Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (44)

Search Parameters:
Keywords = squeezed coherent states

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8172 KiB  
Article
A Comparative Analysis of a Nonlinear Phase Space Evolution of SU(2) and SU(1,1) Coherent States
by Rodrigo D. Aceves, Miguel Baltazar, Iván F. Valtierra and Andrei B. Klimov
Quantum Rep. 2025, 7(3), 31; https://doi.org/10.3390/quantum7030031 - 5 Jul 2025
Viewed by 253
Abstract
We carried out a comparative study of the phase space evolution of SU(2) and SU(1,1) coherent states generated by the same nonlinear two-mode Hamiltonian. We analyze the dynamics of the Wigner functions in the respective phase spaces and discuss the principal associated physical [...] Read more.
We carried out a comparative study of the phase space evolution of SU(2) and SU(1,1) coherent states generated by the same nonlinear two-mode Hamiltonian. We analyze the dynamics of the Wigner functions in the respective phase spaces and discuss the principal associated physical effects: the squeezing of the appropriate observables and the Schrödinger’s cat state generation characteristic of both the considered symmetry groups. Full article
(This article belongs to the Special Issue Exclusive Feature Papers of Quantum Reports in 2024–2025)
Show Figures

Figure 1

21 pages, 5274 KiB  
Article
Drive-Loss Engineering and Quantum Discord Probing of Synchronized Optomechanical Squeezing
by Hugo Molinares and Vitalie Eremeev
Mathematics 2025, 13(13), 2171; https://doi.org/10.3390/math13132171 - 3 Jul 2025
Viewed by 230
Abstract
In an optomechanical system (OMS), the dynamics of quantum correlations, e.g., quantum discord, can witness synchronized squeezing between the cavity and mechanical modes. We investigate an OMS driven by two coherent fields, and demonstrate that optimal quantum correlations and squeezing synchronization can be [...] Read more.
In an optomechanical system (OMS), the dynamics of quantum correlations, e.g., quantum discord, can witness synchronized squeezing between the cavity and mechanical modes. We investigate an OMS driven by two coherent fields, and demonstrate that optimal quantum correlations and squeezing synchronization can be achieved by carefully tuning key parameters: the cavity-laser detunings, loss rates, and the effective coupling ratio between the optomechanical interaction and the amplitude drive. By employing the steady-state solution of the covariance matrix within the Lyapunov framework, we identify the conditions under which squeezing becomes stabilized. Furthermore, we demonstrate that synchronized squeezing of the cavity and mechanical modes can be effectively controlled by tuning the loss ratio between the cavity and mechanical subsystems. Alternatively, in the case where the cavity is driven by a single field, we demonstrate that synchronized squeezing in the conjugate quadratures of the cavity and mechanical modes can still be achieved, provided that the cavity is coupled to a squeezed reservoir. The presence of this engineered reservoir compensates the absent driving field, by injecting directional quantum noise, thereby enabling the emergence of steady-state squeezing correlations between the two modes. A critical aspect of our study reveals how the interplay between dissipative and driven-dispersive squeezing mechanisms governs the system’s bandwidth and robustness against decoherence. Our findings provide a versatile framework for manipulating quantum correlations and squeezing in OMS, with applications in quantum metrology, sensing, and the engineering of nonclassical states. This work advances the understanding of squeezing synchronization and offers new strategies for enhancing quantum-coherent phenomena in dissipative environments. Full article
Show Figures

Figure 1

28 pages, 1450 KiB  
Review
N00N State Generation by Floquet Engineering
by Yusef Maleki
Mathematics 2025, 13(10), 1667; https://doi.org/10.3390/math13101667 - 19 May 2025
Viewed by 696
Abstract
We review quantum architectures for engineering the N00N state, a bipartite maximally entangled state essential in quantum metrology. These schemes transform the initial state |N|0 into the N00N state, [...] Read more.
We review quantum architectures for engineering the N00N state, a bipartite maximally entangled state essential in quantum metrology. These schemes transform the initial state |N|0 into the N00N state, 12(|N|0+|0|N), where |N and |0 are Fock states with N and 0 excitations, respectively. We demonstrate that this state can be generated through superpositions of quantum light modes, hybrid light–matter interactions, or spin ensembles. Our approach also enables the creation of mesoscopic and macroscopic entangled states, including entangled coherent and squeezed states. Furthermore, we show that a broad class of maximally entangled states can be realized within this framework. Extensions to multi-mode state engineering are also explored. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

