Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = starch chewy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 717 KB  
Article
Upcycled Apple Pomace as an Innovative Ingredient in High-Moisture Meat Analogs: Sustainable Valorization for Food Production
by Hojin Jung, Bon-Jae Gu and Da-Eun Jung
Sustainability 2026, 18(1), 475; https://doi.org/10.3390/su18010475 - 2 Jan 2026
Viewed by 394
Abstract
This study evaluated the effects of apple pomace (AP) incorporation on the physicochemical, structural, and functional properties of high-moisture meat analogs from a sustainability perspective. AP, an abundant agro-industrial by-product rich in dietary fiber and polyphenols, was upcycled at inclusion levels of 0–20%. [...] Read more.
This study evaluated the effects of apple pomace (AP) incorporation on the physicochemical, structural, and functional properties of high-moisture meat analogs from a sustainability perspective. AP, an abundant agro-industrial by-product rich in dietary fiber and polyphenols, was upcycled at inclusion levels of 0–20%. By transforming this food waste into a value-added ingredient, the study aligns with circular bioeconomy principles to reduce environmental footprints. Increasing AP content led to reductions in textural attributes such as hardness, cohesiveness, springiness, and chewiness. Integrity index and cutting strength also declined, particularly beyond 15%, due to the disruption of the protein-starch matrix by dietary fibers. In contrast, antioxidant activities (DPPH and ABTS) improved significantly with higher AP levels, reflecting polyphenol release during extrusion. These findings highlight a trade-off between enhanced nutritional functionality and reduced structural integrity. Moderate inclusion below 10–15% may therefore offer a balance between antioxidant benefits and acceptable texture. Overall, this research demonstrates the potential of sustainable AP valorization in developing senior-friendly and plant-based meat analog products. The outcomes not only provide practical formulation guidance but also contribute to resource efficiency, waste reduction, responsible consumption, and sustainable food production systems, and the advancement of a circular bioeconomy. Full article
(This article belongs to the Special Issue Innovative Ingredients and Sustainable Practices for Food Production)
Show Figures

Figure 1

25 pages, 12788 KB  
Article
The Effect of Fructooligosaccharide and Inulin Addition on the Functional, Mechanical, and Structural Properties of Cooked Japonica Rice
by Bing Dai, Ruijun Chen, Shiyu Chang, Zheng Wei, Xiaohong Luo, Jiangzhang Wu and Xingjun Li
Gels 2026, 12(1), 48; https://doi.org/10.3390/gels12010048 - 1 Jan 2026
Viewed by 388
Abstract
To test whether fructooligosaccharide (FOS) and inulin (INU) molecules can improve the hardness of cooked rice through forming a hydrogel network, we added FOS or INU at 0%, 3%, 5%, 7%, and 10% concentrations to two cooking japonica rice and compared the cooking [...] Read more.
To test whether fructooligosaccharide (FOS) and inulin (INU) molecules can improve the hardness of cooked rice through forming a hydrogel network, we added FOS or INU at 0%, 3%, 5%, 7%, and 10% concentrations to two cooking japonica rice and compared the cooking and textural parameters, the pasting, thermal, and thermo-mechanical properties, and the microstructure of the cooked rice. General Linear Model Univariate (GLMU) analysis revealed that, compared with no oligofructose addition, both FOS and INU addition reduced the rice cooking time and increased the gruel solid loss. The addition of these dietary fibers (DFs) to cooking rice lowered the hardness, adhesiveness, springiness, gumminess, and chewiness of the rice, but maintained the cohesiveness and increased the resilience. Compared with no oligofructose addition, FOS and INU addition improved the smell, taste, and total sensory score of cooked rice. The addition of these DFs significantly decreased the trough, peak, final, breakdown, and setback viscosities, but increased the pasting temperature and peak time. Both FOS and INU addition decreased the enthalpy of gelatinization but increased the peak and conclusion temperature of gelatinization of rice flour paste. After the retrograded flour pastes were kept at 4 °C for 21 days, both FOS and INU significantly increased amylopectin aging compared with no oligofructose addition. The FOS-added and INU-added rice doughs had a higher dough development time and stability time, gelatinization peak torque, setback torque, and gelatinization speed, with a lower protein weakening degree, amylase activity, breakdown torque, heating speed, and enzymatic hydrolysis speed. Compared with no oligofructose addition, both FOS and INU addition reduced the amorphous region of starch and β-sheet percentage, but increased the percentages of random coils, α-helixes, and β-turns in cooked rice. Principal component analysis (PCA) further demonstrated that the gruel solid loss, cooked rice hardness, chewiness, gumminess, taste, and the peak, trough, breakdown, final, and setback viscosities were sensitive parameters for evaluating the effects of species and the amount of oligofructose addition on rice quality. The microstructure showed that FOS or INU addition induced thickening of the matrix walls and an increase in the pore size, forming a soft and evenly swollen structure. These results suggest that FOS or INU addition inhibits amylose recrystallization but maintains amylopectin recrystallization in cooked rice, with INU addition producing greater improvements in the texture and sensory scores of cooked rice compared withFOS addition. This study provides evidence of the advantages of adding DFs and probiotics such as INU and FOS to cooked rice. Full article
(This article belongs to the Special Issue Application of Composite Gels in Food Processing and Engineering)
Show Figures

