Singer, H.A.; Vazquez-Padron, R.I.; Salman, L.H. Functions for platelet factor 4 (PF4/CXCL4) and its receptors in fibroblast-myofibroblast transition and fibrotic failure of arteriovenous fistulas (AVFs). J. Vasc. Access 2024, 25, 1911–1924. [Google Scholar] [CrossRef]
- Cokic, V.P.; Mitrovic-Ajtic, O.; Beleslin-Cokic, B.B.; Markovic, D.; Buac, M.; Diklic, M.; Kraguljac-Kurtovic, N.; Damjanovic, S.; Milenkovic, P.; Gotic, M.; et al. Proinflammatory cytokine IL-6 and JAK-STAT signaling pathway in myeloproliferative neoplasms. Mediat. Inflamm. 2015, 2015, 453020. [Google Scholar] [CrossRef] [PubMed]
- Fortmann, S.D.; Patton, M.J.; Frey, B.F.; Tipper, J.L.; Reddy, S.B.; Vieira, C.P.; Hanumanthu, V.S.; Sterrett, S.; Floyd, J.L.; Prasad, R.; et al. Circulating SARS-CoV-2+ megakaryocytes are associated with severe viral infection in COVID-19. Blood Adv. 2023, 7, 4200–4214. [Google Scholar] [CrossRef]
- Zhu, A.; Real, F.; Capron, C.; Rosenberg, A.R.; Silvin, A.; Dunsmore, G.; Zhu, J.; Cottoignies-Callamarte, A.; Masse, J.M.; Moine, P.; et al. Infection of lung megakaryocytes and platelets by SARS-CoV-2 anticipate fatal COVID-19. Cell. Mol. Life Sci. 2022, 79, 365. [Google Scholar] [CrossRef]
- Rapkiewicz, A.V.; Mai, X.; Carsons, S.E.; Pittaluga, S.; Kleiner, D.E.; Berger, J.S.; Thomas, S.; Adler, N.M.; Charytan, D.M.; Gasmi, B.; et al. Megakaryocytes and platelet-fibrin thrombi characterize multi-organ thrombosis at autopsy in COVID-19: A case series. EClinicalMedicine 2020, 24, 100434. [Google Scholar] [CrossRef]
- Pannone, G.; Pedicillo, M.C.; De Stefano, I.S.; Angelillis, F.; Barile, R.; Pannone, C.; Villani, G.; Miele, F.; Municinò, M.; Ronchi, A.; et al. The Role of TLR-2 in Lethal COVID-19 Disease Involving Medullary and Resident Lung Megakaryocyte Up-Regulation in the Microthrombosis Mechanism. Cells 2024, 13, 854. [Google Scholar] [CrossRef] [PubMed]
- Bermejo-Jambrina, M.; Eder, J.; Helgers, L.C.; Hertoghs, N.; Nijmeijer, B.M.; Stunnenberg, M.; Geijtenbeek, T.B.H. C-type lectin receptors in antiviral immunity and viral escape. Front. Immunol. 2018, 9, 590. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Ma, J.; Dong, Z.; Ren, Q.; Shan, Q.; Liu, J.; Gao, M.; Liu, G.; Zhang, S.; Qu, G.; et al. Lung megakaryocytes engulf inhaled airborne particles to promote intrapulmonary inflammation and extrapulmonary distribution. Nat. Commun. 2024, 15, 7396. [Google Scholar] [CrossRef]
- Pariser, D.N.; Hilt, Z.T.; Ture, S.K.; Blick-Nitko, S.K.; Looney, M.R.; Cleary, S.J.; Roman-Pagan, E.; Saunders, J., 2nd; Georas, S.N.; Veazey, J.; et al. Lung megakaryocytes are immune modulatory cells. J. Clin. Investig. 2021, 131, e137377. [Google Scholar] [CrossRef]
- Wang, J.; Xie, J.; Wang, D.; Han, X.; Chen, M.; Shi, G.; Jiang, L.; Zhao, M. CXCR4(high) megakaryocytes regulate host-defense immunity against bacterial pathogens. eLife 2022, 11, e78662. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhou, J.; Feng, B.; Pan, Q.; Yang, J.; Lang, G.; Shang, D.; Li, L.; Yu, J.; Cao, H. MSCs alleviate LPS-induced acute lung injury by inhibiting the proinflammatory function of macrophages in mouse lung organoid-macrophage model. Cell. Mol. Life Sci. 2024, 81, 124. [Google Scholar] [CrossRef]
- Oba, Y.; Lee, J.W.; Ehrlich, L.A.; Chung, H.Y.; Jelinek, D.F.; Callander, N.S.; Horuk, R.; Choi, S.J.; Roodman, G.D. MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Exp. Hematol. 2005, 33, 272–278. [Google Scholar] [CrossRef]
- Niu, C.; Liang, T.; Chen, Y.; Zhu, S.; Zhou, L.; Chen, N.; Qian, L.; Wang, Y.; Li, M.; Zhou, X.; et al. SARS-CoV-2 spike protein induces the cytokine release syndrome by stimulating T cells to produce more IL-2. Front. Immunol. 2024, 15, 1444643. [Google Scholar] [CrossRef]
- Allaeys, I.; Lemaire, G.; Leclercq, M.; Lacasse, E.; Fleury, M.; Dubuc, I.; Gudimard, L.; Puhm, F.; Tilburg, J.; Stone, A.; et al. SARS-CoV-2 infection modifies the transcriptome of the megakaryocytes in the bone marrow. Blood Adv. 2024, 8, 2777–2789. [Google Scholar] [CrossRef]