12 pages, 1819 KiB  
Article
Tunneling Current in a Double Quantum Dot Driven by Two-Mode Microwave Photons
by Weici Liu and Faqiang Wang
Electronics 2025, 14(3), 599; https://doi.org/10.3390/electronics14030599 - 3 Feb 2025
Viewed by 1058
Abstract
In this study, a model of a double-quantum-dot system driven by two-mode microwave photons is presented. The quantum master equation is derived from the system’s Hamiltonians, and the expression for the steady-state current is obtained. Electronic tunneling properties are then analyzed. The results [...] Read more.
In this study, a model of a double-quantum-dot system driven by two-mode microwave photons is presented. The quantum master equation is derived from the system’s Hamiltonians, and the expression for the steady-state current is obtained. Electronic tunneling properties are then analyzed. The results revealed that different two-mode quantum microwave photons have varying effects on the tunneling current within the double-quantum-dot system, with a steplike current trend emerging. The tunneling current showed pronounced negative differential conductance for both coherent and squeezed microwave photons. Furthermore, the tunneling current was significantly influenced by changing the squeezing coefficient and phase. The asymmetric evolution of the tunneling current under varying bias voltages also depends on the asymmetry in system parameters. These findings are crucial for manipulating the transport properties of double-quantum-dot systems in nanostructured devices. Full article
(This article belongs to the Special Issue Quantum and Optoelectronic Devices, Circuits and Systems, 2nd Edition)
Show Figures

Figure 1

12 pages, 359 KiB  
Article
Statistical Properties of Superpositions of Coherent Phase States with Opposite Arguments
by Miguel Citeli de Freitas and Viktor V. Dodonov
Entropy 2024, 26(11), 977; https://doi.org/10.3390/e26110977 - 15 Nov 2024
Viewed by 796
Abstract
We calculate the second-order moments, the Robertson–Schrödinger uncertainty product, and the Mandel factor for various superpositions of coherent phase states with opposite arguments, comparing the results with similar superpositions of the usual (Klauder–Glauber–Sudarshan) coherent states. We discover that the coordinate variance in the [...] Read more.
We calculate the second-order moments, the Robertson–Schrödinger uncertainty product, and the Mandel factor for various superpositions of coherent phase states with opposite arguments, comparing the results with similar superpositions of the usual (Klauder–Glauber–Sudarshan) coherent states. We discover that the coordinate variance in the analog of even coherent states can show the most strong squeezing effect, close to the maximal possible squeezing for the given mean photon number. On the other hand, the Robertson–Schrödinger (RS) uncertainty product in superpositions of coherent phase states increases much slower (as function of the mean photon number) than in superpositions of the usual coherent states. A nontrivial behavior of the Mandel factor for small mean photon numbers is discovered in superpositions with unequal weights of two components. An exceptional nature of the even and odd superpositions is demonstrated. Full article
(This article belongs to the Special Issue Quantum Probability and Randomness V)
Show Figures