Figure 1

24 pages, 5533 KB  
Article
Impact of Cooking Method on the Physicochemical Properties, Digestibility, and Sensory and Flavor Profiles of Chinese Chestnuts
by Lijun Song, Man Xu, Kai Zhang, Gang Guo, Lixiang Huai, Yue Zhao, Taohong Wang, Leiqing Pan, Ruiguo Cui and Li Zhang
Foods 2025, 14(24), 4331; https://doi.org/10.3390/foods14244331 - 16 Dec 2025
Viewed by 714
Abstract
The impact of cooking method (stir frying, sugar stir-frying, baking, steaming, and boiling) on the physicochemical and sensory properties of Chinese chestnuts was evaluated. Dry heat treatment (stir frying, sugar stir-frying, and baking) increased hardness and chewiness because of water loss. Moist heat [...] Read more.
The impact of cooking method (stir frying, sugar stir-frying, baking, steaming, and boiling) on the physicochemical and sensory properties of Chinese chestnuts was evaluated. Dry heat treatment (stir frying, sugar stir-frying, and baking) increased hardness and chewiness because of water loss. Moist heat treatment (steaming and boiling) resulted in a softer texture and brighter color as a result of water absorption and starch gelatinization. Samples cooked with stir frying and boiling had a 50.82–54.17% reduction in resistant starch content. In contrast, the stir-frying, sugar stir-frying, and baking samples experienced a decrease of 37.16–47.18%. Concurrent changes in the glycemic index were observed. The polyphenol content and antioxidant activity were highest in the samples cooked using sugar stir-frying. A total of 34 volatile compounds were identified, but only 8 were key in the olfactory analysis (hexanal, (E)-2-hexenal, 3-methylbutanal, ethyl 3-methylbutyrate, ethyl acetate, 2-pentanone, 3-hydroxy-2-butanone, and 2-pentylfuran). At the same time, combined with sensory evaluation, sugar stir-frying can highlight the caramel and sweetness of chestnut; then baking can bring a strong aroma of nuts, and sugar stir-frying is a more popular method. Full article
Show Figures

