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Abstract: In gas turbines, the hot gas exiting the combustor can have temperatures as high as 2000 ◦C,
and some of this hot gas enter into the space between the stator and rotor disks (wheelspace). Since
the entering hot gas could damage the disks, its ingestion must be minimized. This is carried out by
rim seals and by introducing a cooler flow from the compressor (sealing flow) into the wheelspace.
Ingress and egress into rim seals are driven by the stator vanes, the rotor and its rotation, and the rotor
blades. This study focuses on the ingress and egress driven by the rotor and its rotation. This is carried
out by performing wall-resolved large eddy simulation (LES) around an axial seal in a rotor–stator
configuration without vanes and blades. Results obtained show the mechanisms by which the rotor
and its rotation induce ingress, egress, and flow trajectories. Kelvin–Helmholtz instability was found
to create a wavy shear layer and displacement thickness that produces alternating regions of high
and low pressures around the rotor side of the seal. Vortex shedding on the backward-facing side of
the seal and its impingement on the rotor side of the seal also produces alternating regions of high
and low pressures. The locations of the alternating regions of high and low pressures were found to
be statistically stationary and to cause ingress to start on the rotor side of the seal. Vortex shedding
and recirculating flow in the seal clearance also cause ingress by entrainment. With the effects of the
rotor and its rotation on ingress and egress isolated, this study enables the effects of stator vanes and
rotor blades to be assessed.

Keywords: gas turbines; rim seals; rotationally induced ingress

1. Introduction

The efficiency of gas turbine engines increases as the temperature of the gas entering
the turbine component increases. In advanced gas turbines, those temperatures far exceed
the melting temperature of the turbine material [1,2]. Thus, all parts of the turbine that come
in contact with the hot gas must be cooled. In addition, some of the hot gas could enter
into the space between the stator disk and the rotor disk (referred to as the wheelspace).

The ingestion of hot gas into the wheelspace (referred to as ingress) must be minimized
or prevented. This is because the Ni-based superalloy used to make the disks can only
handle temperatures up to about 850 ◦C [3]. Ingress is minimized by rim seals and by
introducing a cooler flow known as sealing flow into the wheelspace. Since the sealing flow
is extracted from the compressor, air that could be used to generate power, the amount of
sealing flow used must be minimized. Currently, 15 to 20% of the air entering the high-
pressure compressor (HPC) is used to cool the turbine, where the sealing flow accounts for
up to 10% of that total cooling flow [4].

Preventing or minimizing hot gas ingestion requires in-depth understanding on how
geometry and rotation affect fluid flow that leads to hot gas ingestion. Ingress and egress
through the rim seal are driven by (1) the rotor disk and its rotation, (2) the pressure
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variation around the stator vanes’ trailing edges, and (3) stagnation pressure induced by
the rotor blades. This study focuses on ingress induced by the rotor disk and its rotation
(referred to as rotationally induced ingress), which has received less attention.

Owen and co-workers experimentally studied the effectiveness of axial, radial, and
mitered seals on ingress induced by rotation in a configuration without vanes and blades [5–9]
and in a configuration with vanes and blades [10]. For an axial seal, Owen and Phadke [5]
showed that if the gap ratio (G = s/ro) is fixed, then the minimum sealing flow necessary
to prevent ingress, CW,min, is CW,min = 0.14G0.66

c Reφ, where Gc = sc/ro is the clearance
ratio and Reφ = ρhωr2

o/µh is the rotational Reynolds number. For radial seals, Phadke and
Owen [6] showed that they provide more effective sealing than the axial seals because radial
seals enable higher pressures in the wheelspace. In the study by Phadke and Owen [7],
the minimum sealing flow necessary for the axial, radial, and mitered seals to prevent
ingress, CW,min, was found to be directly proportional to the rotational speed and the
sealing clearance. When there is flow in the hot gas path, Phadke and Owen [8] showed
that when 0.60 < Rew/106 < 1.7, where Rew = ρhVhro/µh is the Reynolds number in
the hot gas path, the effectiveness of axial and radial seals are comparable. Additionally,
for 0 < Rew/106 < 0.5, CW,min was found to be independent of rotational speeds if
Rew/Reφ = Vh/(ωro) � 1 (externally dominated regime or Vh � ωro) and directly
proportional to rotational speeds if Rew/Reφ = Vh/(ωro) � 1 (rotationally dominated
regime or Vh � ωro). In the externally dominated regime, the most important factor
affecting ingress is the size of the seal clearance. In the rotationally dominated regime,
the flow in the hot gas path reduces CW,min to about half of the value required for zero
external flow. When the flow in the hot gas path is not axisymmetric, Phadke and Owen [9]
showed that CW,min increases with increasing pressure asymmetries. Phadke and Owen [9]
also studied the double-shrouded seal and found it to be more effective than the axial and
radial seals. This is because with two shrouds, the ingested fluid is trapped between them
so that less enter into the wheelspace. Sangan et al. [10] showed the sealing flow needed
to prevent rotationally induced ingress is lower than that needed to prevent externally
induced ingress and that for rotationally induced ingress, the maximum flow that can be
ingested is 35% of the flow required to seal the system. Dadkhah et al. [11] experimentally
studied a radial seal and showed the effects of the seal location in a two-stage turbine. Bohn
et al. [12] also experimentally studied ingress in a rotor–stator configuration without vanes
and blades and showed hot gas ingestion to occur not only on the stator side but also on
the rotor side of the seal.

