Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,211)

Search Parameters:
Keywords = state of temperature

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4017 KB  
Article
Tunable Ultra-Wideband VO2–Graphene Hybrid Metasurface Terahertz Absorption Devices Based on Dual Regulation
by Kele Chen, Zhengning Wang, Meizhang Guan, Shubo Cheng, Hongyu Ma, Zao Yi and Boxun Li
Photonics 2025, 12(10), 987; https://doi.org/10.3390/photonics12100987 (registering DOI) - 5 Oct 2025
Abstract
In this study, a dynamically tunable terahertz device based on a VO2–graphene hybrid metasurface is proposed, which realizes the dual functions of ultra-wideband absorption and efficient transmission through VO2 phase transformation. At 345 K (metallic state), the device attains an [...] Read more.
In this study, a dynamically tunable terahertz device based on a VO2–graphene hybrid metasurface is proposed, which realizes the dual functions of ultra-wideband absorption and efficient transmission through VO2 phase transformation. At 345 K (metallic state), the device attains an absorption efficiency exceeding 90% (average 97.06%) in the range of 2.25–6.07 THz (bandwidth 3.82 THz), showing excellent absorption performance. At 318 K (insulated state), the device achieves 67.66–69.51% transmittance in the 0.1–2.14 THz and 7.51–10 THz bands while maintaining a broadband absorption of 3.6–5.08 THz (an average of 81.99%). Compared with traditional devices, the design breaks through the performance limitations by integrating phase change material control with 2D materials. The patterned graphene design simplifies the fabrication process. System analysis reveals that the device is polarization-insensitive and tunable via graphene Fermi energy and relaxation time. The device’s excellent temperature response and wide angular stability provide a novel solution for terahertz switching, stealth technology, and sensing applications. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
32 pages, 6546 KB  
Review
Sputter-Deposited Superconducting Thin Films for Use in SRF Cavities
by Bharath Reddy Lakki Reddy Venkata, Aleksandr Zubtsovskii and Xin Jiang
Nanomaterials 2025, 15(19), 1522; https://doi.org/10.3390/nano15191522 (registering DOI) - 5 Oct 2025
Abstract
Particle accelerators are powerful tools in fundamental research, medicine, and industry that provide high-energy beams that can be used to study matter and to enable advanced applications. The state-of-the-art particle accelerators are fundamentally constructed from superconducting radio-frequency (SRF) cavities, which act as resonant [...] Read more.
Particle accelerators are powerful tools in fundamental research, medicine, and industry that provide high-energy beams that can be used to study matter and to enable advanced applications. The state-of-the-art particle accelerators are fundamentally constructed from superconducting radio-frequency (SRF) cavities, which act as resonant structures for the acceleration of charged particles. The performance of such cavities is governed by inherent superconducting material properties such as the transition temperature, critical fields, penetration depth, and other related parameters and material quality. For the last few decades, bulk niobium has been the preferred material for SRF cavities, enabling accelerating gradients on the order of ~50 MV/m; however, its intrinsic limitations, high cost, and complicated manufacturing have motivated the search for alternative strategies. Among these, sputter-deposited superconducting thin films offer a promising route to address these challenges by reducing costs, improving thermal stability, and providing access to numerous high-Tc superconductors. This review focuses on progress in sputtered superconducting materials for SRF applications, in particular Nb, NbN, NbTiN, Nb3Sn, Nb3Al, V3Si, Mo–Re, and MgB2. We review how deposition process parameters such as deposition pressure, substrate temperature, substrate bias, duty cycle, and reactive gas flow influence film microstructure, stoichiometry, and superconducting properties, and link these to RF performance. High-energy deposition techniques, such as HiPIMS, have enabled the deposition of dense Nb and nitride films with high transition temperatures and low surface resistance. In contrast, sputtering of Nb3Sn offers tunable stoichiometry when compared to vapour diffusion. Relatively new material systems, such as Nb3Al, V3Si, Mo-Re, and MgB2, are just a few of the possibilities offered, but challenges with impurity control, interface engineering, and cavity-scale uniformity will remain. We believe that future progress will depend upon energetic sputtering, multilayer architectures, and systematic demonstrations at the cavity scale. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

