Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = stationary seal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2242 KiB  
Article
Analysis of Dynamic Tracking Characteristics of Dry Gas Seals During Start-Up Process
by Qiangguo Deng, Yong Zhou, Pingyang Yu, Hengjie Xu, Xuejian Sun and Wenyuan Mao
Lubricants 2025, 13(5), 201; https://doi.org/10.3390/lubricants13050201 - 30 Apr 2025
Viewed by 429
Abstract
Based on the small perturbation method, the transient pressure control equation considering real gas effects was solved, and the fitting expression for the dynamic characteristic parameters of the gas film during the start-up process was obtained. Subsequently, the influence of structural parameters of [...] Read more.
Based on the small perturbation method, the transient pressure control equation considering real gas effects was solved, and the fitting expression for the dynamic characteristic parameters of the gas film during the start-up process was obtained. Subsequently, the influence of structural parameters of spiral-groove dry-gas seals on the dynamic tracking of the stationary ring’s motion during the non-steady-state start-up process under three-degree-of-freedom perturbations was analyzed. The results show that when the stationary and rotating rings initially separate, the stationary ring exhibits good tracking performance for both axial and angular motions of the rotating ring, although the tracking capability varies significantly. As time and film thickness increase, the tracking capability gradually weakens, and for the working film thickness, the tracking parameters tend to stabilize when the working film thickness is reached. The larger the spiral angles and the deeper the dynamic pressure grooves, the poorer the axial and angular tracking performance of the sealing ring. The number of grooves has a minimal impact on the axial and angular tracking performance of the stationary ring. A higher balance coefficient improves the axial and angular tracking performance of the stationary ring. Full article
Show Figures

Figure 1

26 pages, 9842 KiB  
Article
Compressed Air Energy Storage in Salt Caverns Optimization in Southern Ontario, Canada
by Jingyu Huang and Shunde Yin
Energies 2025, 18(9), 2258; https://doi.org/10.3390/en18092258 - 29 Apr 2025
Viewed by 537
Abstract
Energy storage systems are gaining increasing attention as a solution to the inherent intermittency of renewable energy sources such as solar and wind power. Among large-scale energy storage technologies, compressed air energy storage (CAES) stands out for its natural sealing properties and cost-efficiency. [...] Read more.
Energy storage systems are gaining increasing attention as a solution to the inherent intermittency of renewable energy sources such as solar and wind power. Among large-scale energy storage technologies, compressed air energy storage (CAES) stands out for its natural sealing properties and cost-efficiency. Having abundant salt resources, the thick and regionally extensive salt deposits in Unit B of Southern Ontario, Canada, demonstrate significant potential for CAES development. In this study, optimization for essential CAES salt cavern parameters are conducted using geological data from Unit B salt deposit. Cylinder-shaped and ellipsoid-shaped caverns with varying diameters are first simulated to determine the optimal geometry. To optimize the best operating pressure range, stationary simulations are first conducted, followed by tightness evaluation and long-term stability simulation that assess plastic and creep deformation. The results indicate that a cylinder-shaped cavern with a diameter 1.5 times its height provides the best balance between storage capacity and structural stability. While ellipsoid shape reduces stress concentration significantly, it also leads to increased deformation in the shale interlayers, making them more susceptible to failure. Additionally, the findings suggest that the optimal operating pressure lies between 0.4 and 0.7 times the vertical stress, maintaining large capacity and minor gas leakage, and developing the least creep deformation. Full article
Show Figures