Computational studies of ingress have also been performed [13–18]. Cao et al. [13]
studied how sealing flow interacts with the hot gas flow in the annulus. Boudet et al. [14]
studied the same configuration as Cao et al. [15] and observed nonlinear coupling among
the flow features. Jakoby et al. [16] showed a large-scale structure forming in the wheelspace
and how it strongly influences ingestion. Rabs et al. [16] observed Kelvin–Helmholtz
instabilities around the rim seal in a 1.5-stage turbine and attributed their formation to
swirl introduced upstream of the seal. They also observed regions of high and low pressure
in the circumferential direction around the seal and hypothesized the Kelvin–Helmholtz
vortices as the cause. Gao et al. [17] found LES to correctly predict the peak frequency but
not the number of structures when compared with experiments. Liu et al. [18] showed that
if steady RANS is used to study ingress, where an inertial frame is used for the stator and a
noninertial frame is used for the rotor, then the location of the interface between the inertial
and the noninertial frames must be located downstream of the rim seal but upstream of
the rotor.

This review of the literature shows theoretical, computational, and experimental
approaches have been applied to study rotationally induced ingress. These studies have
focused on effects of variables such as flow rate and rotor speed on ingress and flow features.
However, details of the flow in the seal and wheelspace as well as the physical mechanisms
that give rise to these flow features are still not well understood. The objective of this study
is to use steady RANS (Reynolds-averaged Navier–Stokes) and wall-resolved large eddy
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simulation (LES) to examine the details of the turbulent flow and trajectories of ingress in a
rotor–stator configuration with an axial seal and without vanes and blades. The intent is to
isolate the effects of the rotor and its rotation on ingress and egress and understand how
ingress and sealing flow could be minimized under conditions where rotationally-induced
ingress is the dominant mechanism. Also, once flow mechanisms induced by the rotor and
its rotation are isolated, one can better understand mechanisms induced by stator vanes
and rotor blades.

The remainder of this paper is organized as follows: First, the rotor–stator problem
studied is described. Next, the governing equations and numerical methods used are
summarized. Afterwards, a grid-sensitivity and validation study are presented. This
is then followed by the results obtained for the flow around the seal. Finally, the key
conclusions are summarized.

2. Problem Description

A schematic of the stator–rotor configuration studied is shown in Figure 1. The hot
gas path is an annulus with inner radius ro = 116.25 mm and outer radius r1 = 165.25 mm.
The stator disk extends from z = −(L1 + Ld + sc) to z = −sc, and the rotor disk extends
from z = 0 to z = L2 − (L1 + Ld + sc), where L1 = 150 mm, L2 = 210.7 mm, Ld = 10 mm, and
sc = 1.7 mm. An axial seal is located between z = −sc and z = 0, and it has a thickness of
dc = 4.5 mm. The distance between the stator and rotor disks is s = 16.7 mm. An extension
section of length L3 = h was appended to the rotor to ensure no reverse flow at the outflow
boundary. For this extended section, the walls were adiabatic and allowed to slip so that no
heat or friction are added. Sealing flow is fed from an annular duct of length L4 = 20 mm
with inner radius r2 = 10 mm and outer radius r3 = 12 mm. For this annular duct, the inner
wall was modeled as adiabatic and allowed to slip.
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Figure 1. Schematic of the rotor–stator configuration studied (ro = 116.25 mm, r1 = 165.25 mm,
sc = 1.7 mm, dc = 4.5 mm, L1 = 150 mm, L2 = 210.7 mm, L3 = h, L4 = 20 mm, Ld = 10 mm, and
h = r1 − ro).