24 pages, 4745 KB  
Review
Recent Progress on the Characterization of Polymer Crystallization by Atomic Force Microscopy
by Shen Chen, Min Chen and Hanying Li
Polymers 2025, 17(19), 2692; https://doi.org/10.3390/polym17192692 (registering DOI) - 5 Oct 2025
Abstract
The crystallization behavior of polymers affects the structure of aggregated states, which influences the properties of materials. Atomic force microscopy (AFM) is a helpful characterization tool with high spatial resolution at the nanometer-to-micrometer scale and low-destruction imaging capabilities, making it an important means [...] Read more.
The crystallization behavior of polymers affects the structure of aggregated states, which influences the properties of materials. Atomic force microscopy (AFM) is a helpful characterization tool with high spatial resolution at the nanometer-to-micrometer scale and low-destruction imaging capabilities, making it an important means of studying polymer crystallography. This review is intended for scientists in polymer materials and physics, aiming to inspire how the rich applications of AFM can be harnessed to address fundamental scientific questions in polymer crystallization. This paper reviews recent advances in polymer crystallization characterization based on AFM, focusing on its applications in visualizing hierarchical polymer crystal structures (single crystals, spherulites, dendritic crystals, and shish kebab crystals), investigating crystallization kinetics (in situ monitoring of crystal growth), and analyzing structure–property relationships (structural changes under temperature and stress). Finally, we introduce the application of the latest AFM technology in addressing key issues in polymer crystallization, such as single-molecule force spectroscopy (SMFS) and atomic force microscopy–infrared spectroscopy (AFM-IR). As AFM technology advances toward higher precision, greater efficiency, and increased functionality, it is expected to deliver more exciting developments in the field of polymer crystallization. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

15 pages, 5237 KB  
Article
Effect of Pressure on Pyrolytic and Oxidative Coking of JP-10 in Near-Isothermal Flowing Reactor
by Qian Zhang, Maogang He, Yabin Jin, Zizhen Huang, Tiantian Xu and Long Li
Energies 2025, 18(19), 5276; https://doi.org/10.3390/en18195276 (registering DOI) - 4 Oct 2025
Abstract
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative [...] Read more.
JP-10 (exo-tetrahydrodicyclopentadiene) is a high-energy-density hydrocarbon broadly used in advanced aerospace propulsion as a regenerative cooling fluid; in this study, we aimed to clarify how fuel pressure affects its thermal degradation (oxidative and pyrolytic) in near-isothermal flowing reactor. Experiments were performed under oxidative conditions (wall temperature 623.15 K, p = 0.708–6.816 MPa) and pyrolytic conditions (wall temperature 793.15 K, p = 2.706–7.165 MPa); carbon deposits were quantified by LECO analysis, oxidation activity was assessed by temperature-programmed oxidation (TPO), and morphology was performed by FESEM and EDS. Results show that oxidative coking is minimal (5.37–14.95 μg·cm2) and largely insensitive to pressure in the liquid phase (1.882–6.816 MPa), whereas at 0.708 MPa (gas/phase-change conditions), deposition increases, implicating phase and local heat-transfer effects. Under oxidative conditions, deposits are predominantly amorphous carbon with a disordered structure, formed at relatively low temperatures, with only a few fiber-like metal sulfides identified by EDS. In contrast, under pyrolysis conditions, the deposits are predominantly carbon nanotubes, exhibiting well-defined tubular morphology formed at elevated temperatures via metal-catalyzed growth. The pyrolysis coking yield is substantially higher (66.88–221.89 μg·cm−2) and increases with pressure. The findings imply that the pressure influences the coking of JP-10 via phase state under oxidative conditions and residence time under pyrolytic conditions, while basic morphologies of coke deposits remain similar; operationally, maintaining the working pressure higher than the saturated vapor pressure can mitigate oxidation coking associated with phase transitions, and minimizing residence time can mitigate pyrolytic coking. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