Graphical abstract

24 pages, 7398 KB  
Article
Effect of Polygonatum cyrtonema Flour Addition on the Rheological Properties, Gluten Structure Characteristics of the Dough and the In Vitro Digestibility of Steamed Bread
by Zhangjie Bi, Yuling Yang, Long Yang, Chao Yang, Changqing Dong, Zhipeng Liu, Zexuan Gong, Ruxin Wang and Xuebin Yin
Foods 2025, 14(23), 4116; https://doi.org/10.3390/foods14234116 - 1 Dec 2025
Viewed by 452
Abstract
The study explores the impact of incorporating Polygonatum cyrtonema flour (PCF) into wheat flour on dough functionality and steamed bread quality. The results show that PCF enhanced dough hydration, rheology, and protein network stability through hydrophilic and non-covalent interactions, particularly hydrogen bonding. At [...] Read more.
The study explores the impact of incorporating Polygonatum cyrtonema flour (PCF) into wheat flour on dough functionality and steamed bread quality. The results show that PCF enhanced dough hydration, rheology, and protein network stability through hydrophilic and non-covalent interactions, particularly hydrogen bonding. At the optimal level, steamed bread demonstrates improved specific volume, elasticity, and cohesiveness, accompanied by reduced hardness and chewiness, with hardness decreasing by 29%, chewiness by 25.80%, and gumminess by 26.30%. Microstructural analyses have confirmed enhanced water retention, strengthened gluten matrices, and favorable secondary structure transitions. The ultraviolet visible absorption spectroscopy and fluorescence spectroscopy analyses revealed that PCF enhanced the interactions between proteins and starch, accompanied by a red shift and decreased fluorescence intensity, indicating a more compact protein conformation. These findings suggest that PCF regulates protein secondary structures through hydrogen bonding and hydrophobic interactions, thereby stabilizing the gluten network. PCF supplementation boosted antioxidant activity and modulates starch digestibility; at a 10% substitution level, resistant starch (RS) decreases from approximately 60% in the control to 34%. This reduction indicates that PCF disrupts the integrity of the starch protein matrix, increasing amylase accessibility to starch granules and thus promoting starch hydrolysis. Incorporating 4% PCF in the formulation enhances both the technological performance and nutritional quality of the product while maintaining its overall integrity. These findings highlight the dual role of PCF in improving technological functionality and nutritional attributes. PCF emerges as a promising natural fortification ingredient for steamed bread, offering quality enhancement and additional health value. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

18 pages, 2308 KB  
Article
Nutritional and Functional Enhancement of Chinese Steamed Bread Through Incorporation of Acheta domesticus and Antheraea pernyi Pupae Powders
by Yu Liu, Yangran Lu, Poompatchara Nakkote, Hua Li, Ruixin Liu and Sirithon Siriamornpun
Foods 2025, 14(22), 3956; https://doi.org/10.3390/foods14223956 - 19 Nov 2025
Viewed by 1336
Abstract
The study intended to assess the impacts of partially replacing wheat flour with Acheta domesticus powder (AD) and Antheraea pernyi pupae powder (AP) at 5%, 10%, and 15% levels on the proximate composition, color properties, texture profile, antioxidant capacity, starch digestibility, and flavor [...] Read more.
The study intended to assess the impacts of partially replacing wheat flour with Acheta domesticus powder (AD) and Antheraea pernyi pupae powder (AP) at 5%, 10%, and 15% levels on the proximate composition, color properties, texture profile, antioxidant capacity, starch digestibility, and flavor characteristics of Chinese steamed bread (CSB). The addition of AP and AD notably increased the levels of protein, fat, and ash and also led to an elevated chewiness and hardness. Most importantly, compared to the control, AP- and AD-fortified CSB exhibited a significantly low estimated glycemic index (eGI) and high total phenolic and flavonoid contents, resulting in improved DPPH and ABTS radical scavenging activities. Furthermore, E-nose, E-tongue, and GC-MS analysis revealed that incorporation of AP and AD strengthened umami and saltiness and enriched the flavor profile of CSB. Our findings indicate that AD- and AP-fortified CSB is a promising functional food with a lower eGI, as well as improved nutritional value and antioxidant potential, offering a sustainable strategy for staple food innovation while also providing guidance for consumers to select wheat flour fortified with different types and levels of insect powder to prepare CSB based on their preferences. Full article
Show Figures

