Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,551)

Search Parameters:
Keywords = steel flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 15960 KB  
Article
Effect of Submerged Entry Nozzle Shape on Slag Entrainment Behavior in a Wide-Slab Continuous Casting Mold
by Guangzhen Zheng, Lei Ren and Jichun Yang
Materials 2026, 19(3), 460; https://doi.org/10.3390/ma19030460 - 23 Jan 2026
Abstract
Slag entrainment within the mold is a significant cause of surface defects in continuously cast slabs. As a key component for controlling molten steel flow, the structure of the submerged entry nozzle directly influences the flow field characteristics and slag entrainment behavior within [...] Read more.
Slag entrainment within the mold is a significant cause of surface defects in continuously cast slabs. As a key component for controlling molten steel flow, the structure of the submerged entry nozzle directly influences the flow field characteristics and slag entrainment behavior within the mold. This paper employs a 1:4-scale water–oil physical model combined with numerical simulation to investigate the effects of elliptical and circular submerged entry nozzles on slag entrainment behavior in a wide slab mold under different casting speeds and immersion depths. High-speed cameras were used to visualize meniscus fluctuations and oil droplet entrainment processes. An alternating control variable method was employed to quantitatively delineate a slag-free “safe zone” and a “slag entrainment zone” where oil droplets fall, determining the critical casting speed and critical immersion depth under different operating conditions. The results show that, given the nozzle immersion depth and slag viscosity, the maximum permissible casting speed range without slag entrainment can be obtained, providing a reference for industrial production parameter control. The root mean square (RMS) of surface fluctuations was introduced to characterize the activity of the meniscus flow. It was found that the RMS value decreases with increasing nozzle immersion depth and increases with increasing casting speed, showing a good correlation with the frequency of slag entrainment. Numerical simulation results show that compared with elliptical nozzles, circular nozzles form a more symmetrical flow field structure in the upper recirculation zone, with a left–right vortex center deviation of less than 5%, resulting in higher flow stability near the meniscus and thus reducing the risk of slag entrainment. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

24 pages, 5025 KB  
Article
Erosive Wear Mitigation Using 3D-Printed Twisted Tape Insert Under Liquid–Solid Flow
by Hammad Subhani, Rehan Khan and Darko Damjanović
Materials 2026, 19(3), 453; https://doi.org/10.3390/ma19030453 - 23 Jan 2026
Viewed by 31
Abstract
This study examines whether twisted tape inserts in a pipe system can reduce pipe erosion under a liquid–solid flow regime. Three different twisted tape configurations were designed using 3D printing technology: tapes with one twist, four twists, and four twists with perforations. Experiments [...] Read more.
This study examines whether twisted tape inserts in a pipe system can reduce pipe erosion under a liquid–solid flow regime. Three different twisted tape configurations were designed using 3D printing technology: tapes with one twist, four twists, and four twists with perforations. Experiments were performed using a PVC pipe with a carbon steel plate as the material under investigation. Slurries of water and silica sand were prepared with varying sand concentrations—1%, 3%, and 5%—to induce different erosion rates. The experimental results were backed by Computational Fluid Dynamics (CFD) using the discrete phase model (DPM) to predict particle flow and erosion attributes. Erosion trends were also tested through mass loss and paint loss tests. The analysis outcomes demonstrated that the one-twist, four-twist, and perforated four-twist tapes reduced the erosion rate by 18%, 39%, and 45%, respectively. Among the different configurations, the four-twist tape with holes reduced erosion the most. These results suggest that twisted tape inserts can control erosion, thereby increasing the service life of pipes that handle abrasive flows. Full article
(This article belongs to the Special Issue Friction, Wear and Surface Engineering of Materials)
Show Figures