23 pages, 9541 KB  
Article
Numerical Investigation of Wet Coke Particles Drying in a Silo Dryer Using CFD-DEM Simulation
by Peng Zhou, Yiliu Wu, Jiaxin Cui and Dianyu E
Processes 2025, 13(10), 3164; https://doi.org/10.3390/pr13103164 (registering DOI) - 4 Oct 2025
Abstract
Coke is an essential raw material in the blast furnace (BF) ironmaking process. Its moisture content significantly impacts BF ironmaking production. This study employs a coupled Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) approach to simulate the drying process of wet coke within a [...] Read more.
Coke is an essential raw material in the blast furnace (BF) ironmaking process. Its moisture content significantly impacts BF ironmaking production. This study employs a coupled Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) approach to simulate the drying process of wet coke within a coke silo (CS) dryer. Initially, the model was validated by comparing numerical results with experimental data from the literature. Subsequently, it investigated the gas flow dynamics, heat and mass transfer characteristics, and differences in drying behaviour across distinct dryer zones. Finally, the effects of inlet gas velocity and inlet gas temperature on the drying process were systematically quantified. Simulation results reveal that the bottom of the CS dryer exhibits a low-velocity laminar state, while the middle and upper regions display intense gas flow motion. Consequently, the bottom region exhibits insufficient particle drying in comparison to other zones, with the average particle moisture content decreasing by less than 20%. Under the continuous heat exchange between the hot gas and the particles, the moisture content of the particles decreases rapidly. Based on the drying rate behaviour, the drying process exhibits the following three different stages: the pre-heating period, the constant-rate period, and the falling-rate period. Compared to zones 1 and 3, zone 2 exhibits higher temperatures due to its high heat transfer efficiency, which significantly promotes a reduction in particle moisture content. An increase in inlet gas velocity enhances the particle drying rate and heat flux, accelerates moisture reduction, and raises the temperature. The impact of inlet gas velocity is most pronounced after the constant-rate period, with particle drying uniformity decreasing as the inlet gas velocity increases, consequently leading to a decline in drying quality. Increasing inlet gas temperature significantly increases particle temperature and heat flux throughout the drying period and accelerates the high-rate drying stage. These findings provide fundamental insights for further understanding and studying the coke drying process. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

13 pages, 1646 KB  
Article
Temperature-Controlled Cascaded Fabry–Pérot Filters: A Scalable Solution for Ultra-Low-Noise Stokes Photon Detection in Quantum Systems
by Ya Li, Changqing Niu, Weizhe Qiao, Xiaolong Zou and Youxing Chen
Photonics 2025, 12(10), 986; https://doi.org/10.3390/photonics12100986 (registering DOI) - 4 Oct 2025
Abstract
This study addresses the issue of cross-interference that occurs when locked continuous light and signal photons are collinear during interferometer measurements. To tackle this, a temperature-controlled Fabry–Pérot cavity filter with a heterogeneous cascaded structure is proposed and applied. The system consists of six [...] Read more.
This study addresses the issue of cross-interference that occurs when locked continuous light and signal photons are collinear during interferometer measurements. To tackle this, a temperature-controlled Fabry–Pérot cavity filter with a heterogeneous cascaded structure is proposed and applied. The system consists of six filtering stages, created by designing Fabry–Pérot cavities of three different lengths, each used twice (to match optical frequencies), along with temperature control settings. By applying differentiated linewidth regulation, the approach effectively suppresses interference from locked light while significantly enhancing the signal-to-noise ratio in photon detection. This method overcomes the challenge of interference from same-frequency noise photons in atomic ensemble-entangled sources, achieving a noise–photon extinction ratio on the order of 106 and surpassing the frequency resolution limit of a single filter. Experimental results demonstrate that the system reduces the noise floor in the detection optical path to below 10−16, while maintaining a photon transmission efficiency above 53% for the signal. This technology effectively addresses key challenges in noise suppression and photon state fidelity optimization in optical fiber quantum communication, offering a scalable frequency–photon noise filtering solution for long-distance quantum communication. Furthermore, its multi-parameter cooperative filtering mechanism holds broad potential applications in areas such as quantum storage and optical frequency combs. Full article
47 pages, 6818 KB  
Systematic Review
Modelling, Simulation and Performance Analysis of Floating Photovoltaic Systems—A Systematic Review and Meta-Analysis
by Oreoluwa Lawale, Simon P. Philbin and Sahand Hosouli
Energies 2025, 18(19), 5273; https://doi.org/10.3390/en18195273 (registering DOI) - 4 Oct 2025
Abstract
Research into floating photovoltaics (FPV) has seen a significant increase in recent years. Still, the observed outputs are poorly quantified, isolated, and occasionally contradictory, with reported cooling-induced efficiency increases varying widely across sources. To address the need for consensus in the field, a [...] Read more.
Research into floating photovoltaics (FPV) has seen a significant increase in recent years. Still, the observed outputs are poorly quantified, isolated, and occasionally contradictory, with reported cooling-induced efficiency increases varying widely across sources. To address the need for consensus in the field, a systematic literature review (SLR) and meta-analysis were conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework to provide a comprehensive overview of the current state-of-the-art in FPV systems. 3751 articles were identified through Boolean queries on three databases (Scopus, Web of Science, and Google Scholar). Using Python programming to ensure objectivity and replicability, the dataset was screened to 109 publications (subject to a manual, full-text review) relating strictly to modelling, simulation, and performance analysis of FPV systems with regard to the observed effect of reduced operating temperature. Focusing on these areas, this study provides a fundamental understanding of the temperature-based performance, as well as insights into the operation and simulation of FPV systems. Consistent temperature reductions were observed between ground-mounted and floating systems. Experimental data on FPV temperature were subject to a regression analysis, and the resulting equation was found to correspond well to a reported relation in the literature. The article concludes with a set of informed research directions to underpin the further development and implementation of FPV technology. Full article
Show Figures