Figure 1

16 pages, 1852 KB  
Article
Combined Effects of Lactic Acid Bacteria Fermentation and Physical Milling on Physicochemical Properties of Glutinous Rice Flour and Texture of Glutinous Dumplings
by Jingyi Zhang, Bin Hong, Shan Zhang, Di Yuan, Shan Shan, Qi Wu, Shuwen Lu and Chuanying Ren
Foods 2025, 14(22), 3882; https://doi.org/10.3390/foods14223882 - 13 Nov 2025
Viewed by 842
Abstract
This study investigated the combined effects of lactic acid bacteria (LAB) fermentation and different milling methods (wet, semi-dry, and dry) on the physicochemical properties of glutinous rice flour (GRF) and the texture of the final product. A systematic analysis of rice samples treated [...] Read more.
This study investigated the combined effects of lactic acid bacteria (LAB) fermentation and different milling methods (wet, semi-dry, and dry) on the physicochemical properties of glutinous rice flour (GRF) and the texture of the final product. A systematic analysis of rice samples treated with three LAB strains (Lactiplantibacillus plantarum CGMCC 1.12974, Limosilactobacillus fermentum CICC 22704, and Lactobacillus acidophilus CICC 22162) revealed that fermentation pretreatment created favorable conditions for subsequent physical milling by degrading the protein network and modifying the starch structure. The results demonstrated that fermentation combined with dry or semi-dry milling significantly improved the whiteness of GRF and the contents of γ-aminobutyric acid (GABA), total phenols, and total flavonoids, while reducing the contents of damaged starch (except in samples fermented with Lb. acidophilus) and protein by 2.91–12.43% and 17.80–32.09%, respectively. The functional properties of the GRF were also optimized: fermented flour exhibited higher peak viscosity, lower gelatinization temperature, and higher gelatinization enthalpy. Texture profile analysis revealed that glutinous dumplings prepared from fermented dry/semi-dry milled GRF, particularly those fermented with Lp. plantarum, showed significantly reduced hardness and chewiness, along with significantly improved cohesiveness and resilience. Consequently, their texture approximated that of high-standard wet-milled products. Correlation analysis based on the top ten discriminative features selected by random forest identified peak viscosity and breakdown viscosity as the most important positive factors associated with superior texture (high resilience, high cohesiveness, and low hardness), whereas damaged starch content and protein content were key negative correlates. In summary, this study confirms that the combination of fermentation and milling exerts a beneficial influence on the functional quality of GRF. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

28 pages, 4222 KB  
Article
Effect of Polyphenols Extracted from Rosa roxburghii Tartt Pomace with Different Particle Sizes on Quality and Biological Activity of Noodles: A View of Molecular Interaction
by Keying Lin, Junjie Huang, Jichun Zhao, Xiaojuan Lei, Jian Ming and Fuhua Li
Foods 2025, 14(21), 3679; https://doi.org/10.3390/foods14213679 - 28 Oct 2025
Viewed by 899
Abstract
The retention of polyphenols in thermally processed noodles is constrained by interactions with starch and glutenin, critically impacting functional properties (antioxidant activity, starch digestibility modulation) and quality attributes. Current understanding lacks quantitative links between initial pomace particle size, polyphenol behavior throughout processing, and [...] Read more.
The retention of polyphenols in thermally processed noodles is constrained by interactions with starch and glutenin, critically impacting functional properties (antioxidant activity, starch digestibility modulation) and quality attributes. Current understanding lacks quantitative links between initial pomace particle size, polyphenol behavior throughout processing, and the resulting noodle properties. This study systematically investigated how Rosa roxburghii pomace particle size (0.1–250 μm), fractionated into five ranges, governs polyphenol extractability, retention in fresh/boiled noodles, and their functional and quality outcomes. Mathematical modeling established quantitative particle size–property relationships. The results indicated that polyphenol release was maximized at the 1–10 μm particle size. Total phenolic retention in boiled noodles was highest with 0.1–1 μm pomace, while the retention of specific phenolics peaked with 60–80 μm pomace. Fresh noodle hardness and gumminess decreased significantly, particularly with extracts from 1 to 40 μm pomace, whereas boiled noodles showed increased chewiness/adhesiveness. All polyphenol-enriched noodles exhibited suppressed starch digestibility and enhanced antioxidant capacity. Robust quadratic regression models predicted key properties based on particle size. Molecular interactions (hydrogen bonding, hydrophobic contacts, π–cation stacking, salt bridges) between key phenolics (EGCG, hydroxybenzoic acid, gallic acid, quercetin, and isoquercitrin) and the gluten–starch matrix, critically involving residues Arg-86 and Arg-649, were identified as the underlying mechanism. These results demonstrate that precise control of pomace particle size regulates extract composition and molecular binding dynamics, providing a strategic approach to optimize functional noodle design. Full article
(This article belongs to the Special Issue Fruit By-Products and Their Applications in Food Industry)
Show Figures