Figure 1

18 pages, 3497 KiB  
Article
Physics-Informed Neural Networks for the Reynolds Equation with Transient Cavitation Modeling
by Faras Brumand-Poor, Florian Barlog, Nils Plückhahn, Matteo Thebelt, Niklas Bauer and Katharina Schmitz
Lubricants 2024, 12(11), 365; https://doi.org/10.3390/lubricants12110365 - 23 Oct 2024
Cited by 4 | Viewed by 2332
Abstract
Gaining insight into tribological systems is crucial for optimizing efficiency and prolonging operational lifespans in technical systems. Experimental investigations are time-consuming and costly, especially for reciprocating seals in fluid power systems. Elastohydrodynamic lubrication (EHL) simulations offer an alternative but demand significant computational resources. [...] Read more.
Gaining insight into tribological systems is crucial for optimizing efficiency and prolonging operational lifespans in technical systems. Experimental investigations are time-consuming and costly, especially for reciprocating seals in fluid power systems. Elastohydrodynamic lubrication (EHL) simulations offer an alternative but demand significant computational resources. Physics-informed neural networks (PINNs) provide a promising solution using physics-based approaches to solve partial differential equations. While PINNs have successfully modeled hydrodynamics with stationary cavitation, they have yet to address transient cavitation with dynamic geometry changes. This contribution applies a PINN framework to predict pressure build-up and transient cavitation in sealing contacts with dynamic geometry changes. The results demonstrate the potential of PINNs for modeling tribological systems and highlight their significance in enhancing computational efficiency. Full article
(This article belongs to the Special Issue Intelligent Algorithms for Triboinformatics)
Show Figures

Figure 1

35 pages, 11086 KiB  
Article
Research on the Correlation between Mechanical Seal Face Vibration and Stationary Ring Dynamic Behavior Characteristics
by Yunfeng Song, Hua Li, Wang Xiao, Shuangxi Li and Qingfeng Wang
Lubricants 2024, 12(9), 316; https://doi.org/10.3390/lubricants12090316 - 12 Sep 2024
Viewed by 1295
Abstract
To address the lack of reliable measurement methods for identifying wear mechanisms and predicting the state of mechanical seal tribo-parts, this study proposes a method for characterizing tribological behavior based on measuring face vibration acceleration. It aims to uncover the source mechanism of [...] Read more.
To address the lack of reliable measurement methods for identifying wear mechanisms and predicting the state of mechanical seal tribo-parts, this study proposes a method for characterizing tribological behavior based on measuring face vibration acceleration. It aims to uncover the source mechanism of mechanical seal face vibration acceleration influenced by tribology and dynamic behavior. This research delves into the dynamic behavior characteristics and vibration acceleration of the mechanical seal stationary ring. We explored the variation pattern of face vibration acceleration root mean square (RMS) with rotation speed, sealing medium pressure, and face surface roughness. The results indicate that under constant medium pressure, an increase in rotation speed leads to a decrease in acceleration RMS and an increase in face temperature. Similarly, under constant rotation speed, an increase in medium pressure results in nonlinear changes in acceleration RMS, forming an “M” shape, along with an increase in face temperature. Furthermore, under conditions of constant medium pressure and rotation speed, an increase in the surface roughness of the rotating ring face corresponds to an increase in acceleration RMS and face temperature. Upon starting the mechanical seal, both acceleration RMS and temperature initially increase before decreasing, a trend consistent with the Stribeck curve. Full article
(This article belongs to the Special Issue Wear Mechanism Identification and State Prediction of Tribo-Parts)
Show Figures

Figure 1

18 pages, 6289 KiB  
Article
Tacholess Time Synchronous Averaging for Gear Fault Diagnosis in Wind Turbine Gearboxes Using a Single Accelerometer
by Trong-Du Nguyen, Huu-Cuong Nguyen, Van-Minh-Hoang Nguyen and Phong-Dien Nguyen
Machines 2024, 12(6), 424; https://doi.org/10.3390/machines12060424 - 20 Jun 2024
Cited by 1 | Viewed by 1817
Abstract
Wind power is increasingly seen as a global, sustainable, and eco-friendly energy option. However, one significant obstacle to further wind energy investment is the high failure rate of wind turbines. The gearbox plays a pivotal role in turbine performance. In recent years, there [...] Read more.
Wind power is increasingly seen as a global, sustainable, and eco-friendly energy option. However, one significant obstacle to further wind energy investment is the high failure rate of wind turbines. The gearbox plays a pivotal role in turbine performance. In recent years, there has been a surge in the focus on gearbox fault diagnosis, reflecting its criticality and prevalence in the industry. Time synchronous averaging (TSA) is a primary technique to identify faults in wind turbine gearboxes using mechanical vibration signals. Generally, implementing TSA requires a device that is capable of recording the phase information of a rotary shaft. Nevertheless, there are situations in which the installation of such a device poses difficulties. For instance, gearboxes that are in use cannot be halted to allow for the installation of a device, and sealed gearboxes provide challenges while being inserted into the device. This research presents an innovative technical way to improve the TSA method without requiring a phase signal. The proposed method has the advantage of extracting the shaft rotation angle signal from the measured acceleration signal, even in non-stationary conditions where the rotational speed varies over time. The effectiveness of the proposed method is validated through measured datasets from wind turbine gearboxes with actual faults and a dataset from a gear system with variable rotational speeds. Full article
Show Figures