Figure 1

19 pages, 7802 KB  
Article
Barium Strontium Titanate: Comparison of Material Properties Obtained via Solid-State and Sol–Gel Synthesis
by Thomas Hanemann, Martin Ade, Emine Cimen, Julia Schoenfelder, Kirsten Honnef, Matthias Wapler and Ines Ketterer
Ceramics 2025, 8(4), 126; https://doi.org/10.3390/ceramics8040126 (registering DOI) - 4 Oct 2025
Abstract
Barium strontium titanates (Ba1−xSrxTiO3, BST) with varying barium-to-strontium ratios were synthesized by the solid-state route (SSR) as well as by the sol–gel process (SGP). In the case of the SSR, the strontium amount x was varied from [...] Read more.
Barium strontium titanates (Ba1−xSrxTiO3, BST) with varying barium-to-strontium ratios were synthesized by the solid-state route (SSR) as well as by the sol–gel process (SGP). In the case of the SSR, the strontium amount x was varied from 0.0 to 0.25 in 0.05 steps, due to the enhanced synthetic effort, and in the case of the SGP, x was set only to 0.05, 0.15, and 0.25. The resulting properties after synthesis, calcination, and sintering, like particle size distribution, specific surface area, particle morphology, and crystalline phase were characterized. The expected tetragonal phase, free from any remarkable impurity, was found in all cases, and irrespective of the selected synthesis method. Pressed pellets were used for the measurement of the temperature and frequency-dependent relative permittivity enabling the estimation of the Curie temperatures of all synthesized BSTs. Irrespective of the selected synthesis method, the obtained Curie temperature drops with increasing strontium content to almost identical values, e.g., in the case of x = 0.15, a Curie temperature range 95–105 °C was measured. Thin BST films could be deposited on different substrate materials applying electrophoretic deposition in a good and reliable quality according to the Hamaker equation. The properties of the BSTs obtained by the simpler solid-state route are almost identical to the ones yielded by the more complex sol–gel process. In future, this result allows for a possible wider usage of BST perovskites for ferroelectric and piezoelectric devices due to the easy synthetic access by the solid-state route. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics, 2nd Edition)
Show Figures

Figure 1

14 pages, 1223 KB  
Article
Heat Pipe Heating and Cooling Building Modules: Thermal Properties and Possibilities of Their Use in Polish Climatic Conditions
by Karolina Durczak and Bernard Zawada
Energies 2025, 18(19), 5274; https://doi.org/10.3390/en18195274 (registering DOI) - 4 Oct 2025
Abstract
The subject of this paper is an analysis of the use of wall heating and cooling modules with heat pipes for efficient space heating and cooling. The modules under consideration constitute a structural element installed in the room’s partition structure and consist of [...] Read more.
The subject of this paper is an analysis of the use of wall heating and cooling modules with heat pipes for efficient space heating and cooling. The modules under consideration constitute a structural element installed in the room’s partition structure and consist of heat pipes embedded in a several-centimeter layer of concrete. Water-based central heating and chilled water systems were used as the heat and cooling source. The heat pipes are filled with a thermodynamic medium that changes state in repeated gas–liquid cycles. The advantage of this solution is the use of heat pipes as a heating and cooling element built into the wall, instead of a traditional water system. This solution offers many operational benefits, such as reduced costs for pumping the heat medium. This paper presents an analysis of the potential of using heat pipe modules for heating and cooling in real-world buildings in Poland. Taking into account the structural characteristics of the rooms under consideration (i.e., internal wall area, window area), an analysis was conducted to determine the potential use of the modules for space heating and cooling. The analysis was based on rooms where, according to the authors, the largest possible use of internal and external wall surfaces is possible, such as hotels and schools. Based on the simulations and calculations, it can be concluded that the modules can be effectively used in Poland as a real heating and cooling element: standalone, covering the entire heating and cooling demand of a room, e.g., a hotel room, or as a component working with an additional system, e.g., air cooling and heating in school buildings. The changes in outdoor air temperature, during the year analyzed in the article, were in the range of −24/+32 °C. Full article
Show Figures