Figure 1

12 pages, 395 KB  
Article
Mitigating Quality Deterioration of Reduced-Fat Pork Sausages During Cold Storage via Resistant Starch Incorporation: Gel Properties and Protein Conformation Study
by Guanghui Liu, Jingchao Fan, Li Wang, Minghui Liang, Chun Xie and Zhuangli Kang
Gels 2025, 11(10), 763; https://doi.org/10.3390/gels11100763 - 23 Sep 2025
Viewed by 1427
Abstract
This study investigated the changes in pH, water retention, color, texture characteristics, protein conformation, thiobarbituric acid reactive substances (TBARSs), total volatile basic nitrogen (TVB-N), and total plate count in reduced-fat sausages. It explored the quality differences between sausages with and without the addition [...] Read more.
This study investigated the changes in pH, water retention, color, texture characteristics, protein conformation, thiobarbituric acid reactive substances (TBARSs), total volatile basic nitrogen (TVB-N), and total plate count in reduced-fat sausages. It explored the quality differences between sausages with and without the addition of resistant starch during storage at 4 °C over a period of 1 to 30 days. The results indicated that TBARS and TVB-N values significantly increased (p < 0.05) with the extension of refrigeration time, and the α-helix and β-sheet structures were transformed into β-turn and random coil structures, leading to a significant decrease in the pH, L* and a* values, texture characteristics, and chewiness of all sausages, as well as a significant increase in storage loss and centrifugation loss. Under the same refrigeration time, the sausage with added resistant starch exhibited better water retention and texture characteristics compared to the treatment without resistant starch. Additionally, the TBARS and TVB-N values were significantly lower (p < 0.05) in the former. Therefore, the incorporation of resistant starch can effectively slow down the deterioration of gel properties and the increase in total bacterial count in reduced-fat sausages during refrigeration. Full article
Show Figures

Figure 1

16 pages, 1819 KB  
Article
Influence of Rice Physicochemical Properties on High-Quality Fresh Wet Rice Noodles: Amylose and Gel Consistency as Key Factors
by Dezhi Zhao, Yuanyuan Deng, Qi Huang, Guang Liu, Yan Zhang, Xiaojun Tang, Pengfei Zhou, Zhihao Zhao, Jiarui Zeng, Ying Liu and Ping Li
Gels 2025, 11(9), 696; https://doi.org/10.3390/gels11090696 - 2 Sep 2025
Viewed by 1247
Abstract
Fresh wet rice noodles (FWRNs) are a popular staple food in southern China. The quality of rice varieties results in the inconsistent quality of FWRNs. However, evaluation of rice adaptability for the production of FWRNs is not comprehensive due to the absence of [...] Read more.
Fresh wet rice noodles (FWRNs) are a popular staple food in southern China. The quality of rice varieties results in the inconsistent quality of FWRNs. However, evaluation of rice adaptability for the production of FWRNs is not comprehensive due to the absence of unified screening standards. In this study, twelve rice varieties in southern China were selected to analyze the correlations between rice’s physicochemical properties and the quality characteristics of FWRNs. Results showed that KIM, GC, and IZG rice exhibited a high chalky grain rate and low gel consistency, while the related starches had a high amylose content, high setback value, and low short-range order. Their noodles achieved high total sensory scores and exhibited high levels of sensory and textural qualities. Correlation analysis revealed that the chalky grain rate, chalkiness degree, protein and fat contents, and amylose content were significantly and positively correlated with the hardness, elasticity, chewiness, and total sensory score of FWRNs. Therefore, based on the structural parameters of KIM and GC rice, amylose content between 26–28% and gel consistency between 33–36 mm would be the key factors for raw rice to make high-quality FWRNs. These results offer theoretical guidance for rice selection in the industrial-scale production of FWRNs. Full article
(This article belongs to the Special Issue State-of-the-Art Food Gels)
Show Figures

