Preparation and Properties of Micron Near-Spherical Alumina Powders from Hydratable Alumina with Ammonium Fluoroborate
Abstract
1. Introduction
2. Experimental
2.1. Preparation of Near-Spherical Alumina Powder of Micron Size
2.2. Preparation of α-Al2O3/EP Thermally Conductive Composites
2.3. Characterizations
3. Results and Discussion
4. Conclusions
- (1)
- The addition of NH4BF4 effectively modulates the crystal morphology of α-Al2O3, with a pronounced correlation to the amount added. The underlying mechanism involves the thermal decomposition of NH4BF4 into fluorine-containing (e.g., HF and AlF3) and boron-containing (e.g., H3BO3) intermediates. Fluorine and boron act synergistically to alter the surface energy distribution at the crystal growth interface, thereby suppressing anisotropic growth and promoting equiaxial development, leading to the formation of a near-spherical morphology. Experimental results show that with 0.1% NH4BF4 addition, near-spherical α-Al2O3 powder with D50 = 1.65 μm was obtained. Increasing the addition to 0.5% resulted in a loss of morphological control due to an imbalance in the fluorine-to-boron ratio, yielding a mixture of near-spherical and plate-like α-Al2O3. In contrast, reducing the addition to 0.04% provided insufficient mineralizer concentration, resulting in entirely agglomerated vermicular α-Al2O3 without effective morphology regulation.
- (2)
- NH4BF4 serves as an efficient mineralizer that facilitates the formation of α-Al2O3. Under these conditions, the holding time has minimal influence on the final crystal morphology and particle size. Experiments confirmed that within a 1–4 h holding period, the morphology and size of the α-Al2O3 crystals remained largely unchanged, with no significant agglomeration or abnormal grain growth—markedly superior to the control group without NH4BF4. This behavior is attributed to gaseous products from NH4BF4 decomposition, which regulate grain-boundary diffusion by reducing interfacial energy and suppressing Ostwald ripening, thereby decoupling grain growth rate from holding time.
- (3)
- By introducing 0.1% NH4BF4 and calcining at 1300 °C, near-spherical α-Al2O3 powder with D50= 1.65 μm was successfully prepared. The composite gel formed with epoxy (EP) exhibited a thermal conductivity of 1.329 ± 0.009 W/(m·K). These findings provide a feasible strategy for the industrial production of micron-scale near-spherical α-Al2O3 powder.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, K.; Chai, Y.; Yuen, M.M.F.; Xiao, D.G.W.; Chan, P.C.H. Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology 2008, 19, 215706. [Google Scholar] [CrossRef]
- Xiao, M.; Du, B.X. Review of high thermal conductivity polymer dielectrics for electrical insulation. High Volt. 2016, 1, 34–42. [Google Scholar] [CrossRef]
- Yan, H.; Dai, X.; Ruan, K.; Zhang, S.; Shi, X.; Guo, Y.; Cai, H.; Gu, J. Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv. Compos. Hybrid Mater. 2021, 4, 36–50. [Google Scholar] [CrossRef]
- Li, R.; Yang, X.; Li, J.; Shen, Y.; Zhang, L.; Lu, R.; Wang, C.; Zheng, X.; Chen, H.; Zhang, T. Review on polymer composites with high thermal conductivity and low dielectric properties for electronic packaging. Mater. Today Phys. 2022, 22, 100594. [Google Scholar] [CrossRef]
- Ruan, K.; Shi, X.; Guo, Y.; Gu, J. Interfacial thermal resistance in thermally conductive polymer composites: A review. Compos. Commun. 2020, 22, 100518. [Google Scholar] [CrossRef]
- Li, H.; Chen, W.; Xu, J.; Li, J.; Gan, L.; Chu, X.; Yao, Y.; He, Y.; Li, B.; Kang, F.; et al. Enhanced thermal conductivity by combined fillers in polymer composites. Thermochim. Acta 2019, 676, 198–204. [Google Scholar] [CrossRef]
- Bai, X.; Meng, Y.; Zhou, F.; Ge, C.; Sun, D.; Yang, D.; Jiang, X.; Dai, P.; Wang, X. Enhanced thermal conductivity of polymeric composites with BN@C hybrid fillers. J. Mater. Chem. C 2024, 12, 15965–15974. [Google Scholar] [CrossRef]
