Deterministic Shaping of Quantum Light Statistics
Abstract
:1. Introduction
2. Background
Nonlinear Quantum Optics
3. Approach
3.1. Eigenstates of Kerr Hamiltonian
Pump Photon Blockade
3.2. Number-Selective Optical Parametric Oscillation
4. Results and Discussions
4.1. Simulations
4.2. Pump Dephasing
4.3. Summary of Constraints and Figures of Merit
- 1.
- In the presence of strong Kerr nonlinearities, exciting a cavity pump field to high intensity requires a broad external pump linewidth. However, a broad external pump will excite superfluous modes in the system. Let us suppose the pump beam is a broad spectrum coherent state . To mitigate unintended interactions from modes above the signal and idler frequency, we restrict the magnitude of the sum mode self-phase modulation frequency by Equation (17) to obtainThus, it is essential for to be small or negative.
- 2.
- The purity measure Equation (34) indicates the constraintThe precision of noise-shaping is limited by the relative uncertainty of the signal/idler photon number noise with respect to the pump photon number noise and is generally easy to control.
- 3.
- Numerical simulations place useful values of in the range from to 10. For an order of magnitude estimate of this constraint, let us consider a case where and . Using the definitions of , , and g from Equations (6), (13), (21), and (25),The quantity is the single photon displacement field amplitude in Equation (6). Careful use of Equation (11) relates the displacement field susceptibilities to the more commonly measured electric field susceptibilities. Expanding the ratio with the definitions of each frequency yieldsThis criterion is straightforward to satisfy in real materials. For however large the magnitude of is, the strength of OPO can be increased with the intensity of the pump beam and the quantization volume.
- 4.
- As discussed in SubSection 4.2 above, shaping maintains quantum coherence if the pump field detuning weight vanishes, . Equation (33) provides a qualitative expression of the requisite smallness of . The upshot is that greater pump power requires higher precision in the proximity of to zero. This condition is easiest to satisfy if Kerr frequencies related to the pump are independently small, which is challenging if the other Kerr frequencies are to be incredibly large. Appendix A discusses a class of systems that can satisfy exactly this scenario by generating nonlinearities on resonance with the signal and idler, and off-resonance with the pump.
- 5.
- To apply the theory developed in this paper, all shaping should occur on a time scale shorter than that defined by the acceptable infidelity and desired spacing according toSubstituting from Equation (6) into the definition of the Kerr frequencies g from Equation (13), and relating to with Equation (11), we find that the strength-to-loss ratio isFinally, substituting in the classical form of the nonlinear refractive index , we obtain a figure of merit for NSOPO that is proportional to the strength-to-loss ratio,This figure of merit commands our attention; it is the most challenging constraint to practically satisfy among those in this list. Candidate systems will have large at the signal and idler frequencies and small at the sum frequency. In Appendix A, we show that compliance is likely attainable by addressing the state of the art for achieving strong nonlinearities with minimal loss and controllable group velocity and showing that these systems perform well within the boundary of the constraints.
4.4. Control Parameters
- 1.
- Equation (26) shows that OPO strength is scaled by , where m is the signal photon number of the state being acted upon. Thus, the OPO strength is scaled by the shape center.
- 2.
- In some materials, e.g., organic materials, changing a static field to modulate the refractive index will reorient molecules affecting .
- 3.
- Static fields will also introduce a contribution to OPO strength .