Graphical abstract

18 pages, 1829 KB  
Article
Consumer Characterization of Commercial Gluten-Free Crackers Through Rapid Methods and Its Comparison to Descriptive Panel Data
by Japneet Brar, Rajesh Kumar and Martin J. Talavera
Foods 2025, 14(17), 2972; https://doi.org/10.3390/foods14172972 - 26 Aug 2025
Viewed by 1295
Abstract
Despite the continued growth of the gluten-free food market, there is a dearth of sensory and consumer knowledge on commercial products. The existing research is mostly limited to hedonic measurements and ingredient effects instead of analytical methods for a better understanding of product [...] Read more.
Despite the continued growth of the gluten-free food market, there is a dearth of sensory and consumer knowledge on commercial products. The existing research is mostly limited to hedonic measurements and ingredient effects instead of analytical methods for a better understanding of product characteristics of gluten-free crackers specifically. In this work, a semi-trained consumer panel used projective mapping to choose objectively different plain/original crackers from a pool of sixteen commercial gluten-free cracker varieties. The cracker samples represented a widespread sensory space originating from different key ingredients such as brown rice, white rice, flaxseed, cassava flour, nut flour blend, millet blend, and tapioca/potato starch blend. Based on projective mapping results, the crackers that mostly represented the sensory space were selected for characterization by a modified flash profiling method. The consumer panel developed 74 descriptors: 30 aromas, 28 flavors, 15 texture terms, and a mouthfeel attribute. The samples were monadically rated for intensity on a 4-point scale (0 = none, 1 = low, 2 = medium, and 3 = high). Rice, toasted, salt, grain, burnt, flaxseed, bitter, earthy, nutty, seeds, and grass were the prevalent aromas and flavors. Others were specific to cracker type. Some of these attributes can be traced back to the ingredients list. Results suggest that ingredients used in small portions are defining the flavor properties over the major grains/flour blends. All samples had some degree of crunchiness, crispness, and pasty mouthfeel; rice crackers were particularly firm, hard, and chewy; brown rice crackers were gritty; crackers with tuber starches/flours were more airy, soft, smooth, and flaky. Overall, the samples shared more aroma and flavor notes than texture attributes. In comparison to trained panel results, consumers generated a greater number of terms and were successful in finding subtle differences primarily in texture but had many overlapped flavors. The developed consumer terminology will facilitate the gluten-free industry to tailor communication that better resonates with consumer experiences, needs, and product values. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

19 pages, 1899 KB  
Article
Effects of the Ratio of Alaskan Pollock Surimi to Wheat Flour on the Quality Characteristics and Protein Interactions of Innovative Extruded Surimi–Flour Blends
by Xinru Fan, Xinyue Zhang, Yingying Zhou, Maodong Song, Meng Li, Soottawat Benjakul, Zhibo Li and Qiancheng Zhao
Foods 2025, 14(16), 2851; https://doi.org/10.3390/foods14162851 - 17 Aug 2025
Cited by 2 | Viewed by 1161
Abstract
Snack foods (e.g., extruded flour-based products) are widely favored by consumers because of their convenience, affordability, and time-saving attributes. However, with the growing demand for high-quality snacks, several challenges have emerged that hinder industry development, such as relatively underdeveloped industrial standards, limited raw [...] Read more.
Snack foods (e.g., extruded flour-based products) are widely favored by consumers because of their convenience, affordability, and time-saving attributes. However, with the growing demand for high-quality snacks, several challenges have emerged that hinder industry development, such as relatively underdeveloped industrial standards, limited raw material diversity (primarily starch and soy protein), and, consequently, insufficient nutritional value. In this study, a novel type of puffed snack was developed using Alaskan pollock surimi and wheat flour using extrusion puffing technology. The effects of varying ratios of surimi to wheat flour (0:10, 1:9, 2:8, 3:7, and 4:6, which served as SFBC, SFB1, SFB2, SFB3, and SFB4, respectively), on the physicochemical properties, apparent morphology, microstructure, thermal stability, and protein structure of spicy strips were systematically investigated, and the interaction between extruded protein and flour mixtures was analyzed. The results indicated that increasing the proportion of surimi led to decreases in hardness, elasticity, and chewiness, whereas the moisture content and water solubility index increased. The maximum expansion rate (202.2%) was observed in the SFB1 sample. Morphological and microstructural observations further revealed that a higher surimi content resulted in a denser internal structure and a reduced degree of puffing. The protein distribution was relatively uniform, with large pores. Moreover, increased surimi content increased the proportion of immobilized water and improved the thermal stability. These findings provide valuable insights into starch–protein-complex-based extrusion puffing technologies and contribute to the development of innovative surimi-based puffed food products. Full article
Show Figures