Graphical abstract

14 pages, 7232 KB  
Article
Localized Induction Heating for Crack Healing of AISI 1020 Steel
by Aprilia Aprilia, Zixuan Ling, Vincent Gill, Nicholas Chia, Martyn A. Jones, Paul E. Williams and Wei Zhou
Materials 2026, 19(3), 451; https://doi.org/10.3390/ma19030451 - 23 Jan 2026
Viewed by 29
Abstract
This study investigates crack healing of AISI 1020 steel using localized induction heating with a pancake coil. A wire-cut slit sample and a repetitive-bent sample containing fine cracks were subjected to induction heating. Geometrical changes in the slit and cracks before and after [...] Read more.
This study investigates crack healing of AISI 1020 steel using localized induction heating with a pancake coil. A wire-cut slit sample and a repetitive-bent sample containing fine cracks were subjected to induction heating. Geometrical changes in the slit and cracks before and after heating were evaluated. Healing of fine cracks and local melting of the slit tip were observed. Numerical simulations were conducted to understand the current flow, current density distribution and Joule heating behavior within the samples. Results showed that current detours around cracks and concentrates at crack tips during induction heating. This enables the ability of induction heating to selectively locate and treat cracks effectively. Localized induction heating using a pancake coil enhances the crack-healing effectiveness by providing a non-singular current flow direction within the material. It also offers the flexibility to treat a specific localized region in a component. While localized induction heating demonstrates strong potential for crack-healing applications, its effectiveness is primarily limited to fine surface cracks. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

24 pages, 6607 KB  
Article
Energy Transfer Characteristics of Surface Vortex Heat Flow Under Non-Isothermal Conditions Based on the Lattice Boltzmann Method
by Qing Yan, Lin Li and Yunfeng Tan
Processes 2026, 14(2), 378; https://doi.org/10.3390/pr14020378 - 21 Jan 2026
Viewed by 58
Abstract
During liquid drainage from intermediate vessels in various industrial processes such as continuous steel casting, aircraft fuel supply, and chemical separation, free-surface vortices commonly occur. The formation and evolution of these vortices not only entrain surface slag and gas, but also lead to [...] Read more.
During liquid drainage from intermediate vessels in various industrial processes such as continuous steel casting, aircraft fuel supply, and chemical separation, free-surface vortices commonly occur. The formation and evolution of these vortices not only entrain surface slag and gas, but also lead to deterioration of downstream product quality and abnormal equipment operation. The vortex evolution process exhibits notable three-dimensional unsteadiness, multi-scale turbulence, and dynamic gas–liquid interfacial changes, accompanied by strong coupling effects between temperature gradients and flow field structures. Traditional macroscopic numerical models show clear limitations in accurately capturing these complex physical mechanisms. To address these challenges, this study developed a mesoscopic numerical model for gas-liquid two-phase vortex flow based on the lattice Boltzmann method. The model systematically reveals the dynamic behavior during vortex evolution and the multi-field coupling mechanism with the temperature field while providing an in-depth analysis of how initial perturbation velocity regulates vortex intensity and stability. The results indicate that vortex evolution begins near the bottom drain outlet, with the tangential velocity distribution conforming to the theoretical Rankine vortex model. The vortex core velocity during the critical penetration stage is significantly higher than that during the initial depression stage. An increase in the initial perturbation velocity not only enhances vortex intensity and induces low-frequency oscillations of the vortex core but also markedly promotes the global convective heat transfer process. With regard to the temperature field, an increase in fluid temperature reduces the viscosity coefficient, thereby weakening viscous dissipation effects, which accelerates vortex development and prolongs drainage time. Meanwhile, the vortex structure—through the induction of Taylor vortices and a spiral pumping effect—drives shear mixing and radial thermal diffusion between fluid regions at different temperatures, leading to dynamic reconstruction and homogenization of the temperature field. The outcomes of this study not only provide a solid theoretical foundation for understanding the generation, evolution, and heat transfer mechanisms of vortices under industrial thermal conditions, but also offer clear engineering guidance for practical production-enabling optimized operational parameters to suppress vortices and enhance drainage efficiency. Full article
(This article belongs to the Section Energy Systems)
17 pages, 3184 KB  
Article
Numerical Simulation for Lightweight Design of a Liquid Hydrogen Weighing Tank for Flow Standard
by Xiang Li, Menghui Wu, Xianlei Chen, Yu Meng, Xiaobin Zhang, Weijie Chen, Shanyi Xu, Naifeng Nie, Yongcheng Zhu, Jianan Zhou, Yanbo Peng, Yalei Zhao, Chengxu Tu and Fubing Bao
Appl. Sci. 2026, 16(2), 1111; https://doi.org/10.3390/app16021111 - 21 Jan 2026
Viewed by 45
Abstract
To improve the accuracy of gravimetric liquid hydrogen flow standard devices, the self-weight of the weighing tank must be minimized, because the total mass of the liquid hydrogen contained in the tank is far smaller than the structural mass of the tank itself, [...] Read more.
To improve the accuracy of gravimetric liquid hydrogen flow standard devices, the self-weight of the weighing tank must be minimized, because the total mass of the liquid hydrogen contained in the tank is far smaller than the structural mass of the tank itself, which severely compromises the sensitivity of gravimetric measurement. In this study, a three-dimensional finite element model of a vacuum-insulated liquid-hydrogen weighing tank was developed in ABAQUS. The inner and outer shells were modeled with 06Cr19Ni10 (304) and 06Cr17Ni12Mo2 (316) austenitic stainless steels, and Polyamide 6 (PA6) was used for the internal support. Three operating stages were considered: evacuation of the annulus (interlayer pressure reduced from 0.1 MPa to 0 MPa), pre-cooling to −253 °C, and pressurization of the inner tank (internal pressure increased from 0.1 MPa to 1 MPa). The equivalent stress and deformation were compared for different materials and wall thicknesses to evaluate structural safety and weight-reduction potential. The proposed configuration (inner shell 1.6 mm and outer shell 1.0 mm) achieves a mass reduction of more than 50% relative to the 3 mm minimum wall thickness commonly adopted for cryogenic vessels, while keeping stresses below the allowable limits. This reduction enables the use of higher-resolution load cells and thereby lowering the measurement uncertainty of the liquid hydrogen flow standard device and providing technical support for lightweight and cost-effective design, with potential applicability to other cryogenic tank systems. Full article
Show Figures