For this rotor–stator configuration with an axial seal, the gas that enters the hot gas
path is air with zero swirl. Its mass flow rate and temperature are

.
mh = 3.42 kg/s and

Th = 333 K, amounting to Rew = 0.46 × 106. The pressure at the exit of the hot gas path is
Pb = 101,325 Pa. The sealing flow that enters has a mass flow rate of

.
mc = 0.002089 kg/s and

a temperature of Tc = 290 K, amounting to CW = 1000. Simulations were also performed
with zero sealing flow, where the entrance was made into an adiabatic slip wall to examine
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the worst-case scenario. The rotor rotates at a constant angular velocity of ω = 11,700 RPM,
amounting to Reφ = 1.13 × 106. All surfaces in black (stator and outer radius of annulus)
and red (rotor) are no-slip and adiabatic. Surfaces in blue (extension section and part of the
sealing flow feed duct) are slip and adiabatic.

This configuration was selected because it matches an experimental study by Bohn
et al. [12], where there are experimental data that are used to validate this study. Addition-
ally, the selected problem helps us to meet the objectives of this study.

3. Problem Formulation

The problem described in the previous section were computed by using steady RANS
and LES. For RANS, the governing equations used are the ensemble-averaged continuity,
Navier–Stokes, and energy equations for a thermally and calorically perfect gas. Effects
of turbulence were modeled by the shear stress transport (SST) model [19]. The boundary
conditions used are as follows: At the inlet of the hot gas path, velocity (a “fully-developed”
profile based on incompressible flow with zero swirl) and temperature (a uniform profile)
were specified. At the outlet of the hot gas path, pressure was specified. At all solid
surfaces except those marked in blue in Figure 1, the no-slip, adiabatic wall boundary con-
ditions were imposed. At solid surfaces marked in blue, the slip, adiabatic wall boundary
conditions were imposed.

For LES, the governing equations used are the spatially filtered continuity, Navier–
Stokes, and energy for an ideal gas. With LES, the large scales of the turbulent flow are
resolved, and the smaller scales are modelled in terms of the resolved larger scales via the
subgrid-scale stresses, τij, where

τ̃ij = −2νsgsŜij +
1
3

τ̃kkδij

In this study, the WALE model [20] was employed to model the sub-grid scale turbulent
viscosity, νsgs, and it is given by

νsgs = (CLES∆)2

(
Sd

ijS
d
ij

) 3
2

(
ŜijŜij

) 5
2 −

(
Sd

ijS
d
ij

) 5
4

where CLES = 0.325 is a model constant; ∆ is the cutoff width (grid spacing was used); and

Sd
ij = ŜikŜkj + Ω̂ikΩ̂kj −

1
3
(
ŜmnŜmn − Ω̂mnΩ̂mn

)
δij

Since the WALE model produces proper scaling (namely, υsgs ∼ y3) near the wall,
damping functions are not needed. Additionally, this model is sensitive to both the strain
(Ŝij) and the rotation rate (Ω̂ij) of the resolved smaller structures.

Synthetic turbulence [21] with 3% turbulence intensity was used to trigger the turbu-
lence at the inlet of the hot gas path. L1 = 150 mm was the “adaptation distance” obtained
by numerical experiments to ensure that the profiles of the velocity and the turbulent char-
acteristics match that of the “fully-developed” turbulent flow at a distance of Ld upstream
of the rim seal. This adaptation distance is peculiar to this case without vanes and without
blades, and with the quoted hot gas mass flow rate in the description of the problem. When
these parameters change, a new adaptation distance had to be re-calculated. The other
boundary conditions are the same as those used for RANS. The results from the RANS
simulation were used as the initial conditions for the LES.

To reduce computational cost, only a 10-degree sector of the rotor–stator configuration
was studied for both RANS and LES, where periodic conditions were imposed at the two
r–z planes that bound the sector. The sector size selected is assessed in the section on
verification.
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4. Numerical Method of Solution

Solutions to RANS and LES were obtained by using Version 22.1 of the Fluent ANSYS
code [22]. For steady RANS, the advection terms were approximated by second-order
upwind differencing, and diffusion terms were approximated by second-order central
differencing. Solutions were generated by using the coupled scheme At convergence, the
“scaled” residuals plateaued and were less than 10−6 for continuity, less than 10−8 for the
three components of the velocity, and less than 10−10 for energy. For LES, the bounded
second-order implicit scheme was used for the time derivative, and the second-order
central was used for all advection and diffusion terms. The pressure staggering option
(PRESTO) scheme was used for pressure interpolation at cell faces from cell centers. The
SIMPLE scheme [23] was used as the solver. Since time-accurate solutions were of interest,
iterations were performed at each time step until the residuals plateaued. This required 40
to 50 iterations per time step. At convergence, the “scaled” residuals were less than 10−6

for continuity, less than 10−7 for the three components of the velocity, and less than 10−8

for energy. For the LES, each simulation was run until statistically stationary solutions were
obtained, which took 11 revolutions for the problem studied. Once statistically stationary,
the LES solution was time-averaged to obtain the mean flow, which required from two to
five revolutions. At this point, it is noted that the solution is time-periodic. However, only
the statistically stationary results are presented.