Figure 1

15 pages, 14782 KB  
Article
Temperature-Mediated Gel Texture Transformation in Starch Noodles: In Respect of Glass Transition Temperature Tg
by Hongxiao Liu, Qing Hu, Sha Yang, Lina Liu and Xuyan Dong
Gels 2025, 11(8), 639; https://doi.org/10.3390/gels11080639 - 13 Aug 2025
Cited by 1 | Viewed by 1671
Abstract
Potato starch noodles (PSN), a characteristic gluten-free Asian food, are essentially high-concentration starch gels (about 35% starch) formed through gelatinization and retrogradation. This study systematically investigates freezing temperature effects, particularly across the glass transition temperature, on PSN texture and microstructure. We found that [...] Read more.
Potato starch noodles (PSN), a characteristic gluten-free Asian food, are essentially high-concentration starch gels (about 35% starch) formed through gelatinization and retrogradation. This study systematically investigates freezing temperature effects, particularly across the glass transition temperature, on PSN texture and microstructure. We found that fresh PSN have a freezing point of −1 °C, supercooling temperature of −4.5 °C, and a Tg’ value of −3.1 °C. Freezing significantly reduced the adhesiveness of PSN and increased the hardness. During the 48 h freezing process, noodles frozen at −3 °C, the closest to Tg’, exhibited the highest hardness (14,065.77 g), springiness (0.98), cohesiveness (0.93), chewiness (11,971.06), and resilience (0.84), and the least adhesiveness. PSN frozen within the range near Tg’ (−3 °C) showed superior texture, continuous solid cross-section, and dense surface, attributed to the reverse transformation of starch, high mobility of starch chains, and smaller ice crystals. PSN frozen at −3 °C for 24 h displayed the most compact and desirable texture compared to the other samples. These findings deepen the understanding of the role of glass transition temperature in the texture formation of starch gel during freezing and provide valuable insights for optimizing the frozen processing of starch gel-based food. Full article
Show Figures

Figure 1

26 pages, 5763 KB  
Article
The Development and Optimization of Extrusion-Based 3D Food Printing Inks Using Composite Starch Gels Enriched with Various Proteins and Hydrocolloids
by Evgenia N. Nikolaou, Eftychios Apostolidis, Eirini K. Nikolidaki, Evangelia D. Karvela, Athena Stergiou, Thomas Kourtis and Vaios T. Karathanos
Gels 2025, 11(8), 574; https://doi.org/10.3390/gels11080574 - 23 Jul 2025
Cited by 3 | Viewed by 2145
Abstract
This study presents a comprehensive evaluation of starch-based gel formulations enriched with proteins and hydrocolloids for extrusion-based 3D food printing (3DFP). Food inks were prepared using corn or potato starch, protein concentrates (fava, whey, rice, pea and soya), and hydrocolloids (κ-carrageenan, arabic gum, [...] Read more.
This study presents a comprehensive evaluation of starch-based gel formulations enriched with proteins and hydrocolloids for extrusion-based 3D food printing (3DFP). Food inks were prepared using corn or potato starch, protein concentrates (fava, whey, rice, pea and soya), and hydrocolloids (κ-carrageenan, arabic gum, xanthan gum, and carboxy methylcellulose). Their rheological, mechanical, and textural properties were systematically analyzed to assess printability. Among all formulations, those containing κ-carrageenan consistently demonstrated superior viscoelastic behavior (G′ > 4000 Pa), optimal tan δ values (0.096–0.169), and yield stress conducive to stable extrusion. These inks also achieved high structural fidelity (93–96% accuracy) and favourable textural attributes such as increased hardness and chewiness. Computational Fluid Dynamics (CFD) simulations further validated the inks’ performances by linking pressure and velocity profiles with rheological parameters. FTIR analysis revealed that gel strengthening was primarily driven by non-covalent interactions, such as hydrogen bonding and electrostatic effects. The integration of empirical measurements and simulation provided a robust framework for evaluating and optimizing printable food gels. These findings contribute to the advancement of personalized and functional 3D-printed foods through data-driven formulation design. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