Figure 1

18 pages, 7994 KiB  
Article
A Strategy for Enhanced Carbon Storage: A Hybrid CO2 and Aqueous Formate Solution Injection to Control Buoyancy and Reduce Risk
by Marcos Vitor Barbosa Machado, Mojdeh Delshad, Omar Ali Carrasco Jaim, Ryosuke Okuno and Kamy Sepehrnoori
Energies 2024, 17(11), 2680; https://doi.org/10.3390/en17112680 - 31 May 2024
Cited by 1 | Viewed by 1690
Abstract
Conventional Carbon Capture and Storage (CCS) operations use the direct injection of CO2 in a gaseous phase from the surface as a carbon carrier. Due to CO2 properties under reservoir conditions with lower density and viscosity than in situ brine, CO [...] Read more.
Conventional Carbon Capture and Storage (CCS) operations use the direct injection of CO2 in a gaseous phase from the surface as a carbon carrier. Due to CO2 properties under reservoir conditions with lower density and viscosity than in situ brine, CO2 flux is mainly gravity-dominated. CO2 moves toward the top and accumulates below the top seal, thus reinforcing the risk of possible leakage to the surface through unexpected hydraulic paths (e.g., reactivated faults, fractures, and abandoned wells) or in sites without an effective sealing caprock. Considering the risks, the potential benefits of the interplay between CO2 and an aqueous solution of formate ions (HCOO¯) were evaluated when combined to control CO2 gravity segregation in porous media. Three combined strategies were evaluated and compared with those where either pure CO2 or a formate solution was injected. The first strategy consisted of a pre-flush of formate solution followed by continuous CO2 injection, and it was not effective in controlling the vertical propagation of the CO2 plume. However, the injection of a formate solution slug in a continuous or alternated way, simultaneously with the CO2 continuous injection, was effective in slowing down the vertical migration of the CO2 plume and keeping it permanently stationary deeper than the surface depth. Full article
(This article belongs to the Special Issue Subsurface Energy and Environmental Protection)
Show Figures

Figure 1

22 pages, 5333 KiB  
Article
Soft Sensor Technology for the Determination of Mechanical Seal Friction Power Performance
by Nils Reeh, Gerd Manthei and Peter J. Klar
Appl. Syst. Innov. 2024, 7(3), 39; https://doi.org/10.3390/asi7030039 - 4 May 2024
Cited by 1 | Viewed by 2630
Abstract
Mechanical seals ensure the internal sealing of centrifugal pumps from the surrounding environment. They are one of the most critical components in a centrifugal pump. For this reason, the condition of mechanical seals should be monitored during operation. Mechanical seal friction power is [...] Read more.
Mechanical seals ensure the internal sealing of centrifugal pumps from the surrounding environment. They are one of the most critical components in a centrifugal pump. For this reason, the condition of mechanical seals should be monitored during operation. Mechanical seal friction power is an important component of mechanical losses in centrifugal pumps and is used as an indicator of wear and therefore seal condition. The soft sensor described in this paper is based on temperature measurements at the seal and can be used for determining the frictional power performance. A major factor in determining frictional power performance is the heat transfer between the mechanical seal and the medium inside the pump. For calculating the heat transfer, the stationary temperature fields in the rings of the mechanical seal are described by transmission efficiencies. The root mean squared error was determined for steady-state operating conditions to assess the quality of the soft sensor calculation. The frictional power performance can be determined by recording the temperature at the mechanical seal mating ring and the medium. The algorithm detects when the steady-state operating conditions change but does not map the dynamic changes between the stationary operating conditions. Full article
(This article belongs to the Section Industrial and Manufacturing Engineering)
Show Figures