Figure 1

22 pages, 332 KiB  
Tutorial
Introduction to Bell’s Inequality in Quantum Mechanics
by Marcelo Santos Guimaraes, Itzhak Roditi and Silvio Paolo Sorella
Universe 2024, 10(10), 396; https://doi.org/10.3390/universe10100396 - 15 Oct 2024
Cited by 4 | Viewed by 1450
Abstract
A pedagogical introduction to Bell’s inequality in Quantum Mechanics is presented. Several examples, ranging from spin 1/2 to coherent and squeezed states are worked out. The generalization to Mermin’s inequalities and to GHZ states is also outlined. Full article
(This article belongs to the Section Foundations of Quantum Mechanics and Quantum Gravity)
29 pages, 429 KiB  
Review
A Review of Stable, Traversable Wormholes in f(R) Gravity Theories
by Ramesh Radhakrishnan, Patrick Brown, Jacob Matulevich, Eric Davis, Delaram Mirfendereski and Gerald Cleaver
Symmetry 2024, 16(8), 1007; https://doi.org/10.3390/sym16081007 - 7 Aug 2024
Cited by 8 | Viewed by 6275
Abstract
It has been proven that in standard Einstein gravity, exotic matter (i.e., matter violating the pointwise and averaged Weak and Null Energy Conditions) is required to stabilize traversable wormholes. Quantum field theory permits these violations due to the quantum coherent effects found in [...] Read more.
It has been proven that in standard Einstein gravity, exotic matter (i.e., matter violating the pointwise and averaged Weak and Null Energy Conditions) is required to stabilize traversable wormholes. Quantum field theory permits these violations due to the quantum coherent effects found in any quantum field. Even reasonable classical scalar fields violate the energy conditions. In the case of the Casimir effect and squeezed vacuum states, these violations have been experimentally proven. It is advantageous to investigate methods to minimize the use of exotic matter. One such area of interest is extended theories of Einstein gravity. It has been claimed that in some extended theories, stable traversable wormholes solutions can be found without the use of exotic matter. There are many extended theories of gravity, and in this review paper, we first explore f(R) theories and then explore some wormhole solutions in f(R) theories, including Lovelock gravity and Einstein Dilaton Gauss–Bonnet (EdGB) gravity. For completeness, we have also reviewed ‘Other wormholes’ such as Casimir wormholes, dark matter halo wormholes, thin-shell wormholes, and Nonlocal Gravity (NLG) wormholes, where alternative techniques are used to either avoid or reduce the amount of exotic matter that is required. Full article
(This article belongs to the Special Issue Symmetry in Gravity Theories and Cosmology)
12 pages, 3075 KiB  
Article
Impact of Imbalanced Modulation on Security of Continuous-Variable Measurement-Device-Independent Quantum Key Distribution
by Wenyuan Liu, Zehui Liu, Jiandong Bai, Qi Jie, Guangwei Zhang, Yan Tian and Jingjing Jin
Photonics 2024, 11(7), 649; https://doi.org/10.3390/photonics11070649 - 10 Jul 2024
Cited by 1 | Viewed by 1385
Abstract
Continuous variable measurement-device-independent quantum key distribution (CV-MDI-QKD) removes all known or unknown side-channel attacks on detectors. However, it is difficult to fully implement assumptions in the security demonstration model, which leads to potential security vulnerabilities inevitably existing in the practical system. In this [...] Read more.
Continuous variable measurement-device-independent quantum key distribution (CV-MDI-QKD) removes all known or unknown side-channel attacks on detectors. However, it is difficult to fully implement assumptions in the security demonstration model, which leads to potential security vulnerabilities inevitably existing in the practical system. In this paper, we explore the impact of imbalanced modulation at transmitters on the security of the CV-MDI-QKD system mainly using a coherent state and squeezed state under symmetric and asymmetric distances. Assuming two different modulation topologies of senders, we propose a generalized theoretical scheme and evaluate the key parameter achievable of the protocol with the mechanism of imbalanced modulation. The presented results show that imbalanced modulation can achieve a relatively nonlinearly higher secret key rate and transmission distances than the previous protocol which is the balanced modulation variance used by transmitters. The advantage of imbalanced modulation is demonstrated for the system key parameter estimation using numerical simulation under different situations. In addition, the consequences indicate the importance of imbalanced modulation on the performance of CV-MDI-QKD protocol and provide a theoretical framework for experimental implementation as well as the optimal modulated mode. Full article
(This article belongs to the Special Issue Quantum Fiber Transmission: Securing Next-Generation Optical Networks)
Show Figures

Figure 1

13 pages, 955 KiB  
Article
Effects of Squeezing on the Power Broadening and Shifts of Micromaser Lineshapes
by Leonardi Hernández-Sánchez, Irán Ramos-Prieto, Francisco Soto-Eguibar and Héctor Manuel Moya-Cessa
Photonics 2024, 11(4), 371; https://doi.org/10.3390/photonics11040371 - 16 Apr 2024
Cited by 3 | Viewed by 1579
Abstract
AC Stark shifts have an impact on the dynamics of atoms interacting with a near-resonant quantized single-mode cavity field, which is relevant to a single atom micromaser. In this study, we demonstrate that, when the field is in a squeezed coherent state, atomic [...] Read more.
AC Stark shifts have an impact on the dynamics of atoms interacting with a near-resonant quantized single-mode cavity field, which is relevant to a single atom micromaser. In this study, we demonstrate that, when the field is in a squeezed coherent state, atomic lineshapes are highly sensitive to the squeezing parameter. Furthermore, we show that, when considering a superposition of squeezed coherent states with equal amplitude, the displacement of the transition lines depends significantly, not only on the squeezing parameter, but also on its sign. Full article
(This article belongs to the Special Issue Recent Advances and Future Perspectives in Solid-State Lasers)
Show Figures