- Mumtaz, N.; Li, Y.; Artiaga, R.; Farooq, Z.; Mumtaz, A.; Guo, Q.; Nisa, F.-U. Fillers and methods to improve the effective (out-plane) thermal conductivity of polymeric thermal interface materials—A review. Heliyon 2024, 10, e25381. [Google Scholar] [CrossRef]
- Medvecká, V.; Kováčik, D.; Stupavská, M.; Roch, T.; Kromka, A.; Fajgar, R.; Zahoranová, A.; Černák, M. Preparation and characterization of alumina submicron fibers by plasma assisted calcination. Ceram. Int. 2020, 46, 22774–22780. [Google Scholar] [CrossRef]
- Basha, M.M.; Basha, S.M.; Singh, B.K.; Mandal, N.; Sankar, M.R. A review on synthesis of zirconia toughened alumina (ZTA) for cutting tool applications. Mater. Today Proc. 2020, 26, 534–541. [Google Scholar] [CrossRef]
- Shojaie-Bahaabad, M.; Taheri-Nassaj, E. Economical synthesis of nano alumina powder using an aqueous sol–gel method. Mater. Lett. 2008, 62, 3364–3366. [Google Scholar] [CrossRef]
- Ya-Qiang, S.H.E.N.; Dong-Yun, L.I.; Yang, X.U.; Hong-Liang, G.E.; Qiang, X.U.; Hui, Y.A.N.G. Influence mechanism of halide additives on phase conversion, morphology, and purity of alumina powders prepared by solid-phase calcination method. Ceram. Int. 2022, 48, 8403–8408. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, G.; Qi, T.; Zhou, Q.; Peng, Z.; Li, X.; Wang, Y.; Shen, L. Influence of NH4BF4 on the alumina phase transition and morphology. Mater. Lett. 2023, 345, 134474. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, G.; Qi, T.; Zhou, Q.; Peng, Z.; Shen, L.; Wang, Y.; Li, X. Structural defect and activated alumina of spheric α-Al2O3 improving alumina ceramics density from the industrial coarse gibbsite. Ceram. Int. 2024, 50, 54643–54653. [Google Scholar] [CrossRef]
- Xu, X.; Chen, J.; Zhou, J.; Li, B. Thermal Conductivity of Polymers and Their Nanocomposites. Adv. Mater. 2018, 30, e1705544. [Google Scholar] [CrossRef]
- Wang, H.; Li, L.; Wei, X.; Hou, X.; Li, M.; Wu, X.; Li, Y.; Lin, C.-T.; Jiang, N.; Yu, J. Combining Alumina Particles with Three-Dimensional Alumina Foam for High Thermally Conductive Epoxy Composites. ACS Appl. Polym. Mater. 2021, 3, 216–225. [Google Scholar] [CrossRef]
- Lee Sanchez, W.A.; Huang, C.-Y.; Chen, J.-X.; Soong, Y.-C.; Chan, Y.-N.; Chiou, K.-C.; Lee, T.-M.; Cheng, C.-C.; Chiu, C.-W. Enhanced Thermal Conductivity of Epoxy Composites Filled with Al2O3/Boron Nitride Hybrids for Underfill Encapsulation Materials. Polymers 2021, 13, 147. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.W.; Lee, Y.S.; Yoo, D.J.; Kim, J.S. Alumina-graphene hybrid filled epoxy composite: Quantitative validation and enhanced thermal conductivity. Compos. Part B Eng. 2017, 131, 184–195. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J. Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Compos. Part B Eng. 2013, 51, 140–147. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Yasuda, Y.; Morita, T. Low-temperature synthesis of α-alumina based on sol-gel processes. Adv. Mater. Process. Technol. 2021, 7, 482–513. [Google Scholar] [CrossRef]
- Niero, D.F.; Montedo, O.R.K.; Bernardin, A.M. Synthesis and characterization of nano α-alumina by an inorganic sol–gel method. Mater. Sci. Eng. B 2022, 280, 115690. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, D.; Zhou, G.; Zhang, C.; Zhang, P.; Hou, X. Synthesis of nano-sized γ-Al2O3 with controllable size by simple homogeneous precipitation method. Mater. Lett. 2020, 279, 128476. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Qin, F.; Song, Z.; Liu, W. Synthesis of monodisperse spherical nano alumina by hydrothermal method and its mechanism study. Ceram. Int. 2024, 50, 39467–39474. [Google Scholar] [CrossRef]
- Suchanek, W.L. Hydrothermal Synthesis of Alpha Alumina (α-Al2O3) Powders: Study of the Processing Variables and Growth Mechanisms. J. Am. Ceram. Soc. Soc. 2010, 93, 399–412. [Google Scholar] [CrossRef]
- Chaturvedi, V.; Ananthapadmanabhan, P.V.; Chakravarthy, Y.; Bhandari, S.; Tiwari, N.; Pragatheeswaran, A.; Das, A.K. Thermal plasma spheroidization of aluminum oxide and characterization of the spheroidized alumina powder. Ceram. Int. 2014, 40, 8273–8279. [Google Scholar] [CrossRef]