Figure 1

16 pages, 5522 KiB  
Article
Sustainable Robotic Process for Sealing Car Radiators
by Katarzyna Peta, Marcin Wiśniewski, Albert Pęczek and Olaf Ciszak
Sustainability 2024, 16(2), 865; https://doi.org/10.3390/su16020865 - 19 Jan 2024
Cited by 2 | Viewed by 1339
Abstract
This work presents the multi-variant robotization of the process of sealing car radiators. Three design solutions have been proposed for the tank sealing station, in which the seal is applied on a stationary worktable, on a rotary positioner and on a belt conveyor. [...] Read more.
This work presents the multi-variant robotization of the process of sealing car radiators. Three design solutions have been proposed for the tank sealing station, in which the seal is applied on a stationary worktable, on a rotary positioner and on a belt conveyor. These solutions were compared in terms of process time, but also energy consumption. The energy optimization of robotic processes is one of the elements of effective production. First, a review of the use of industrial robots in assembly processes is provided and the structure of car radiators is presented. Next, the basic technological process of producing a car radiator is described, especially the process of applying a liquid gasket. Then, the designed robotic stations and conclusions from the simulations are presented, along with the selection of the most sustainable variant of the robotic station. The results of the simulations are useful in reducing the robot’s operating time and energy consumption while maintaining the appropriate process quality. Full article
Show Figures

Figure 1

18 pages, 3855 KiB  
Article
Numerical Prediction of Refrigerant Oil Two-Phase Flow from Scroll Compressor Discharge to the Suction Side via Back Pressure Chamber
by Vladimir D. Stevanovic, Milan M. Petrovic, Stojan Cucuz, Sanja Milivojevic and Milica Ilic
Processes 2024, 12(1), 6; https://doi.org/10.3390/pr12010006 - 19 Dec 2023
Cited by 2 | Viewed by 1541
Abstract
Oil lubricates the contact between the orbiting and stationary scroll in the refrigerant scroll compressor, while the sealing between the scrolls is achieved through the refrigerant vapour pressure in the sealed back pressure chamber. The back pressure should be adjusted using the refrigerant [...] Read more.
Oil lubricates the contact between the orbiting and stationary scroll in the refrigerant scroll compressor, while the sealing between the scrolls is achieved through the refrigerant vapour pressure in the sealed back pressure chamber. The back pressure should be adjusted using the refrigerant oil two-phase flow from the oil separator at the compressor discharge to the back pressure chamber and the refrigerant oil flow from the back pressure chamber to the compressor suction side. Both of the flows are conducted through connecting tubes with corresponding high-pressure and low-pressure nozzles with small diameters. Models for predicting the refrigerant oil critical and subcritical flows through the nozzles were developed and applied in enable the prediction of the back pressure. The models are original, because the slip between the oil and the refrigerant as well as the refrigerant solubility in the oil are taken into account. The critical flow model is validated against the experimental data that are available in the literature. The back pressure is predicted by equating the mass flow rates of refrigerant and oil two-phase mixtures through the high- and low-pressure nozzles. The results show that the critical flow takes place through the high-pressure nozzle, while the subcritical flow through the low-pressure nozzle can also exist in cases with a small pressure difference between the back pressure chamber and the compressor suction side. The refrigerant solubility in the oil has a small influence on the critical and subcritical refrigerant oil mixture mass flow rates, while the influence on the back pressure is more pronounced. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