5. Results and Discussion

In this section, the results from the verification and validation studies are first pre-
sented. Next, the computed flow field around the axial seal is described. This is followed
by a discussion on the flow mechanisms that created the flow field and how ingress and
egress occur.

5.1. Verification and Validation

The verification and validation of this study were accomplished by simulating two
problems. One is the fully developed incompressible turbulent flow in an annulus, where
there are detailed experimental and direct numerical simulation data available in the
literature that can be used to guide the grid-resolution needed to obtain the correct physics
and to validate the solutions from LES. The other problem is the stator–rotor configuration
shown in Figure 1, where there are data on the mean flow velocities for validation.

5.1.1. Fully Developed Flow in an Annulus

Figure 2 shows the annular duct studied (not drawn to scale). It has an inner radius
of ro = 10.05 mm, an outer radius of r1 = 20.15 mm, and a length of L5 = 6.4 h, where
h = r1 − ro. The mass flow rate in the annulus is

.
m = 0.02523 kg/s, where the density

is taken to be a constant at temperature T = 333 K and pressure P = 1 atm so that the
average mean speed is Ub = 24.8 m/s. The resulting Reynolds number is ReDh = 26,600.
These geometric and operating parameters were selected to match those employed in the
experimental study by Nouri et al. [24] and the DNS study by Quadrio and Luchini [25].
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The governing equations and method of solution method are identical to those de-
scribed in the previous sections, except that the governing equations are for incompressible
flow with constant viscosity so that the continuity and momentum equations are decoupled
from the energy equation. For the LES, it took 20 flow-throughs to obtain statistically
stationary solutions and another 10 flow-throughs to achieve the time-averaged results.

The fully developed velocity in the annular duct was obtained by imposing periodic
boundary condition in the streamwise direction, where the mean pressure is adjusted to
achieve the desired mass flow rate and where the initial turbulent fluctuations for the LES
were generated by synthetic turbulence.

Concerning the length of the annular duct, L5, it was set long enough to ensure
that turbulence at the inlet and the outlet, the two periodic boundaries, is not correlated.
According to Kim et al. [26], that length should be 6.4 Dh, where Dh is the hydraulic
diameter. In this study, L5 = 6.4 h = 3.2 Dh was found to be adequate based on the
longitudinal two-point correlation. To reduce computational cost, only an angular sector of
the annular duct was simulated, invoking periodicity in the azimuthal direction. According
to Quadrio and Luchini [25], the minimum angular sector needed for LES depends on the
curvature parameter, γ = r1−ro

2ro
. If γ < 1, then the effects of curvature can be neglected [25].

For the annular duct studied, γ ≈ 0.5, which is less than unity. Thus, the sector size only
needs to meet the requirements of LES for planar channel flows. For planar channel flows,
Kim et al. [26] recommended a spanwise dimension of ≈ 3.2(r1 − ro), which is equal to an
angle of ∆θ ≈ 90

◦
for the annular duct. In this study, a sector of ∆θ = 120

◦
was used.

Figure 3 shows the three grids used in the grid-sensitivity study: a coarse grid with
61 × 73 × 101 nodes, a baseline grid with 81 × 145 × 201 nodes, and a fine grid with
95 × 181 × 281 nodes. For all three grids, the first cells next to the walls are clustered
such that y+ is less than unity. Additionally, there are at least five cells within y+ = 5. The
nondimensional grid spacings are ∆r+ < 20, ∆z+ < 20, and r∆θ+ < 20 for the coarse grid,
∆r+ < 10, ∆z+ < 10, and r∆θ+ < 10 for the baseline grid, and ∆r+ < 7, ∆z+ < 7, and r∆θ+ < 7
for the fine grid.
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Concerning the time step size, the DNS study of Quadrio and Luchini [25] suggests
a time step size of ∆t ≈ 4.1 × 10−6 s for this problem. In this study, two time step sizes
were examined, ∆t = 10−5 s and ∆t = 10−6 s, and ∆t = 10−6 s was used for all simulation
results presented.