Figure 1

22 pages, 1240 KB  
Article
An Iterative Reinforcement Learning Algorithm for Speed Drop Compensation in Rolling Mills
by Shengyue Zong, Jiwei Chen, Yanpeng Hu and Jinyan Li
Algorithms 2026, 19(1), 84; https://doi.org/10.3390/a19010084 - 18 Jan 2026
Viewed by 79
Abstract
In the process of steel rolling production, the speed reduction compensation of the rolling mill is a key link to ensure the stability of slab rolling and product quality. This paper proposes a hybrid compensation method that integrates motor dynamic modeling with reinforcement [...] Read more.
In the process of steel rolling production, the speed reduction compensation of the rolling mill is a key link to ensure the stability of slab rolling and product quality. This paper proposes a hybrid compensation method that integrates motor dynamic modeling with reinforcement learning to minimize mass flow error between adjacent rolling mills during slab rolling. A two-stage compensation strategy is designed, consisting of a constant-gain compensation phase followed by a decaying compensation phase, which explicitly accounts for the repetitive and consistent rolling conditions in batch slab production. Based on a motor dynamics-based theoretical model, an initial estimation of compensation parameters is first obtained, providing a physically interpretable starting point for optimization. Subsequently, a Deep Deterministic Policy Gradient (DDPG) algorithm is employed to iteratively refine the compensation parameters by learning from the mass flow error of each rolled slab, enabling data-driven adaptation while preserving physical consistency. Simulation results demonstrate that the proposed hybrid approach significantly reduces the mass flow error and achieves stable convergence, outperforming strategies with randomly initialized parameters. The results verify the effectiveness and novelty of the proposed method in combining model-based insight with reinforcement learning for intelligent and adaptive rolling mill speed drop compensation. Full article
Show Figures

Figure 1

16 pages, 7668 KB  
Article
Heterogeneity of Microstructure and Mechanical Response in Steel–Titanium Multilayer Wires Subjected to Severe Plastic Deformation
by Bartłomiej Pabich, Paulina Lisiecka-Graca, Marcin Kwiecień and Janusz Majta
Metals 2026, 16(1), 106; https://doi.org/10.3390/met16010106 - 17 Jan 2026
Viewed by 173
Abstract
This study addresses the fundamental problem of representing the rheological properties of heterostructured materials composed of metals that differ significantly in their crystal structure, stacking fault energy, and related characteristics. The necessity of accounting for essential strengthening mechanisms is highlighted. The study is [...] Read more.
This study addresses the fundamental problem of representing the rheological properties of heterostructured materials composed of metals that differ significantly in their crystal structure, stacking fault energy, and related characteristics. The necessity of accounting for essential strengthening mechanisms is highlighted. The study is based on experimental results related to the fabrication of a multilayer, heterogeneous system via multistage wire drawing, supported by microstructural analysis, microhardness measurements, and numerical simulations employing various flow-stress models. A discussion is presented regarding the effectiveness of these models in representing the deformation behavior of the investigated materials. The primary materials examined were a multilayer system composed of microalloyed steel and titanium. The obtained results indicate that, in addition to incorporating strengthening mechanisms, it is necessary to consider significant microstructural changes affecting microstructure evolution—particularly grain refinement induced by continuous recrystallization and the effects of strain hardening. Moreover, the findings point to the potential intensification of strengthening associated with pile-up mechanisms, linked to the development of dislocation substructures and the possible fragmentation of the hard phase in the vicinity of the more ductile microalloyed steel phase. In conclusion, the discussion integrates measurements of rheological properties obtained through tensile tests, supported by microstructural analysis, digital image correlation (DIC), and microhardness measurements, which collectively demonstrate the effectiveness of the adopted analytical approach. Full article
(This article belongs to the Special Issue Advances in the Forming and Processing of Metallic Materials)
Show Figures