Figure 1

18 pages, 512 KB  
Article
Free Vibration of FML Beam Considering Temperature-Dependent Property and Interface Slip
by Like Pan, Yingxin Zhao, Tong Xing and Yuan Yuan
Buildings 2025, 15(19), 3575; https://doi.org/10.3390/buildings15193575 - 3 Oct 2025
Abstract
This paper presents an analytical investigation of the free vibration behavior of fiber metal laminate (FML) beams with three types of boundary conditions, considering the temperature-dependent properties and the interfacial slip. In the proposed model, the non-uniform temperature field is derived based on [...] Read more.
This paper presents an analytical investigation of the free vibration behavior of fiber metal laminate (FML) beams with three types of boundary conditions, considering the temperature-dependent properties and the interfacial slip. In the proposed model, the non-uniform temperature field is derived based on one-dimensional heat conduction theory using a transfer formulation. Subsequently, based on the two-dimensional elasticity theory, the governing equations are established. Compared with shear deformation theories, the present solution does not rely on a shear deformation assumption, enabling more accurate capture of interlaminar shear effects and higher-order vibration modes. The relationship of stresses and displacements is determined by the differential quadrature method, the state-space method and the transfer matrix method. Since the corresponding matrix is singular due to the absence of external loads, the natural frequencies are determined using the bisection method. The comparison study indicates that the present solutions are consistent with experimental results, and the errors of finite element simulation and the solution based on the first-order shear deformation theory reach 3.81% and 3.96%, respectively. At last, the effects of temperature, the effects of temperature degree, interface bonding and boundary conditions on the vibration performance of the FML beams are investigated in detail. The research results provide support for the design and analysis of FML beams under high-temperature and vibration environments in practical engineering. Full article
211 pages, 28108 KB  
Review
The Impact of the Common Rail Fuel Injection System on Performance and Emissions of Modern and Future Compression Ignition Engines
by Alessandro Ferrari and Alberto Vassallo
Energies 2025, 18(19), 5259; https://doi.org/10.3390/en18195259 - 3 Oct 2025
Abstract
An overview of the Common Rail (CR) diesel engine challenges and of the promising state-of-the-art solutions for addressing them is provided. The different CR injector driving technologies have been compared, based on hydraulic, spray and engine performance for conventional diesel combustion. Various injection [...] Read more.
An overview of the Common Rail (CR) diesel engine challenges and of the promising state-of-the-art solutions for addressing them is provided. The different CR injector driving technologies have been compared, based on hydraulic, spray and engine performance for conventional diesel combustion. Various injection patterns, high injection pressures and nozzle design features are analyzed with reference to their advantages and disadvantages in addressing engine issues. The benefits of the statistically optimized engine calibrations have also been examined. With regard to the combustion strategy, the role of a CR engine in the implementation of low-temperature combustion (LTC) is reviewed, and the effect of the ECU calibration parameters of the injection on LTC steady-state and transition modes, as well as on an LTC domain, is illustrated. Moreover, the exploitation of LTC in the last generation of CR engines is discussed. The CR apparatus offers flexibility to optimize the engine calibration even for biofuels and e-fuels, which has gained interest in the last decade. The impact of the injection strategy on spray, ignition and combustion is discussed with reference to fuel consumption and emissions for both biodiesel and green diesel. Finally, the electrification of CR diesel engines is reviewed: the effects of electrically heated catalysts, electric supercharging, start and stop functionality and electrical auxiliaries on NOx, CO2, consumption and torque are analyzed. The feasibility of mild hybrid, strong hybrid and plug-in CR diesel powertrains is discussed. For the future, based on life cycle and manufacturing cost analyses, a roadmap for the automotive sector is outlined, highlighting the perspectives of the CR diesel engine for different applications. Full article
(This article belongs to the Topic Advanced Engines Technologies)
10 pages, 3506 KB  
Protocol
Indicator Tubes: A Novel Solution for Monitoring Temperature Excursions in Biobank Storage
by Patrick J. Catterson, Tyler T. Olson, Margaret B. Penno, Steven P. Callahan and Melissa V. Olson
Methods Protoc. 2025, 8(5), 120; https://doi.org/10.3390/mps8050120 - 3 Oct 2025
Abstract
Maintaining the integrity of cryogenically preserved biological materials is critical, as even brief, undetected temperature excursions in storage can compromise sample viability. Existing monitoring systems may miss transient thaw–refreeze events, posing serious quality risks. To address this, we developed and validated frozen indicator [...] Read more.
Maintaining the integrity of cryogenically preserved biological materials is critical, as even brief, undetected temperature excursions in storage can compromise sample viability. Existing monitoring systems may miss transient thaw–refreeze events, posing serious quality risks. To address this, we developed and validated frozen indicator tubes that visually signal deviations from the frozen state, serving as a cost-effective backup to electronic monitors. Our first method uses an aqueous dye solution that immobilizes the dye when frozen; any thawing causes the dye to disperse, providing a clear, external visual cue of a partial or complete thaw. For ultra-low-temperature storage (−80 °C), we introduced a second method using an ethanol-based solution calibrated to indicate thaw events. This system detects temperature rises of 10 °C or more sustained for at least fifteen minutes—conditions that may jeopardize sample stability. When paired with standard monitoring systems, these indicator tubes offer an added layer of protection by providing simple, reliable, and immediate visual confirmation of critical temperature breaches. This innovation enhances confidence in cryogenic storage protocols and supports the long-term preservation of sensitive biological materials. Full article
(This article belongs to the Section Synthetic and Systems Biology)
Show Figures