The results obtained by using the three grids with ∆t = 10−6 s are shown in
Figures 4 and 5. The results for the mean velocity and root mean square of velocity fluctua-
tions obtained with the baseline grid are in good agreement with the DNS from Quadrio
and Luchini [25] with γ = 1.
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With ∆t = 10−6 s, all three grids were inspected to see if they satisfy the Celik
criterion [27], which states that the LES_IQ must be greater than 0.8. In Figure 6, it can be
seen that the LES_IQ values for all the three grids are greater than 0.9 everywhere in the
annular duct, which is greater than the required level of 0.8. This shows that 90+% of the
turbulent kinetic energy in the flow is resolved by the LES.
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Figure 7 shows the energy spectra from the axial velocities at three probe locations
in the annular duct obtained using the baseline grid: r = ro + 0.05, (ro + r1)/2, r1 − 0.05,
z = 3.2 h, and θ = 60◦. From this figure, the energy spectra can be seen to follow Kol-
mogorov’s −5/3 law for a range of frequencies before falling. The energy densities as-
sociated with high frequencies are at least seven orders lower than the energy densities
corresponding to low frequencies in the inertial sub-range. Thus, the grid resolution of the
baseline grid is adequate.
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Figure 7. Energy spectra from the axial velocity at three probe locations in the annular duct. The
k−5/3 line is to show the slope.

Figure 8 shows the two−point correlation along a line in the middle of the annulus
from the annular duct’s inlet to its exit with one probe at the inlet. From this figure, it
can be seen that the two-point correlation acquired from the second probe falls off to zero
at less than half of the duct length. Thus, the length, L5 = 6.4(r1 − ro) is sufficient to
implement periodic boundary conditions for the incompressible fully developed flow in
the annular duct.
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5.1.2. Rotor–Stator Configuration with Axial Seal

The problem description, formulation, and method of solution for the rotor–stator
configuration were already described in previous sections. Concerning the size of the
computational domain in the azimuthal direction, the angle of the sector must be sufficiently
large to resolve the relevant flow physics. RANS was used to run three sector sizes—10◦,
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20◦, and 30◦—to examine the nature of the flow in the azimuthal direction. Figure 9 shows
the pressure distribution on the surface of the hot gas path located at r = ro. From this figure,
variations in the azimuthal direction can be seen, and the wavelength of those variations
are much smaller than the arc length intercepted by a sector of 10 degrees. Additionally, the
wavelength of the variations is independent of the sector size. Thus, the 10-degree sector is
sufficient for this study based on RANS.
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Figure 9. Pressure on hot gas surface located at r = ro for different sector sizes obtained by RANS.

Though the 10-degree sector may be adequate for RANS, for LES, the azimuthal
velocities at the two periodic boundaries in the azimuthal direction must be uncorrelated.
Thus, a simulation was performed with LES to ensure that this is indeed the case. Figure 10
shows that the azimuthal two−point correlation is indeed uncorrelated if the sector size is
10 degrees (even for Point A).
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Figure 10. Azimuthal two−point correlation for Point A and Point B along the azimuthal direction
from θ/θo = 0 to 1 around the axial seal.

Figure 11 shows the three grids used in the grid-sensitivity study: a coarse grid, a
baseline grid, and a fine grid. The number of grid points across the seal clearance is 41 for
the coarse grid, 61 for the baseline grid, and 81 for the fine grid. The number of grid points
across the 10◦ sector in the azimuthal direction is 101 for the coarse and baseline grids and
201 for the fine grid. For all grids, the first cells next to the walls are clustered such that y+ is
less than unity (see Figure 12). Additionally, there are at least five cells within y+ = 5. Away
from the seal, the nondimensional grid spacings satisfy ∆r+ < 30, ∆z+ < 30, and r∆θ+ < 30
for the coarse grid, ∆r+ < 20, ∆z+ < 20 and r∆θ+ < 20 for the baseline grid, and ∆r+ < 10,
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∆z+ < 10 and r∆θ+ < 10 for the fine grid. In the seal region, the highest friction velocity was
used to compute the nondimensional spacings.
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grids used—coarse, baseline, and fine.

On the time step size, it needs to be small enough to resolve the small time scales in the
flow. The Kolmogorov time scale, τη = (ν/ε)0.5, can be used as a starting point to estimate
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the necessary time step size. Figure 13 shows the Kolmogorov time scale, τη , obtained from
the RANS solution based on the SST model. From Figure 13, the time scale that needs to
be resolved is between 10−7 and 10−5 s. A time step-size sensitivity study showed that
∆t = 10−6 s is adequate.
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Figure 13. Kolmogorov time scale, τη , around the seal.