Figure 1

19 pages, 5655 KiB  
Article
Deterministic Shaping of Quantum Light Statistics
by Garrett D. Compton and Mark G. Kuzyk
Photonics 2024, 11(4), 287; https://doi.org/10.3390/photonics11040287 - 22 Mar 2024
Cited by 1 | Viewed by 1644
Abstract
We propose a theoretical method for the deterministic shaping of quantum light via photon number state selective interactions. Nonclassical states of light are an essential resource for high-precision optical techniques that rely on photon correlations and noise reshaping. Notable techniques include quantum enhanced [...] Read more.
We propose a theoretical method for the deterministic shaping of quantum light via photon number state selective interactions. Nonclassical states of light are an essential resource for high-precision optical techniques that rely on photon correlations and noise reshaping. Notable techniques include quantum enhanced interferometry, ghost imaging, and generating fault-tolerant codes for continuous variable optical quantum computing. We show that a class of nonlinear-optical resonators can transform many-photon wavefunctions to produce structured states of light with nonclassical noise statistics. The devices, based on parametric down conversion, utilize the Kerr effect to tune photon-number-dependent frequency matching, inducing photon-number-selective interactions. With a high-amplitude coherent pump, the number-selective interaction shapes the noise of a two-mode squeezed cavity state with minimal dephasing, illustrated with simulations. We specify the requisite material properties to build the device and highlight the remaining material degrees of freedom which offer flexible material design. Full article
(This article belongs to the Special Issue Editorial Board Members' Collection Series: Nonlinear Photonics)
Show Figures

Figure 1

13 pages, 4584 KiB  
Article
Feedback Control of Quantum Correlations in a Cavity Magnomechanical System with Magnon Squeezing
by Mohamed Amazioug, Shailendra Singh, Berihu Teklu and Muhammad Asjad
Entropy 2023, 25(10), 1462; https://doi.org/10.3390/e25101462 - 18 Oct 2023
Cited by 32 | Viewed by 2061
Abstract
We suggest a method to improve quantum correlations in cavity magnomechanics, through the use of a coherent feedback loop and magnon squeezing. The entanglement of three bipartition subsystems: photon-phonon, photon-magnon, and phonon-magnon, is significantly improved by the coherent feedback-control method that has been [...] Read more.
We suggest a method to improve quantum correlations in cavity magnomechanics, through the use of a coherent feedback loop and magnon squeezing. The entanglement of three bipartition subsystems: photon-phonon, photon-magnon, and phonon-magnon, is significantly improved by the coherent feedback-control method that has been proposed. In addition, we investigate Einstein-Podolsky-Rosen steering under thermal effects in each of the subsystems. We also evaluate the scheme’s performance and sensitivity to magnon squeezing. Furthermore, we study the comparison between entanglement and Gaussian quantum discord in both steady and dynamical states. Full article
(This article belongs to the Special Issue Advances in Quantum Communication)
Show Figures

Figure 1

14 pages, 980 KiB  
Article
Time-Varying Engineered Reservoir for the Improved Estimation of Atom-Cavity Coupling Strength
by Ye Xia, Weiming Guo and Zibo Miao
Photonics 2023, 10(2), 157; https://doi.org/10.3390/photonics10020157 - 2 Feb 2023
Cited by 1 | Viewed by 1659
Abstract
In this paper, we consider the application of quantum reservoir engineering in quantum metrology. More precisely, we are concerned with a system setup where a sequence of atoms constructing the “time-varying” quantum reservoir interact, in turn, with the trapped field in a cavity [...] Read more.
In this paper, we consider the application of quantum reservoir engineering in quantum metrology. More precisely, we are concerned with a system setup where a sequence of atoms constructing the “time-varying” quantum reservoir interact, in turn, with the trapped field in a cavity through the Jaynes–Cummings Hamiltonian. In particular, we were able to manipulate the initial states of reservoir atoms in order to enhance estimation precision regarding the coupling strength between each atom and the cavity (the coupling strength between each atom and the cavity was assumed to be identical). The novelty of this work lies in alternately preparing the atoms at two different states in a pairwise manner, such that the cavity could converge into a squeezed state with photonic loss to the environment taken into account. The control scheme proposed here thus leads to higher precision compared to the previous work where reservoir atoms were initialized at the same state, which drove the cavity to a coherent state. Detailed theoretical analysis and numerical simulations are also provided. In addition, this system setup and the associated control scheme are easily implemented for quantum metrology, since no entanglement is required for the preparation of atom states, and the final cavity state can stay steady. Full article
(This article belongs to the Special Issue Quantum Optics: Science and Applications)
Show Figures