Figure 1

23 pages, 3909 KB  
Article
Development and Application of a “Decomposition–Denoising”-Based Vibration-Signal Denoising System for Radial Steel Gates Under Discharge Excitation
by Chen Wang, Yakun Liu, Wenqi Wang, Yuan Wang, Di Zhang and Kaixuan Zhang
Appl. Sci. 2026, 16(2), 929; https://doi.org/10.3390/app16020929 - 16 Jan 2026
Viewed by 98
Abstract
To mitigate the pervasive noise interference present in the measured vibration signals of radial steel gates and to address the limitations of conventional wavelet-threshold denoising, this study proposes a coupled “decomposition–denoising” theoretical framework for vibration-signal purification. The key novelty lies in a smooth [...] Read more.
To mitigate the pervasive noise interference present in the measured vibration signals of radial steel gates and to address the limitations of conventional wavelet-threshold denoising, this study proposes a coupled “decomposition–denoising” theoretical framework for vibration-signal purification. The key novelty lies in a smooth and tunable thresholding strategy that enables controlled filtering while preserving key structural characteristics within an integrated denoising workflow. In the proposed approach, the measured signal is decomposed into intrinsic mode components using a data-driven decomposition method, noise-dominated components are identified using multiscale permutation entropy, and only these components are selectively denoised before signal reconstruction. Both qualitative and quantitative analyses conducted on synthetic signals demonstrate the effectiveness of the proposed framework and confirm the enhanced smoothness and robustness of the improved thresholding scheme. Performance is evaluated using objective measures such as signal-to-noise ratio and root-mean-square error, together with spectral-consistency checks for field measurements. Furthermore, two field-measured engineering cases involving radial steel gates substantiate the engineering applicability and generalization capability of the proposed method, showing clearer signals and more stable diagnostic-relevant indicators. Finally, the study integrates the decomposition, denoising, and parameter-selection modules into a user-oriented vibration-signal denoising system, establishing an efficient workflow for engineering signal processing and subsequent structural-health monitoring applications. Full article
(This article belongs to the Special Issue Novel Advances in Noise and Vibration Control)
Show Figures

Figure 1

17 pages, 4796 KB  
Article
Design and Wind-Induced Fatigue Analysis of a Dynamic Movable Sculpture in Coastal Environments: A Case Study of the Welcome Tower
by Leming Gu, Haixia Liu, Mingzhuo Rui, Laizhu Jiang, Jie Chen, Dagen Dong, Hai Wang and Jianguo Cai
Buildings 2026, 16(2), 350; https://doi.org/10.3390/buildings16020350 - 14 Jan 2026
Viewed by 192
Abstract
This study focuses on the design, material selection, and wind-induced fatigue analysis of a dynamic movable sculpture atop the Welcome Tower at Yazhou Bay Bougainvillea Park in Sanya. The sculpture, consisting of eight movable leaves, is driven by a hydraulic system enabling it [...] Read more.
This study focuses on the design, material selection, and wind-induced fatigue analysis of a dynamic movable sculpture atop the Welcome Tower at Yazhou Bay Bougainvillea Park in Sanya. The sculpture, consisting of eight movable leaves, is driven by a hydraulic system enabling it to assume five distinct shapes. Nickel-saving stainless steel (S22152/S32001) was chosen as the primary material due to its excellent corrosion resistance and strength, ensuring durability in the harsh coastal environment. The mechanical system is designed with a two-level lifting device, rotation system, and push-rod mechanism, allowing the leaves to perform functions such as rising, opening, closing, and rotating while minimizing mechanical load. Wind tunnel tests and numerical simulations were conducted to analyze the sculpture’s performance under wind loads. Using the rain-flow counting method and Miner’s linear fatigue accumulation theory, the study calculated stress amplitude and fatigue damage, finding that the most unfavorable fatigue life of the sculpture’s components is 380 years. This analysis demonstrates that the sculpture will not experience fatigue damage over its expected lifespan, providing valuable insights for the design of dynamic sculptures in coastal environments. The research integrates mechanical design, material selection, and fatigue analysis, ensuring the sculpture’s long-term stability and resistance to wind-induced fatigue. Full article
Show Figures