- Declercq, J.; De Leeuw, E.; Lambrecht, B.N. Inflammasomes and IL-1 family cytokines in SARS-CoV-2 infection: From prognostic marker to therapeutic agent. Cytokine 2022, 157, 155934. [Google Scholar] [CrossRef]
- Wang, S.; Mo, M.; Wang, J.; Sadia, S.; Shi, B.; Fu, X.; Yu, L.; Tredget, E.E.; Wu, Y. Platelet-derived growth factor receptor beta identifies mesenchymal stem cells with enhanced engraftment to tissue injury and pro-angiogenic property. Cell. Mol. Life Sci. 2018, 75, 547–561. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, H.; MacDonald, C.R.; Qiao, G.; Chen, M.; Dong, B.; Hylander, B.L.; McCarthy, P.L.; Abrams, S.I.; Repasky, E.A. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J. Clin. Investig. 2019, 129, 5537–5552. [Google Scholar] [CrossRef] [PubMed]
- Frisch, B.J.; Hoffman, C.M.; Latchney, S.E.; LaMere, M.W.; Myers, J.; Ashton, J.; Li, A.J.; Saunders, J., 2nd; Palis, J.; Perkins, A.S.; et al. Aged marrow macrophages expand platelet-biased hematopoietic stem cells via Interleukin1B. JCI Insight 2019, 5, e124213. [Google Scholar] [CrossRef]
- Keane, L.; Antignano, I.; Riechers, S.P.; Zollinger, R.; Dumas, A.A.; Offermann, N.; Bernis, M.E.; Russ, J.; Graelmann, F.; McCormick, P.N.; et al. mTOR-dependent translation amplifies microglia priming in aging mice. J. Clin. Investig. 2021, 131, e132727. [Google Scholar] [CrossRef]
- Fujino, T.; Asada, S.; Goyama, S.; Kitamura, T. Mechanisms involved in hematopoietic stem cell aging. Cell. Mol. Life Sci. 2022, 79, 473. [Google Scholar] [CrossRef]
- Hua, T.; Yao, F.; Wang, H.; Liu, W.; Zhu, X.; Yao, Y. Megakaryocyte in sepsis: The trinity of coagulation, inflammation and immunity. Crit. Care 2024, 28, 442. [Google Scholar] [CrossRef]
- Garcia, C.; Compagnon, B.; Poette, M.; Gratacap, M.P.; Lapebie, F.X.; Voisin, S.; Minville, V.; Payrastre, B.; Vardon-Bounes, F.; Ribes, A. Platelet versus megakaryocyte: Who is the real bandleader of thromboinflammation in sepsis? Cells 2022, 11, 1507. [Google Scholar] [CrossRef]
- Williams, B.; Zou, L.; Pittet, J.F.; Chao, W. Sepsis-induced coagulopathy: A comprehensive narrative review of pathophysiology, clinical presentation, diagnosis, and management strategies. Anesth. Analg. 2024, 138, 696–711. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Karmakar, S.; Babu, S.P. TLR2 and TLR4 mediated host immune responses in major infectious diseases: A review. Braz. J. Infect. Dis. 2016, 20, 193–204. [Google Scholar] [CrossRef]
- Tominari, T.; Matsumoto, C.; Tanaka, Y.; Shimizu, K.; Takatoya, M.; Sugasaki, M.; Karouji, K.; Kasuga, U.; Miyaura, C.; Miyata, S.; et al. Roles of toll-like receptor signaling in inflammatory bone resorption. Biology 2024, 13, 692. [Google Scholar] [CrossRef]
- Schumacher, A.; Denecke, B.; Braunschweig, T.; Stahlschmidt, J.; Ziegler, S.; Brandenburg, L.O.; Stope, M.B.; Martincuks, A.; Vogt, M.; Gortz, D.; et al. Angptl4 is upregulated under inflammatory conditions in the bone marrow of mice, expands myeloid progenitors, and accelerates reconstitution of platelets after myelosuppressive therapy. J. Hematol. Oncol. 2015, 8, 64. [Google Scholar] [CrossRef] [PubMed]
- Puhm, F.; Boilard, E.; Machlus, K.R. Platelet Extracellular Vesicles: Beyond the Blood. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Asquith, N.L.; Carminita, E.; Camacho, V.; Rodriguez-Romera, A.; Stegner, D.; Freire, D.; Becker, I.C.; Machlus, K.R.; Khan, A.O.; Italiano, J.E. The bone marrow is the primary site of thrombopoiesis. Blood 2024, 143, 272–278. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, S.V.; Lucerne, A.; Ravid, K. Immune and Inflammatory Properties of Megakaryocytes. Cells 2025, 14, 1053. https://doi.org/10.3390/cells14141053
Singh SV, Lucerne A, Ravid K. Immune and Inflammatory Properties of Megakaryocytes. Cells. 2025; 14(14):1053. https://doi.org/10.3390/cells14141053
Chicago/Turabian StyleSingh, Shiv Vardan, Audrey Lucerne, and Katya Ravid. 2025. "Immune and Inflammatory Properties of Megakaryocytes" Cells 14, no. 14: 1053. https://doi.org/10.3390/cells14141053
APA StyleSingh, S. V., Lucerne, A., & Ravid, K. (2025). Immune and Inflammatory Properties of Megakaryocytes. Cells, 14(14), 1053. https://doi.org/10.3390/cells14141053