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
- The following abbreviations are used in this manuscript:
OPO | Optical parametric oscillation |
SPM | Self-phase modulation |
XPM | Cross-phase modulation |
FWM | Four-wave mixing |
NSOPO | Number-selective optical parametric oscillation |
TMSV | Two-mode squeezed vacuum |
ENZ | Electronically induced transparency |
CV | Continuous variable |
DFS | Decoherence-free subspace |
SGC | Spontaneously generated coherence |
Appendix A
References
- Sangouard, N.; Simon, C.; Gisin, N.; Laurat, J.; Tualle-Brouri, R.; Grangier, P. Quantum repeaters with entangled coherent states. J. Opt. Soc. Am. B 2010, 27, A137. [Google Scholar] [CrossRef]
- Brask, J.B.; Rigas, I.; Polzik, E.S.; Andersen, U.L.; Sørensen, A.S. Hybrid Long-Distance Entanglement Distribution Protocol. Phys. Rev. Lett. 2010, 105, 160501. [Google Scholar] [CrossRef]
- Sakaguchi, A.; Konno, S.; Hanamura, F.; Asavanant, W.; Takase, K.; Ogawa, H.; Marek, P.; Filip, R.; Yoshikawa, J.I.; Huntington, E.; et al. Nonlinear feedforward enabling quantum computation. Nat. Commun. 2023, 14, 3817. [Google Scholar] [CrossRef]
- Gottesman, D.; Kitaev, A.; Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 2001, 64, 012310. [Google Scholar] [CrossRef]
- Lidar, D.A.; Chuang, I.L.; Whaley, K.B. Decoherence-Free Subspaces for Quantum Computation. Phys. Rev. Lett. 1998, 81, 2594–2597. [Google Scholar] [CrossRef]
- Polino, E.; Valeri, M.; Spagnolo, N.; Sciarrino, F. Photonic quantum metrology. AVS Quantum Sci. 2020, 2, 024703. [Google Scholar] [CrossRef]
- Oszmaniec, M.; Augusiak, R.; Gogolin, C.; Kołodyński, J.; Acín, A.; Lewenstein, M. Random Bosonic States for Robust Quantum Metrology. Phys. Rev. X 2016, 6, 041044. [Google Scholar] [CrossRef]
- Unternährer, M.; Bessire, B.; Gasparini, L.; Perenzoni, M.; Stefanov, A. Super-resolution quantum imaging at the Heisenberg limit. Optica 2018, 5, 1150–1154. [Google Scholar] [CrossRef]
- Vasilev, G.S.; Ljunggren, D.; Kuhn, A. Single photons made-to-measure. New J. Phys. 2010, 12, 063024. [Google Scholar] [CrossRef]
- Morin, O.; Körber, M.; Langenfeld, S.; Rempe, G. Deterministic Shaping and Reshaping of Single-Photon Temporal Wave Functions. Phys. Rev. Lett. 2019, 123, 133602. [Google Scholar] [CrossRef]
- Huang, Y.; Qi, Z.; Yang, Y.; Li, Y.; Sun, Y.; Tang, Y.; Ni, F.; Li, L.; Zheng, Y.; Chen, X. Frequency-insensitive spatiotemporal shaping of single photon in multiuser quantum network. npj Quantum Inf. 2023, 9, 83. [Google Scholar] [CrossRef]
- Yurke, B.; Stoler, D. Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion. Phys. Rev. Lett. 1986, 57, 13–16. [Google Scholar] [CrossRef]
- Kolesnikow, X.C.; Bomantara, R.W.; Doherty, A.C.; Grimsmo, A.L. Gottesman-Kitaev-Preskill state preparation using periodic driving. arXiv 2023, arXiv:2303.03541. [Google Scholar]
- Asavanant, W.; Nakashima, K.; Shiozawa, Y.; Yoshikawa, J.I.; Furusawa, A. Generation of highly pure Schrödinger’s cat states and real-time quadrature measurements via optical filtering. Opt. Express 2017, 25, 32227. [Google Scholar] [CrossRef]
- Takase, K.; Yoshikawa, J.I.; Asavanant, W.; Endo, M.; Furusawa, A. Generation of optical Schrödinger cat states by generalized photon subtraction. Phys. Rev. A 2021, 103, 013710. [Google Scholar] [CrossRef]