15 pages, 3545 KiB  
Article
Stability Analysis of Hydrodynamic Mechanical Seals in Multifrequency Excitation
by Dianfeng Sun, Jianjun Sun, Fei Liu, Xiaohua Xu and Dongliang Zhang
Coatings 2023, 13(7), 1157; https://doi.org/10.3390/coatings13071157 - 26 Jun 2023
Viewed by 1607
Abstract
The dynamic characteristics of the complex relationship among the sealing system, excitation, and response have a considerable impact on the operational reliability of hydrodynamic mechanical seals, which is a critical issue in the field of sealing theory and technology. Scholars at home and [...] Read more.
The dynamic characteristics of the complex relationship among the sealing system, excitation, and response have a considerable impact on the operational reliability of hydrodynamic mechanical seals, which is a critical issue in the field of sealing theory and technology. Scholars at home and abroad have established dynamic models and calculated the displacement responses of dynamic and static rings in the time domain based on the force on these rings so that the response results can be used for system stability analysis. Neither are the excitation characteristics of cavitation load extracted, nor are the distance response and system leakage rate of the dynamic and static rings analyzed under coupled cavitation and random excitation. In this study, under different operating conditions of the hydrodynamic mechanical seal system, the liquid film evaporation load and seismic load are applied to study the frequency domain response of the distance between the dynamic and static rings and the system leakage rate. The following conclusions have been obtained: Assuming that the chamber pressure is 0.5 MPa and the spring specific pressure is 0.055 MPa, during stable operation, the distance between the moving and stationary rings at 1500 rpm~3000 rpm speeds is 1.12 μm~3.05 μm. For a specific spring pressure of 0.055 MPa, medium pressures of 0.2 MPa~1.0 MPa, and spindle speeds of 1500 rpm~3000 rpm, the excitation force is 30 N, and the frequency is 30 Hz, And the seismic load is assumed to be sinusoidal, the excitation force is 6 N, the fundamental frequency is 120 Hz, and the system leak rate is in 0.1 mL/min~1.3 mL/min. Under multi-frequency excitation coupling, the distance between the dynamic and static rings will decrease as the pressure of the medium in the sealing cavity increases, and this will increase with the increase in the rotating speed. The leakage rate of the system will increase with the increase in the rotating speed and the pressure of the medium, and the test value is largely consistent with the theoretical value. Full article
(This article belongs to the Section Liquid–Fluid Coatings, Surfaces and Interfaces)
Show Figures

Figure 1

25 pages, 14033 KiB  
Article
Large Eddy Simulation of Rotationally Induced Ingress and Egress around an Axial Seal between Rotor and Stator Disks
by Sabina Nketia, Tom I-P. Shih, Kenneth Bryden, Richard Dalton and Richard A. Dennis
Energies 2023, 16(11), 4354; https://doi.org/10.3390/en16114354 - 26 May 2023
Cited by 2 | Viewed by 1490
Abstract
In gas turbines, the hot gas exiting the combustor can have temperatures as high as 2000 °C, and some of this hot gas enter into the space between the stator and rotor disks (wheelspace). Since the entering hot gas could damage the disks, [...] Read more.
In gas turbines, the hot gas exiting the combustor can have temperatures as high as 2000 °C, and some of this hot gas enter into the space between the stator and rotor disks (wheelspace). Since the entering hot gas could damage the disks, its ingestion must be minimized. This is carried out by rim seals and by introducing a cooler flow from the compressor (sealing flow) into the wheelspace. Ingress and egress into rim seals are driven by the stator vanes, the rotor and its rotation, and the rotor blades. This study focuses on the ingress and egress driven by the rotor and its rotation. This is carried out by performing wall-resolved large eddy simulation (LES) around an axial seal in a rotor–stator configuration without vanes and blades. Results obtained show the mechanisms by which the rotor and its rotation induce ingress, egress, and flow trajectories. Kelvin–Helmholtz instability was found to create a wavy shear layer and displacement thickness that produces alternating regions of high and low pressures around the rotor side of the seal. Vortex shedding on the backward-facing side of the seal and its impingement on the rotor side of the seal also produces alternating regions of high and low pressures. The locations of the alternating regions of high and low pressures were found to be statistically stationary and to cause ingress to start on the rotor side of the seal. Vortex shedding and recirculating flow in the seal clearance also cause ingress by entrainment. With the effects of the rotor and its rotation on ingress and egress isolated, this study enables the effects of stator vanes and rotor blades to be assessed. Full article
(This article belongs to the Special Issue New Insights of Gas Turbine Cooling Systems)
Show Figures