Figure 1

18 pages, 4145 KB  
Article
A Hydrodynamic Model of the Subsea Christmas Trees in the Drill Pipes Retrieval Process at 2000-Meter Water Depth
by Xudong Wu, Jianyi Chen, Ming Luo, Chunming Zeng, Heng Wang, Yingying Wang and Qi Wei
Processes 2026, 14(2), 256; https://doi.org/10.3390/pr14020256 - 12 Jan 2026
Viewed by 241
Abstract
Subsea Christmas trees serve as key technical equipment for subsea oil and gas development, as they regulate the flow of oil and gas at subsea wellheads. Most deep-water subsea Christmas trees deployed in China depend on imports, resulting in high procurement costs. Post-operation, [...] Read more.
Subsea Christmas trees serve as key technical equipment for subsea oil and gas development, as they regulate the flow of oil and gas at subsea wellheads. Most deep-water subsea Christmas trees deployed in China depend on imports, resulting in high procurement costs. Post-operation, these systems are typically hoisted and recovered using drill pipes and steel wire ropes. However, the harsh and dynamic deep-sea environment complicates the prediction of the tree movement posture in seawater, making safe retrieval an urgent challenge in marine oil and gas resource exploitation. Focusing on 2000 m water depth subsea Christmas tree installation and retrieval, with a specific sea area in the South China Sea as the case study, this paper applies OrcaFlex software version 11.4 to analyze drill pipe stress during retrieval and investigate movement posture changes of the tree body across different stages. Meanwhile, targeting varied operational sea conditions and integrating orthogonal test analysis, this paper quantifies the influence of parameters (wave height, ocean current velocity, and retrieval speed) on the retrieval process. The findings provide theoretical guidance and technical support for China’s deep-water subsea Christmas tree installation and retrieval operations. Full article
Show Figures

Figure 1

29 pages, 7532 KB  
Article
Methodology to Quantify the Water Content of Axisymmetric Cylindrical Cement-Based Material Samples Using Neutron Radiography
by Luiz Antonio de Siqueira Neto, Osman Burkan Isgor, Steven Richard Reese and William Jason Weiss
Symmetry 2026, 18(1), 114; https://doi.org/10.3390/sym18010114 - 7 Jan 2026
Viewed by 204
Abstract
Neutron radiography has been used to assess water content and transport in porous media like cement paste, mortar and concrete. This paper presents a methodology to evaluate water content profiles from neutron radiographs of axisymmetric cylindrical samples along the radial direction. Three examples [...] Read more.
Neutron radiography has been used to assess water content and transport in porous media like cement paste, mortar and concrete. This paper presents a methodology to evaluate water content profiles from neutron radiographs of axisymmetric cylindrical samples along the radial direction. Three examples are proposed as potential applications of this methodology: a drying mortar specimen, a sample of fluid cement paste during high-shear flow, and a steel-reinforced mortar specimen with a gap at the steel–mortar interface. In each case, a simulated neutron image is generated to represent experimental data. The proposed methodology is used to back-calculate the water content distribution of the original sample. The proposed approach can accurately quantify the distribution of water in all three theoretical cylindrical samples. For neutron radiographs created using a random distribution of neutron cross-section values for each constituent, emulating the experimental variability of the imaging process, the proposed method was able to quantify the distribution of water along the radial direction with an average error less than 1.5% for the drying mortar specimen, 3% for the cement paste sample during high-shear flow, and 4% for the reinforced sample with a gap at the steel–mortar interface. Full article
(This article belongs to the Special Issue Applications Based on Symmetry in Additive Manufacturing)
Show Figures