Figure 1

16 pages, 1827 KB  
Article
Preparation and Properties of Micron Near-Spherical Alumina Powders from Hydratable Alumina with Ammonium Fluoroborate
by Yi Wei, Jie Xu, Jie Jiang, Tairong Lu and Zuohua Liu
Materials 2025, 18(19), 4589; https://doi.org/10.3390/ma18194589 - 2 Oct 2025
Abstract
Micron-sized near-spherical α-Al2O3 powders are widely used as thermal fillers due to their high thermal conductivity, high packing density, good flowability, and low cost. During the high-temperature calcination, the resulting α-Al2O3 powders often exhibit an aggregated worm-like [...] Read more.
Micron-sized near-spherical α-Al2O3 powders are widely used as thermal fillers due to their high thermal conductivity, high packing density, good flowability, and low cost. During the high-temperature calcination, the resulting α-Al2O3 powders often exhibit an aggregated worm-like morphology owing to limitations in solid-state mass transfer. Researchers have employed various mineralizers to regulate the morphology of α-Al2O3 powders; however, the preparation of micron-sized highly spherical α-Al2O3 powders via solid-state calcination is still a great challenge. In this work, micron-sized near-spherical α-Al2O3 powders were synthesized through high-temperature calcination using hydratable alumina (ρ-Al2O3) as precursor with water-soluble mineralizer ammonium fluoroborate (NH4BF4). ρ-Al2O3 can undergo a hydration reaction with water to form AlO(OH) and Al(OH)3 intermediates, serving as an excellent precursor. With the addition of 0.1 wt% NH4BF4, the product exhibits an optimal near-spherical morphology. Excessive addition (>0.2wt%), however, significantly promotes the transformation of α-Al2O3 from a near-spherical to a plate-like structure. Further studies reveal that the introduction of NH4BF4 not only modulates the crystal morphology but also effectively reduces the content of sodium impurities in the powder through a high-temperature volatilization mechanism, thereby enhancing the thermal conductivity of the powder. It is shown that the thermal conductivity of the micron-sized α-Al2O3/ epoxy resin composites reaches 1.329 ± 0.009 W/(m·K), which is 7.4 times that of pure epoxy resin. Full article
(This article belongs to the Section Metals and Alloys)
25 pages, 4111 KB  
Article
Influence of the Pattern of Coupling of Elements and Antifriction Interlayer Thickness of a Spherical Bearing on Structural Behavior
by Anna A. Kamenskikh, Anastasia P. Bogdanova, Yuriy O. Nosov and Yulia S. Kuznetsova
Designs 2025, 9(5), 117; https://doi.org/10.3390/designs9050117 - 2 Oct 2025
Abstract
In this study, the behavior of the spherical bearing component of the L-100 bridge part (AlfaTech LLC, Perm, Russia) is considered within the framework of a finite element model. The influence of the pattern of the coupling of the antifriction interlayer with the [...] Read more.
In this study, the behavior of the spherical bearing component of the L-100 bridge part (AlfaTech LLC, Perm, Russia) is considered within the framework of a finite element model. The influence of the pattern of the coupling of the antifriction interlayer with the lower steel plate on the operation of the part is examined in terms of ideal contact, full adhesion, and frictional contact. The thickness of the antifriction interlayer varied from 4 to 12 mm. The dependencies of the contact parameters and the stress–strain state on the thickness were determined. Structurally modified polytetrafluoroethylene (PTFE) without AR-200 fillers was considered the material of the antifriction interlayer. The gradual refinement of the behavioral model of the antifriction