Figure 1

14 pages, 577 KiB  
Article
Coherent Phase States in the Coordinate and Wigner Representations
by Miguel Citeli de Freitas and Viktor V. Dodonov
Quantum Rep. 2022, 4(4), 509-522; https://doi.org/10.3390/quantum4040036 - 8 Nov 2022
Cited by 2 | Viewed by 2860
Abstract
In this paper, we numerically study the coordinate wave functions and the Wigner functions of the coherent phase states (CPS), paying particular attention to their differences from the standard (Klauder–Glauber–Sudarshan) coherent states, especially in the case of the high mean values of the [...] Read more.
In this paper, we numerically study the coordinate wave functions and the Wigner functions of the coherent phase states (CPS), paying particular attention to their differences from the standard (Klauder–Glauber–Sudarshan) coherent states, especially in the case of the high mean values of the number operator. In this case, the CPS can possess a strong coordinate (or momentum) squeezing, which is roughly twice weaker than for the vacuum squeezed states. The Robertson–Schrödinger invariant uncertainty product in the CPS logarithmically increases with the mean value of the number operator (whereas it is constant for the standard coherent states). Some measures of the (non)Gaussianity of CPS are considered. Full article
(This article belongs to the Special Issue Continuous and Discrete Phase-Space Methods and Their Applications)
Show Figures

Figure 1

11 pages, 277 KiB  
Article
Transactional Interpretation and the Generalized Poisson Distribution
by Marcin Makowski and Edward Wiktor Piotrowski
Entropy 2022, 24(10), 1416; https://doi.org/10.3390/e24101416 - 4 Oct 2022
Cited by 5 | Viewed by 1604
Abstract
The aim of this paper is to study the quantum-like approach to the description of the market in the context of the principle of minimum Fisher information. We wish to investigate the validity of using squeezed coherent states as market strategies. For this [...] Read more.
The aim of this paper is to study the quantum-like approach to the description of the market in the context of the principle of minimum Fisher information. We wish to investigate the validity of using squeezed coherent states as market strategies. For this purpose, we focus on the representation of any squeezed coherent state with respect to the basis of the eigenvectors of the observable of market risk. We derive a formula for the probability of being the squeezed coherent state in one of these states. The distribution that we call generalized Poisson establishes the relation between the squeezed coherent states and their description in the language of risk in quantum terms. We provide a formula specifying the total risk of squeezed coherent strategy. Then, we propose a risk of risk concept that is in fact the second central moment of the generalized Poisson distribution. This is an important numerical characterization of squeezed coherent strategies. We provide its interpretations on the basis of the uncertainty relation for time and energy. Full article
(This article belongs to the Special Issue Quantum Approach to Game Theory and Social Science)
13 pages, 3297 KiB  
Article
Realization of Quantum Swap Gate and Generation of Entangled Coherent States
by Ziqiu Zhang, Xi Jiang and Shiqing Tang
Symmetry 2022, 14(9), 1951; https://doi.org/10.3390/sym14091951 - 19 Sep 2022
Cited by 4 | Viewed by 2928
Abstract
The cross fusion of quantum mechanics and information science forms quantum information science. Quantum logic gates and quantum entanglement are very important building blocks in quantum information processing. In this paper, we propose one-step schemes for realizing quantum swap gates and generating two-mode [...] Read more.
The cross fusion of quantum mechanics and information science forms quantum information science. Quantum logic gates and quantum entanglement are very important building blocks in quantum information processing. In this paper, we propose one-step schemes for realizing quantum swap gates and generating two-mode entangled coherent states via circuit QED. In our scheme, due to the adiabatic elimination of the excited state of the qutrit under the condition of large detuning, the decoherence of the spontaneous emission of the qutrit can be ignored. The fidelity of the quantum swap gate remains at a very high level. In addition, we also explore the nonclassical properties of two-mode entangled coherent states prepared in our scheme by addressing the second-order correlation function and intermodal squeezing. In particular, two classes of entangled coherent states demonstrate distinct entanglement and nonclassical behavior. Full article
(This article belongs to the Special Issue Advances in Quantum Information)
Show Figures

Figure 1

Back to TopTop