Figure 1

18 pages, 7341 KB  
Article
Study on Mechanical Properties of Adjustable-Ring-Mode Laser Scanning Welding of TA1 Titanium Alloy to 304 Stainless Steel Dissimilar Thin Sheets
by Geng Li, Tengyi Yu, Peiqing Yang, Suning Zhao, Shuai Zhang, Honghua Ma, Shang Wu, Ji Li and Ming Gao
Materials 2026, 19(2), 230; https://doi.org/10.3390/ma19020230 - 7 Jan 2026
Viewed by 164
Abstract
The adjustable-ring-mode (ARM) scanning laser was used to perform butt welding on 0.5 mm thick TA1 titanium alloy and 304 stainless steel (SS304) thin sheets, with 1.2 mm diameter AZ61S magnesium alloy welding wire as the filling material. Microhardness test results show that [...] Read more.
The adjustable-ring-mode (ARM) scanning laser was used to perform butt welding on 0.5 mm thick TA1 titanium alloy and 304 stainless steel (SS304) thin sheets, with 1.2 mm diameter AZ61S magnesium alloy welding wire as the filling material. Microhardness test results show that the hardness distribution presented a trend of being higher in the base metals on both sides and lower in the middle filling area, with no hardening observed in the weld zone. For all specimens subjected to horizontal and axial weld bending tests, the bending angle reached 108° without any cracks occurring. When the ring power was in the range of 800–1000 W, or the scanning frequency was between 100 and 200 Hz, all the average tensile strengths of the welded joints were more than 80% of that of the AZ61S filling material (approximately 240 MPa); the maximum average tensile strength stood at 281.2 MPa, which is equivalent to 93.7% of the AZ61S. As the ring power or scanning frequency increased further, the tensile strengths of the joints showed a decreasing trend. The remelting effect of the trailing edge of the ARM laser under high energy conditions, or the scouring of the turbulent molten flow induced by the scanning beam, damages the weak links at the newly formed solid–liquid interface and increases the Fe concentration in the molten pool. This leads to a thicker FeAl interface layer during growth, thereby resulting in a decline in the mechanical properties of the welded joints. Full article
(This article belongs to the Special Issue Advanced Welding in Alloys and Composites, Second Edition)
Show Figures

Figure 1

33 pages, 17008 KB  
Article
Investigation on the Fresh and Mechanical Properties of Low Carbon 3D Printed Concrete Incorporating Sugarcane Bagasse Ash and Microfibers
by A. H. M. Javed Hossain Talukdar, Muge Belek Fialho Teixeira, Sabrina Fawzia, Tatheer Zahra, Mohammad Eyni Kangavar and Nor Hafizah Ramli Sulong
Buildings 2026, 16(1), 230; https://doi.org/10.3390/buildings16010230 - 4 Jan 2026
Viewed by 438
Abstract
The use of recycled materials and locally sourced alternative binders in 3D concrete printing (3DCP) has significant potential to reduce carbon emissions in concrete construction. This study examines the effect of sugarcane bagasse ash (SCBA), a byproducts from the sugarcane industry, as a [...] Read more.
The use of recycled materials and locally sourced alternative binders in 3D concrete printing (3DCP) has significant potential to reduce carbon emissions in concrete construction. This study examines the effect of sugarcane bagasse ash (SCBA), a byproducts from the sugarcane industry, as a sustainable binder in 3DCP. SCBA was oven-dried at 105 °C, sieved to 250 µm, and used to replace up to 25% of the total binder by weight in a supplementary cementitious material (SCM) blended system. The impact of polypropylene (PP) and steel (ST) microfibres on SCBA-based mixes was also investigated. The fresh properties of the mortar were evaluated using the flow table, Vicat needle, shape retention, buildability, and rheometer tests. The mortar was 3D printed using a small-scale robotic setup with a RAM extruder. Mechanical properties were then tested, including compressive and flexural strengths, and interlayer bonding, along with microstructure analysis. The results showed that increasing the SCBA content led to greater slump and improved flowability, as well as a slower rate of static yield stress development, with up to a 90 percent reduction compared to the control mix. The addition of PP fibres doubled the static yield stress in the mixes containing 20 percent SCBA. The 10 percent SCBA mix achieved the highest mechanical strength, both in compression and flexure, due to its denser microstructure and enhanced pozzolanic reaction. Full article
(This article belongs to the Special Issue 3D-Printed Technology in Buildings)
Show Figures