The results of the grid sensitivity for ∆t = 10−6 are given in Figures 14 and 15.
These two figures show the circumferentially averaged mean (time-averaged) azimuthal
and radial velocities as a function of z in the seal at three radial locations—r = 0.966
ro = 112.25 mm, r = 0.983 ro = 114.25 mm, and r = 0.991 ro = 115.25 mm—obtained by
using the three grids shown in Figure 11. Also shown in those figures are the experimental
data from Bohn et al. [12]. From Figures 14 and 15, RANS can be seen to give the highest
azimuthal velocity in the seal, whereas LES gives the lowest azimuthal velocity in the seal.
This is because LES predicts higher turbulent mixing than RANS. For azimuthal velocities,
LES results match the experimental data better than RANS. For radial velocities, RANS
generally gives lower magnitudes between the disks, whereas LES generally gives higher
magnitudes. In this case, RANS matches well with the experimental data. The LES profiles
for the azimuthal and radial velocities obtained in this study are similar to those obtained
in the LES study reported by Gao et al. [17] with a 13.33-degree sector. The reason for
discrepancies between the LES results and the experimental data is discussed in the next
sub-section.
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Figure 15. Mean radial velocities in the seal clearance [12].

Figure 16 shows the energy spectra based on the radial velocities from five probes
in the seal region for the baseline grid. From this figure, it can be seen that the energy
spectra follow Kolmogorov’s −5/3 law for a range of frequencies before falling. The energy
densities associated with high frequencies are at least seven orders lower than the energy
densities corresponding to low frequencies in the inertial sub-range. Therefore, the grid
resolution (baseline grid) is adequate for the rim seal configuration.
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5.1.3. Effects of Inlet Turbulence and Velocity Profile on Flow in Seal

Regarding validation, the most challenging part is to ensure that the computational
study is solving the same problem as the experimental study. For the rotor–stator config-
uration studied, the thickness of the boundary layer at an upstream location where the
flow is still unaffected by the seal and rotor should be provided by the experimental study,
but it was not. Thus, this computational study assumed “fully-developed” turbulent flow
in the annulus of the hot gas path with I = 3% at the inflow boundary, and the resulting
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comparisons are given in Figures 14 and 15. To examine the effects of boundary-layer
thickness, an LES was performed using a fully developed turbulent profile and I = 0
at the inflow boundary (i.e., the LES has no turbulent fluctuations). Without turbulent
fluctuations, the fully developed profile could not be sustained by LES, and the velocity
profile approaches that of a laminar profile because shear is only driven by viscosity.

Figure 17 shows the effects of the velocity and turbulent intensity imposed at the inflow
boundary on the mean azimuthal and radial velocities in the seal clearance. From this figure,
those effects can be seen to be quite large, which explains the significant difference between
the experimental and LES results given in Figures 14 and 15. Thus, experimental and
computational studies must characterize the flow upstream of the seal in their studies. In
this study, all results presented from this point onward have a “fully-developed” turbulent
flow approaching the seal. Figures 18 and 19 show the effects of inlet turbulence, I, on the
number of frequency modes and the number and size of flow structures via pressure in
the seal. From Figure 18, inlet turbulence can be seen to increase the number of dominant
modes (frequencies). From Figure 19, inlet turbulence can be seen to break up large vortical
structures into many smaller structures.
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5.2. Flow Field Induced by Rotor and Its Rotation

The flow field induced by the rotor and its rotation on ingress and egress is described
in three parts: the instantaneous flow, the time-averaged flow, and the trajectory of the
mean flow connected to the ingress and egress.

5.2.1. Instantaneous Flow Field

The instantaneous flow from LES with I = 3% at the inflow boundary is given in
Figures 19–25. Figures 19–24 show the instantaneous pressure, vorticity, and velocity, and
Figure 25 shows power spectral density (PSD) for pressure at several locations around the
seal. From Figures 20–22, one can see the shedding of vortices at the seals’ backward-facing
step and their impingement at the seal’s forward-facing step via the vorticity and pressure
contours. Figure 22 also shows a wavy shear layer in the azimuthal direction around
the rotor surface at r = ro via alternating regions of high and low velocity magnitudes.
This wavy shear layer with its corresponding wavy displacement thickness, is created by
two mechanisms: (1) Kelvin–Helmholtz instabilities (KHI) that form from the interaction
between the hot gas flow in the axial direction and the boundary-layer flow in the azimuthal
direction above the rotating rotor, and (2) vortex shedding (VS) on the backward-facing
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step of the seal. This wavy displacement thickness causes alternating region of high and
low pressures on the rotor side of the seal, and this can be seen in Figures 19, 23 and 24.
At z = −10−3 mm, Figures 19 and 24 show the pressure peaks and vortical structures
repeating six to seven times over a 10-degree sector so that the frequency, f, normalized by
the frequency of the rotor’s rotation, fω, is f/fω = 6 × 36 = 216 to 7 × 36 = 252.
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around the seal.
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From sensor 3 in Figure 25, the fluctuating energy in the pressure associated with
the vortical structures and pressure streaks that peak at f/fω = 216 to 252 can be seen
to be quite low, indicating that those structures are essentially stationary. Additionally,
time-averaging shows that they do not rotate in the azimuthal direction with the rotor.
Data from this sensor also show the energy associated with the unsteadiness connected
to the large scales of the KHI, VS, and turbulence to have many dominant frequencies.
By not being dominated by a single frequency, the frequencies observed are not triggered
by acoustics from the geometry [28]. At sensors 4 and 5, the PSD of the fluctuations are
considerably lower with fewer peaks because KHI and VS do not affect this region.