Figure 1

14 pages, 6095 KiB  
Article
Influence of High Viscosity and Magnetoviscous Effect on the Washout Resistance of Magnetic Fluid
by Zixian Li, Decai Li, Yanwen Li and Shuntao Han
Magnetochemistry 2023, 9(5), 134; https://doi.org/10.3390/magnetochemistry9050134 - 19 May 2023
Viewed by 2116
Abstract
Magnetic fluid seals have long been thought to be a successful sealing form while sealing liquids are always a challenge. The instability of the liquid–liquid interface under the washout has become the key technical problem that hinders the realization of sealing liquid. This [...] Read more.
Magnetic fluid seals have long been thought to be a successful sealing form while sealing liquids are always a challenge. The instability of the liquid–liquid interface under the washout has become the key technical problem that hinders the realization of sealing liquid. This work mainly presents an experimental study about the influence of high viscosity and magnetoviscous effects on washout resistance. Three engine oil-based magnetic fluids of different viscosities were prepared with two kinds of surfactants. The magnetoviscous effects of the prepared magnetic fluids under different working conditions were found through rheological experiments. The viscosity of the three samples decreased at most by about 100 times with the shear rate increasing. An experimental platform was designed and built for the washout tests. The entire process of magnetic fluids being washed away was obtained experimentally. The magnetic fluid of higher viscosity can remain stationary with lower magnetic force. The quantitative results show that the viscosity of the magnetic fluid has a significant influence on washout resistance under a magnetic field. Full article
(This article belongs to the Special Issue Advanced Applications of Magnetic Field-Responsive Fluid)
Show Figures

Figure 1

15 pages, 4584 KiB  
Article
Excitation of Mechanical Resonances in the Stationary Ring of a Mechanical Seal by a Continuously Operated Electromagnetic Acoustic Transducer
by Alexander Siegl, Stefan Leithner, Bernhard Schweighofer and Hannes Wegleiter
Sensors 2023, 23(2), 1015; https://doi.org/10.3390/s23021015 - 16 Jan 2023
Cited by 1 | Viewed by 2280
Abstract
Acoustic/ultrasonic testing is now a common method in the field of nondestructive testing for detecting material defects or monitoring ongoing mechanical changes in a structure during operation. In many applications, piezoelectric transducers are used to generate mechanical waves inside the specimen. Their actual [...] Read more.
Acoustic/ultrasonic testing is now a common method in the field of nondestructive testing for detecting material defects or monitoring ongoing mechanical changes in a structure during operation. In many applications, piezoelectric transducers are used to generate mechanical waves inside the specimen. Their actual operating frequency is highly dependent on the dimensions of the transducer. Larger dimensions of the piezoelectric transducer allow for a lower operating frequency. However, these dimensions limit the use of piezoelectric transducers in certain applications where the size of the transducer is restricted due to limited installation space and when low-frequency excitation is required. One application that places these requirements on the transducer is the monitoring of mechanical seals. Here, the transducer must be mounted on the stationary ring of the seal. In this paper, a continuously operated electromagnetic acoustic transducer (EMAT) is presented as an alternative to piezoelectric transducers as a transmitter. The advantage of a EMAT is that it meets the requirements of limited sensor size (sensor area < 10 × 6 mm) and can excite mechanical waves with frequencies below 10 kHz. A structural analysis of the stationary ring shows that the first two mechanical resonances occur around 4 and 5.5 kHz. An experimental study meterologically demonstrates the ability of the EMAT to excite these first two mechanical resonances of the ring. A comparative simulation agrees well with the measurement. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