- Guo, Y.; Li, C.; Deng, N.; Sun, H.; Feng, S.; Zhang, Y.; Li, X.; Ci, E.; Li, J. Preparation of high sphericity monodisperse aluminum microspheres by pulsated orifice ejection method. Mater. Today Commun. 2022, 30, 103110. [Google Scholar] [CrossRef]
- Skalon, M.; Hebda, M.; Buzolin, R.; Pottlacher, G.; Mitsche, S.; Sommitsch, C. Preparation Method of Spherical and Monocrystalline Aluminum Powder. Metals 2019, 9, 375. [Google Scholar] [CrossRef]
- Bezerra, B.P.; Luz, A.P.; Pandolfelli, V.C. Novel drying additives and their evaluation for self-flowing refractory castables. Ceram. Int. 2020, 46, 3209–3217. [Google Scholar] [CrossRef]
- Zhang, J.; Li, N.; Zhou, W.; Xiong, X.; Gao, S.; Ye, G. Microstructure evolution of hydration products and strength change of hydratable alumina-bonded castables below 1250°C. J. Am. Ceram. Soc. 2021, 104, 1448–1454. [Google Scholar] [CrossRef]
- Yuan, L.; Liu, Z.; Tian, C.; Han, L.; Wen, T.; Yu, J.; Hou, X.; Zhu, Q. Synthesis and characterization of mullite-ZrO2 porous fibrous ceramic for highly efficient oil-water separation. Ceram. Int. 2021, 47, 22709–22716. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, B.; Zhong, Z.; Ye, J.; Fang, Z.; Zhang, J.; Ye, F. A simple and efficient hydratable alumina gel-casting method for the fabrication of high-porosity mullite ceramics. J. Am. Ceram. Soc. 2024, 107, 2067–2080. [Google Scholar] [CrossRef]
- Salomão, R.; Kawamura, M.A.; Souza, A.D.V.; Sakihama, J. Hydratable Alumina-Bonded Suspensions: Evolution of Microstructure and Physical Properties During First Heating. Interceram Int. Ceram. Rev. 2017, 66, 28–37. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Zhou, X.-N.; Li, Z.-X.; Xu, S.-S.; Hao, L.-C.; Zhao, J.-P.; Wang, B.; Yang, J.-F.; Ishizaki, K. Enhanced thermal conductivity of epoxy composites by constructing thermal conduction networks via adding hybrid alumina filler. Polym. Compos. 2022, 43, 483–492. [Google Scholar] [CrossRef]
- Shoppert, A.; Valeev, D.; Loginova, I.; Pankratov, D. Low-Temperature Treatment of Boehmitic Bauxite Using the Bayer Reductive Method with the Formation of High-Iron Magnetite Concentrate. Materials 2023, 16, 4678. [Google Scholar] [CrossRef]
- Hao, Z.; Li, J.; Zhao, J. Synthesis of plate-like cordierite using a small amount of H3BO3 flux. Ceram. Int. 2023, 49, 28267–28273. [Google Scholar] [CrossRef]
- Lin, Z.; Sun, Z.; Fu, W.; Lin, Y.-C.; Moon, K.-s.; Wong, C.P. Thermally conductive and electrically insulative alumina/epoxy composites for advanced electronic packaging applications: A comprehensive review of filler morphologies and surface modifications. Mater. Today 2025, 86, 393–413. [Google Scholar] [CrossRef]










| Whiteness % | Oil Absorption 10 g/100 g | Moisture Content | PH 10 g/100 g | Electrical Conductivity μs/cm | Thermal Conductivity w/(m·k) | Extrusion g/min |
|---|---|---|---|---|---|---|
| 99.4 | 53.97 | 0.29 | 9.11 | 94.80 | 1.329 ± 0.009 | 32.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Xu, J.; Jiang, J.; Lu, T.; Liu, Z. Preparation and Properties of Micron Near-Spherical Alumina Powders from Hydratable Alumina with Ammonium Fluoroborate. Materials 2025, 18, 4589. https://doi.org/10.3390/ma18194589
Wei Y, Xu J, Jiang J, Lu T, Liu Z. Preparation and Properties of Micron Near-Spherical Alumina Powders from Hydratable Alumina with Ammonium Fluoroborate. Materials. 2025; 18(19):4589. https://doi.org/10.3390/ma18194589
Chicago/Turabian StyleWei, Yi, Jie Xu, Jie Jiang, Tairong Lu, and Zuohua Liu. 2025. "Preparation and Properties of Micron Near-Spherical Alumina Powders from Hydratable Alumina with Ammonium Fluoroborate" Materials 18, no. 19: 4589. https://doi.org/10.3390/ma18194589
APA StyleWei, Y., Xu, J., Jiang, J., Lu, T., & Liu, Z. (2025). Preparation and Properties of Micron Near-Spherical Alumina Powders from Hydratable Alumina with Ammonium Fluoroborate. Materials, 18(19), 4589. https://doi.org/10.3390/ma18194589