5.2.2. Time-Averaged Flow Field

Figures 26–30 show the time-averaged mean pressure, temperature, and velocity
obtained by LES and RANS for the rotor–stator configuration studied with and without
sealing flow. From Figure 26, one can see that there are alternating regions of high and
low pressure around the rotor surface. This is created by impingement of the hot gas
flow on the wavy displacement thickness produced by the KHI and VS described in the
previous subsection. Figure 26 also shows the alternating regions of high and low pressure
to be nearly equally spaced. The number of streaks is 12 over a 10-degree sector, which
corresponds to a normalized frequency of f/fω = 12 × 36 = 432, and this is twice the
normalized frequency of the wavy shear layer created by the KHI and VS. From Figures 26
and 27, the difference between the high and low pressures can be seen to be less if there
is no sealing flow. This because without sealing flow, the ingress into the seal is higher,
which removes more of the lower momentum air next to the stator surface at r = ro, and
this reduces the boundary-layer thickness and hence the displacement thickness on the
rotor side of the seal. With a thinner displacement thickness, the stagnation region due
to impingement is reduced. Though Figure 26 shows the number of streaks in pressure
predicted by LES and RANS to be the same, Figures 27 and 28 show that the pressure
distribution within the seal predicted by LES to be very different from those predicted by
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RANS. Because of this difference in pressure in and around the seal, RANS was unable to
predict ingress. Figure 29 shows how LES predicts very different temperature distributions
in the seal and wheelspace when compared with RANS. The reason is that LES could
predict the ingress of hot gas into the seal and wheelspace, whereas RANS could not.
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Figure 30 shows the time-averaged velocity projected in an r–z plane at θ = 5◦ around
the seal. From this figure, the hot gas flow can be seen to separate at the backward-
facing step of the seal on the stator disk. Since the seal’s length-to-the-clearance ratio
(dc/sc = 4.5/1.7 = 2.6) is appreciable, this separated flow driven by the hot gas flow over
the seal can be seen to generate a series of recirculating flows within the seal. These
recirculating flows affect ingress and egress, and this is described in the next subsection.
One reason why RANS could not predict ingress is because the RANS solution based on
SST cannot account for the effects of small-scale turbulent structures, shown schematically
in Figure 31, that could become entrained into the seal and thereby affect the nature of the
recirculating flows around the seal.
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5.2.3. Mean Trajectories of Ingress and Egress

For the rotor–stator configuration examined in this study with no vanes and blades,
ingress and egress are only affected by the flow rate of the hot gas, the rotor and its
rotational speed, the sealing flow rate, and the geometry of the seal. The complex flow
field created by the interactions among these parameters are summarized in the previous
section. As noted, interactions between the hot gas flow in the axial direction and the
boundary-layer flow in the azimuthal direction created by the rotor’s rotation causes KHI
to occur just downstream of the seal. The recirculating flow in the seal clearance, driven by
the hot gas flow over the seal, spirals because of the rotor’s rotation and undulates because
of VS at the backward-facing side of the seal. Since the magnitude of the azimuthal velocity
in the seal is much higher than its axial velocity, the spiraling flow travels a significant
distance along the azimuthal direction before completing one revolution of the recirculating
flow. This can be seen in Figure 32, which shows trajectories that originate from the hot
gas and from the sealing flow. Detailed analysis of these trajectories and the pressure field
around them shows that ingress occurs on the rotor side, where regions with high pressure
deflect fluid particles into adjacent regions with lower pressure. Once entering into the seal
clearance, it is entrained by shed vortices and the spiraling recirculating flow.