- Chen, Y.R.; Hsieh, H.Y.; Ning, J.; Wu, H.C.; Chen, H.L.; Shi, Z.H.; Yang, P.; Steuernagel, O.; Wu, C.M.; Lee, R.K. Generation of heralded optical ‘Schroedinger cat’ states by photon-addition. arXiv 2023, arXiv:2306.13011. [Google Scholar]
- Fukui, K.; Endo, M.; Asavanant, W.; Sakaguchi, A.; Yoshikawa, J.I.; Furusawa, A. Generating the Gottesman-Kitaev-Preskill qubit using a cross-Kerr interaction between squeezed light and Fock states in optics. Phys. Rev. A 2022, 105, 022436. [Google Scholar] [CrossRef]
- Ben Hayun, A.; Reinhardt, O.; Nemirovsky, J.; Karnieli, A.; Rivera, N.; Kaminer, I. Shaping quantum photonic states using free electrons. Sci. Adv. 2021, 7, eabe4270. [Google Scholar] [CrossRef]
- Beige, A.; Braun, D.; Tregenna, B.; Knight, P.L. Quantum computing using dissipation to remain in a decoherence-free subspace. Phys. Rev. Lett. 2000, 85, 1762–1765. [Google Scholar] [CrossRef]
- González-Tudela, A.; Paulisch, V.; Chang, D.E.; Kimble, H.J.; Cirac, J.I. Deterministic Generation of Arbitrary Photonic States Assisted by Dissipation. Phys. Rev. Lett. 2015, 115, 163603. [Google Scholar] [CrossRef]
- Verstraete, F.; Wolf, M.M.; Ignacio Cirac, J. Quantum computation and quantum-state engineering driven by dissipation. Nat. Phys. 2009, 5, 633–636. [Google Scholar] [CrossRef]
- Vertchenko, L.; Nikitin, M.; Lavrinenko, A. Near-zero-index platform in photonics: Tutorial. J. Opt. Soc. Am. B 2023, 40, 1467. [Google Scholar] [CrossRef]
- Camacho-Guardian, A.; Bastarrachea-Magnani, M.; Pohl, T.; Bruun, G.M. Strong photon interactions from weakly interacting particles. Phys. Rev. B. 2022, 106, L081302. [Google Scholar] [CrossRef]
- Ribeiro, R.F.; Campos-Gonzalez-Angulo, J.A.; Giebink, N.C.; Xiong, W.; Yuen-Zhou, J. Enhanced optical nonlinearities under collective strong light-matter coupling. Phys. Rev. A 2021, 103, 063111. [Google Scholar] [CrossRef]
- Hu, X.X.; Zhao, C.L.; Wang, Z.B.; Zhang, Y.L.; Zou, X.B.; Dong, C.H.; Tang, H.X.; Guo, G.C.; Zou, C.L. Cavity-enhanced optical controlling based on three-wave mixing in cavity-atom ensemble system. Opt. Express 2019, 27, 6660–6671. [Google Scholar] [CrossRef]
- Imamoḡlu, A.; Schmidt, H.; Woods, G.; Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 1997, 79, 1467–1470. [Google Scholar] [CrossRef]
- Porras, D.; Cirac, J.I. Collective generation of quantum states of light by entangled atoms. Phys. Rev. A 2008, 78, 053816. [Google Scholar] [CrossRef]
- Perarnau-Llobet, M.; González-Tudela, A.; Cirac, J.I. Multimode Fock states with large photon number: Effective descriptions and applications in quantum metrology. Quantum Sci. Technol. 2020, 5, 025003. [Google Scholar] [CrossRef]
- Law, C.K.; Eberly, J.H. Arbitrary Control of a Quantum Electromagnetic Field. Phys. Rev. Lett. 1996, 76, 1055–1058. [Google Scholar] [CrossRef]
- Krastanov, S.; Albert, V.V.; Shen, C.; Zou, C.L.; Heeres, R.W.; Vlastakis, B.; Schoelkopf, R.J.; Jiang, L. Universal control of an oscillator with dispersive coupling to a qubit. Phys. Rev. A 2015, 92, 040303. [Google Scholar] [CrossRef]
- Heeres, R.W.; Vlastakis, B.; Holland, E.; Krastanov, S.; Albert, V.V.; Frunzio, L.; Jiang, L.; Schoelkopf, R.J. Cavity State Manipulation Using Photon-Number Selective Phase Gates. Phys. Rev. Lett. 2015, 115, 137002. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Generalized Hamiltonian Dynamics. Can. J. Math. 1950, 2, 129–148. [Google Scholar] [CrossRef]