Figure 1

18 pages, 9330 KB  
Article
Study on the Flow Behavior of Molten Pool in K-TIG Welding of Invar 36 and Stainless Steel Dissimilar Materials
by Chunsi Li, Peng Xu, Yonggang Du, Jiayuan Li, Hongbing Liu, Fei Wang, Bowei He and Yang Xuan
Coatings 2026, 16(1), 58; https://doi.org/10.3390/coatings16010058 - 4 Jan 2026
Viewed by 297
Abstract
The paper investigates the arc behavior and molten metal flow during Keyhole tungsten inert gas (K-TIG) welding of dissimilar materials, Invar 36 and stainless steel (types 304, 316, 309, and 310) specifically. A high-speed camera was used to capture the contour of the [...] Read more.
The paper investigates the arc behavior and molten metal flow during Keyhole tungsten inert gas (K-TIG) welding of dissimilar materials, Invar 36 and stainless steel (types 304, 316, 309, and 310) specifically. A high-speed camera was used to capture the contour of the molten pool in real time. Results showed that in stainless steel welding, the arc shape is bell-shaped, and the distance from the tip of the molten pool to the keyhole decreases with increasing thermal conductivity (6.76–10.86 mm). When Invar 36 was butt-welded, the arc contracted. However, when Invar 36 was welded with dissimilar materials of stainless steel, the arc deflected to the Invar 36 side. The deflection angle ranged from 29.9° to 37°, resulting in an asymmetric arc shape. The distance from the tip of the molten pool to the keyhole increased to 10.88–13.33 mm, which was about 42% higher than that of the same material welding. Metallographic analysis showed that the width of the heat affected zone on the Invar 36 side increases with the decrease in thermal conductivity of the stainless steel (1.77–2.03 mm). Differences in thermophysical properties and viscosity further led to asymmetric molten pool flow and metal accumulation behavior. This study quantified the formation mechanism of arc deflection and weld pool asymmetry in K-TIG welding of dissimilar materials. Full article
Show Figures

Figure 1

25 pages, 8354 KB  
Article
Optimized Design and Numerical Analysis of Dust Removal in Blast Furnace Nozzle Based on Air Volume-Structure Coordinated Control
by Hui Wang, Yuan Dong, Wen Li, Haitao Wang and Xiaohua Zhu
Atmosphere 2026, 17(1), 64; https://doi.org/10.3390/atmos17010064 - 4 Jan 2026
Viewed by 339
Abstract
Blast furnace tuyeres are the primary dust emission source in ironmaking facilities (accounting for over 30% of total pollutants). High-temperature dust plumes with intense thermal energy are prone to dispersion, while China’s steel industry ultra-low emission standards (particulate matter ≤ 10 mg/m3 [...] Read more.
Blast furnace tuyeres are the primary dust emission source in ironmaking facilities (accounting for over 30% of total pollutants). High-temperature dust plumes with intense thermal energy are prone to dispersion, while China’s steel industry ultra-low emission standards (particulate matter ≤ 10 mg/m3) impose strict requirements on capture efficiency. Existing technologies often neglect crosswind interference and lack coordinated design between air volume regulation and hood structure, leading to excessive fugitive emissions and non-compliance. This study established a localized numerical model for high-temperature dust capture at blast furnace tuyeres, investigating air volume’s impact on velocity fields and capture efficiency, revealing crosswind interference mechanisms, and proposing optimization strategies (adding hood baffles, adjusting dimensions, installing ejector fans). Results show crosswind significantly reduces efficiency—only 78% at 1.5 m/s crosswind and 400,000 m3/h flow rate. The optimal configuration (2.5 m side flaps plus1.4 m baffles) achieves 99% efficiency, maintaining high performance at lower flow rates: 350,000 m3/h (1.5 m/s crosswind) and 250,000 m3/h (0.9 m/s crosswind). This study provides technical support for blast furnace tuyere dust control and facilitates ultra-low emission compliance in the steel industry. This study supports blast furnace tuyere dust control and aids the steel industry in meeting ultra-low emission standards. Notably, the proposed optimization scheme boasts simple structural adjustments, low retrofitting costs, and good compatibility with existing production lines, enabling direct industrial promotion and notable environmental and economic gains. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

Back to TopTop