Depending on the momentum imparted to the ingested flow by the alternating regions
of high and low pressure in the azimuthal direction, the ingested flow could exit the seal or
become entrained by another spiraling recirculating flow deeper in the seal and eventually
entering into the wheelspace. Figure 33 shows a schematic of the three possible trajectories
of the hot gas flow when approaching the seal. The first is flowing past the seal (i.e., never
enters the seal; thus, no ingress). The second is flowing into the seal but spirals back out.
For this case, the ingress only heats the material in the seal region. The third is flowing into
seal and eventually into the wheelspace. For this case, the ingressed hot gas heats the stator
and rotor disks and thus is problematic.

For the configuration studied, all sealing flows must exit the seal (i.e., egress). The
trajectory is depicted in Figure 34. The sealing flow travels along the rotor disk in a
spiraling fashion as shown in Figure 32 until reaching the recirculating flow in the seal.
This recirculating flow entrains the sealing flow towards the stator disk. The sealing flow
then exits the seal from the stator side of the seal.
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6. Summary and Conclusions

Ingress and egress through rim seals are driven by (1) the rotor and its rotation,
(2) the pressure variation around the stator vanes’ trailing edges, and (3) the stagnation
pressures induced by the rotor disk and its blades. In this study, large eddy simulations
were performed to examine rotationally induced ingress in a rotor–stator configuration
without vanes and blades. Key findings are as follows:

• Interaction between the hot gas flow in the axial direction and the boundary-layer
flow in the azimuthal direction induced by the rotating rotor causes Kelvin–Helmholtz
instability (KHI) to occur.

• The KHI forms a wavy boundary layer in the azimuthal direction with a corresponding
wavy displacement thickness.

• Hot gas flow over the seal induces a series of recirculating flows in the seal clearance
and causes vortex shedding at the seal’s backward-facing step.

• The wavy displacement thickness formed by KHI and the impingement of shed
vortices on the rotor side of the seal create alternating regions of high and low pressures
around the rotor side of the seal.

• The alternating regions of high and low pressures cause ingress to start on the rotor
side of the seal.

• Regions of high and low pressures around the rotor side of the seal were found to be
statistically stationary and do not rotate with the rotor.

• Not all hot gases ingested into the seal reach the wheelspace because the motion
induced by the spiraling recirculating flow entrains them back out into the hot gas path.

• On egress, it starts on the rotor side because of “disk pumping” in the wheelspace.
However, once reaching the clearance of the seal, it becomes entrained by the recircu-
lating flows there and exits from the stator side.

• Though RANS with the SST model was able to predict regions of high and low
pressures around the rotor side of the seal, it was unable to predict ingress. LES
coupled with the WALE model could predict regions of high and low pressures
around the rotor side of the seal and the ingress that they create.

This study isolated the effects of rotationally induced ingress, which dominates when
Rew/Reφ � 1. To minimize rotationally induced ingress, the seal geometry should be
designed to weaken features that create and magnify the strength of the alternating regions
of high and low pressures. Additionally, the recirculating flow in the seal clearance should
be modified to minimize the entrainment of the hot gas into the seal.
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Nomenclature

cW nondimensional coolant flow rate: cW =
.

mc/µcro
Dh hydraulic diameter
G gap ratio
Gc clearance ratio
H height of annulus (see Figures 3 and 4)
I turbulence intensity
Li length (i = 1, 2, 3, 4, 5; see Figures 3 and 4)
ṁ mass flow rate
P pressure
Pb back pressure
r radial coordinate
ro radius of hub/inner radius of annulus
r1 outer radius of annulus
ReDh Reynolds number in a duct: ReDh = ρhUbDh/µ
Rew external flow Reynolds number: Rew = ρhVhro/µh
Reφ rotational Reynolds number: Reφ = ρhωr2

o/µh
s axial distance between rotor and stator (gap)
sc axial distance in seal opening (clearance)
T temperature
ũ rms of tangential velocity fluctuation in annular duct
U time-average axial velocity in annular duct
Ub average bulk velocity magnitude in a duct
uτ friction velocity: uτ =

√
τw/ρ, where τw is the “local” wall shear stress

ṽ rms of radial velocity fluctuation in annular duct
vw axial-radial-velocity cross-correlation
V velocity
w̃ rms of axial velocity fluctuation in annular duct
y+ nondimensional turbulent distance
z axial coordinate
γ curvature parameter: γ = r1−ro/2ro
δ boundary layer thickness
ε rate of turbulence dissipation
θ azimuthal coordinate
µ dynamic viscosity
ν kinematic viscosity
νt,eff effective turbulent kinematic viscosity
ρ density
τη Kolmogorov time scale: τη = (ν/ε)0.5

∆φ+ normalized grid spacing: ∆φ+ = ∆φuτ /ν where ∆φ = ∆r, ∆z, r∆θ

ω angular speed of rotor disk
Subscripts
c coolant flow
h mainstream flow
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