19 pages, 5242 KB  
Article
Polydextrose Addition Improves the Chewiness and Extended Shelf-Life of Chinese Steamed Bread Through the Formation of a Sticky, Elastic Network Structure
by Chang Liu, Bing Dai, Xiaohong Luo, Hongdong Song and Xingjun Li
Gels 2025, 11(7), 545; https://doi.org/10.3390/gels11070545 - 14 Jul 2025
Cited by 1 | Viewed by 1300
Abstract
This study explored the effects of adding a newly developed type of polydextrose on the appearance, sensory score, and textural parameters of steamed bread and the microstructure of dough, as well as the pasting, thermal, and thermal mechanical properties of high-gluten wheat flours. [...] Read more.
This study explored the effects of adding a newly developed type of polydextrose on the appearance, sensory score, and textural parameters of steamed bread and the microstructure of dough, as well as the pasting, thermal, and thermal mechanical properties of high-gluten wheat flours. The results revealed that, compared with a control sample, 3–10% of polydextrose addition significantly increased the hardness, adhesiveness, gumminess, and chewiness of steamed bread, but other textural parameters like springiness, cohesiveness, and resilience remained basically the same. Further, in contrast to the control sample, 3–10% polydextrose addition significantly reduced the specific volume and width/height ratio of steamed bread but increased the brightness index, yellowish color, and color difference; improved the internal structure; and maintained the other sensory parameters and total score. Polydextrose addition decreased the peak, trough, final, breakdown, and setback viscosity of the pasting of wheat flour suspension solutions but increased the pasting temperature. Polydextrose additions significantly reduced the enthalpy of gelatinization and the aging rate of flour paste but increased the peak temperature of gelatinization. A Mixolab revealed that, with increases in the amount of added polydextrose, the dough’s development time and heating rate increased, but the proteins weakened, and the peak torque of gelatinization, starch breakdown, and starch setback torque all decreased. Polydextrose additions increased the crystalline regions of starch, the interaction between proteins and starch, and the β-sheet percentage of wheat dough without yeast and of steamed bread. The amorphous regions of starch were increased in dough through adding polydextrose, but they were decreased in steamed bread. Further, 3–10%of polydextrose addition decreased the random coils, α-helixes, and β-turns in dough, but the 3–7% polydextrose addition maintained or increased these conformations in steamed bread, while 10% polydextrose decreased them. In unfermented dough, as a hydrogel, the 5–7% polydextrose addition resulted in the formation of a continuous three-dimensional network structure with certain adhesiveness and elasticity, with increases in the porosity and gas-holding capacity of the product. Moreover, the 10% polydextrose addition further increased the viscosity, freshness, and looseness of the dough, with smaller and more numerous holes and indistinct boundaries between starch granules. These results indicate that the 3–10% polydextrose addition increases the chewiness and freshness of steamed bread by improving the gluten network structure. This study will promote the addition of polydextrose in steamed bread to improve shelf-life and dietary fiber contents. Full article
Show Figures

Figure 1

16 pages, 1824 KB  
Article
Effects of Pregelatinization on the Physicochemical Properties of Corn Grits and the Quality of Cooked Waxy Corn Wrapped in Plant Leaves
by Yi Wang, Ruixuan Li, Yijiao Yan, Wanyi Niu, Yue Wang, Mingyi Shen, Ruifang Wang and Li Cheng
Foods 2025, 14(13), 2287; https://doi.org/10.3390/foods14132287 - 27 Jun 2025
Cited by 2 | Viewed by 1253
Abstract
In this study, the effects of pregelatinization on the physicochemical properties of corn grits and the quality of cooked waxy corn wrapped in plant leaves were investigated. This investigation was conducted to address the issues of partial gelatinization and poor texture in corn [...] Read more.
In this study, the effects of pregelatinization on the physicochemical properties of corn grits and the quality of cooked waxy corn wrapped in plant leaves were investigated. This investigation was conducted to address the issues of partial gelatinization and poor texture in corn grits when applied to food processing such as cooked waxy corn wrapped in plant leaves. After the corn grits were soaked at 55 °C, they were steamed for 30 min and dried at 45 °C (steam temperature maintained at 100 °C), reaching a gelatinization degree of 48.28%. The modified grits were characterized using Rapid Visco Analyzer (RVA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM) to analyze pasting properties, retrogradation behavior, crystallinity, molecular structure, and morphology. The results showed that pregelatinization significantly reduced setback viscosity (from 274.83 to 154.52 mPa·s), crystallinity (from 11.12% to 3.62%), and retrogradation tendency while improving solubility, swelling power, and water-holding capacity. When used in cooked waxy corn wrapped in plant leaves, pregelatinized grits enhanced the gelatinization degree (96.11%), texture (reduced hardness by 19.49%, increased chewiness and cohesiveness), and moisture retention during storage. The findings demonstrate that pregelatinization optimizes starch functionality, mitigates retrogradation, and improves the overall quality of traditional corn-based foods, providing a practical approach for industrial applications. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

Back to TopTop