22 pages, 4170 KiB  
Article
The Relationship between Suspended Solid Loads and Dissolved Material during Floods of Various Origin in Catchments of Different Use
by Tadeusz Ciupa and Roman Suligowski
Water 2023, 15(1), 90; https://doi.org/10.3390/w15010090 - 27 Dec 2022
Cited by 4 | Viewed by 2391
Abstract
The paper presents the results of stationary, detailed studies on the variability of the mutual share of two fluvial loads, i.e., suspended solids and dissolved material during floods caused by rainstorm, continuous rainfalls and snowmelt in selected rivers (Silnica, Sufraganiec) draining small catchments [...] Read more.
The paper presents the results of stationary, detailed studies on the variability of the mutual share of two fluvial loads, i.e., suspended solids and dissolved material during floods caused by rainstorm, continuous rainfalls and snowmelt in selected rivers (Silnica, Sufraganiec) draining small catchments in central Poland, including two characterized by a high level of urbanization. Irrespective of the origin of the flood, the share of suspended solids load did not exceed 80% in urbanized catchments, in suburban catchments—44%, and in forest catchments—32%. In the former, the gradient of the increase in the share of suspended solids and concentration time in the first phase of the flood was several times higher than in the other catchments. It was proved that statistically significant relationships exist between the share of sealed surfaces (roads, car parks, roofs, etc.) in the total catchment area and the average share of suspended solids, both in the rising and falling phase of the flood wave, regardless of their origin. Similar relationships were documented by analyzing: the density of the drainage network (storm sewers, roads, etc.)—the share of suspension. The obtained results have an interesting cognitive aspect and in practice are used for the development of hydrotechnical documentation related to water management in the city. Full article
(This article belongs to the Special Issue Sediment Transport, Budgets and Quality in Riverine Environments)
Show Figures

Figure 1

15 pages, 6867 KiB  
Article
Development of a Large-Scale High-Speed Linear Cascade Rig for Turbine Blade Tip Heat Transfer Study
by Hongmei Jiang, Xu Peng, Wenbo Xie, Shaopeng Lu and Yongmin Gu
Aerospace 2022, 9(11), 695; https://doi.org/10.3390/aerospace9110695 - 7 Nov 2022
Cited by 5 | Viewed by 2481
Abstract
The high-speed Over-Tip-Leakage (OTL) flow has a significant impact on the aerodynamic performance of the High-Pressure Turbine (HPT) passage and generates high thermal load for the blade tip. Different tip sealing and cooling design strategies are applied to reduce the OTL loss and [...] Read more.
The high-speed Over-Tip-Leakage (OTL) flow has a significant impact on the aerodynamic performance of the High-Pressure Turbine (HPT) passage and generates high thermal load for the blade tip. Different tip sealing and cooling design strategies are applied to reduce the OTL loss and help turbine survive in a high temperature environment. High-speed linear cascade experimental rigs play an important role in understanding the flow physics and evaluating their performance. Multiple blades and passages are often required to maintain a reasonable flow periodicity. To match the engine representative Reynolds number and Mach number, a high-speed multi-passage cascade design inevitably demands more compressed air supply. A very large amount of heating power is also required if the engine condition wall-to-gas temperature ratio needs to be matched. In this study, a simplified 2-Passage linear cascade rig for high-speed tip heat transfer research was developed. Both the design method and the rig performance are presented. Different from existing design method to match two-dimensional blade loading, this study shows there are other design flexibilities, such as assist blade tip gap, tailboard adjustment, and profiling adjustment, to match the periodic three-dimensional OTL flow structures. The design method was validated by experimental effort. High resolution tip heat transfer coefficient distribution at stationary and rotating conditions (Rotating Mach number = 0.35) are reported. The enlarged test model can offer much more improved resolution of optical measurement near the tip region. Full article
(This article belongs to the Special Issue Cooling/Heat transfer (Volume II))
Show Figures

Figure 1

Back to TopTop