material to account for structural and relaxation transitions was carried based on a wide range of experimental studies. The elastic–plastic and primary viscoelastic models of material behavior were constructed based on a series of homogeneous deformed-state experiments. The viscoelastic model of material behavior was refined using data from dynamic mechanical analysis over a wide temperature range [−40; +80] °C. In the first approximation, a model of the deformation theory of plasticity with linear elastic volumetric compressibility was identified. As a second approximation, a viscoelasticity model for the Maxwell body was constructed using Prony series. It was established that the viscoelastic model of the material allows for obtaining data on the behavior of the part with an error of no more than 15%. The numerical analog of the construction in an axisymmetric formulation can be used for the predictive analysis of the behavior of the bearing, including when changing the geometric configuration. Recommendations for the numerical modeling of the behavior of antifriction layer materials and the coupling pattern of the bearing elements are given in this work. A spherical bearing with an antifriction interlayer made of Arflon series material is considered for the first time. Full article
Show Figures

Figure 1

21 pages, 6329 KB  
Review
Degradation Progress of Metallized Silicon Nitride Substrate Under Thermal Cycling Tests by Digital Image Correlation
by Minh Chu Ngo, Hiroyuki Miyazaki, Kiyoshi Hirao, Tatsuki Ohji and Manabu Fukushima
J. Compos. Sci. 2025, 9(10), 536; https://doi.org/10.3390/jcs9100536 - 2 Oct 2025
Abstract
Thermal cycling test is one of the reliability tests, which are important for metal-ceramic layered composites (metallized ceramic substrates), a part in power modules. Since thermal cycles are within a large range of temperature, the test has only been performed using a thermal [...] Read more.
Thermal cycling test is one of the reliability tests, which are important for metal-ceramic layered composites (metallized ceramic substrates), a part in power modules. Since thermal cycles are within a large range of temperature, the test has only been performed using a thermal chamber. It limited the understanding of degradation mechanism in metallized ceramics substrates. Among NDE techniques, Digital Image Correlation (DIC) is a simple and effective method, enhanced by modern digital imaging technologies, enabling precise measurements of displacement, strain, deformation, and defects with a simple setup. In this paper, we combined some of our previous work to make a review to present a full analysis of a silicon metallized substrate under thermal cycling test (from beginning to fail) using DIC method. The main content is the application of DIC in evaluating the reliability of metallized silicon nitride (AMB-SN) substrates under thermal cycling with temperatures from −40 °C to 250 °C. Three key aspects of the AMB-SN substrate are presented, including (i) thermal strain characteristics before and after delamination, (ii) warpage and dynamic bending behavior across damage states, and (iii) stress–strain behavior of constituent materials. The review provides insights into degradation progress of the substrate and the role of Cu in substrate failure, and highlights DIC’s potential in ceramic composites, offering a promising approach for improving reliability test simulations and advancing digital transformation in substrate evaluation, ultimately contributing to enhanced durability in high-power applications. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

Back to TopTop