- Born, M.; Infeld, L. On the quantization of the new field equations I. Proc. R. Soc. Lond. 1934, 147, 522–546. [Google Scholar]
- Born, M.; Infeld, L. Foundations of the new field theory. Proc. R. Soc. Lond. A Math. Phys. Sci. 1934, 144, 425–451. [Google Scholar] [CrossRef]
- Quesada, N.; Sipe, J.E. Why you should not use the electric field to quantize in nonlinear optics. Opt. Lett. 2017, 42, 3443. [Google Scholar] [CrossRef]
- Bhat, N.A.R.; Sipe, J.E. Hamiltonian treatment of the electromagnetic field in dispersive and absorptive structured media. Phys. Rev. A 2006, 73, 063808. [Google Scholar] [CrossRef]
- Raymer, M.G. Quantum theory of light in a dispersive structured linear dielectric: A macroscopic Hamiltonian tutorial treatment. J. Mod. Opt. 2020, 67, 196–212. [Google Scholar] [CrossRef]
- Hillery, M.; Mlodinow, L.D. Quantization of electrodynamics in nonlinear dielectric media. Phys. Rev. A Gen. Phys. 1984, 30, 1860–1865. [Google Scholar] [CrossRef]
- Drummond, P.D.; Hillery, M. The Quantum Theory of Nonlinear Optics; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Quesada, N.; Helt, L.; Menotti, M.; Liscidini, M.; Sipe, J. Beyond photon pairs: Nonlinear quantum photonics in the high-gain regime. Adv. Opt. Photonics 2022, 14, 291–403. [Google Scholar] [CrossRef]
- Jackson, J.D. Electrodynamics, Classical. In Digital Encyclopedia of Applied Physics; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2003. [Google Scholar]
- Boyd, R.W. Nonlinear Optics, 4th ed.; Academic Press: San Diego, CA, USA, 2020. [Google Scholar]
- Pasquazi, A.; Peccianti, M.; Razzari, L.; Moss, D.J.; Coen, S.; Erkintalo, M.; Chembo, Y.K.; Hansson, T.; Wabnitz, S.; Del’Haye, P.; et al. Micro-combs: A novel generation of optical sources. Phys. Rep. 2018, 729, 1–81. [Google Scholar] [CrossRef]
- Alam, M.; Mandal, S.; Wahiddin, M.R. Squeezing, mixed mode squeezing, amplitude squared squeezing and principal squeezing in a non-degenerate parametric oscillator. Optik 2018, 157, 1035–1052. [Google Scholar] [CrossRef]
- Kroeze, R.M.; Marsh, B.P.; Lin, K.Y.; Keeling, J.; Lev, B.L. High Cooperativity Using a Confocal-Cavity–QED Microscope. PRX Quantum 2023, 4, 020326. [Google Scholar] [CrossRef]
- Bang, N.H.; Van Doai, L. Colossal Kerr nonlinearity without absorption in a five-level atomic medium. Sci. Rep. 2024, 14, 1554. [Google Scholar] [CrossRef]
- Van Doai, L. The effect of giant Kerr nonlinearity on group velocity in a six-level inverted-Y atomic system. Phys. Scr. 2020, 95, 035104. [Google Scholar] [CrossRef]
- Singer, K.D.; Kuzyk, M.G.; Holland, W.R.; Sohn, J.E.; Lalama, S.J.; Comizzoli, R.B.; Katz, H.E.; Schilling, M.L. Electro-optic phase modulation and optical second-harmonic generation in corona-poled polymer films. Appl. Phys. Lett. 1988, 53, 1800–1802. [Google Scholar] [CrossRef]
- Cheng, X.; Hong, J.; Spring, A.M.; Yokoyama, S. Fabrication of a high-Q factor ring resonator using LSCVD deposited Si3N4 film. Opt. Mater. Express 2017, 7, 2182–2187. [Google Scholar] [CrossRef]
- Ling, T.; Chen, S.L.; Guo, L.J. Fabrication and characterization of High Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector. Opt. Express 2011, 19, 861–869. [Google Scholar] [CrossRef]
- Dirk, C.W.; Kuzyk, M.G. Squarylium dye-doped polymer systems as quadratic electrooptic materials. Chem. Mater. 1990, 2, 4–6. [Google Scholar] [CrossRef]
- Welker, D.J.; Tostenrude, J.; Garvey, D.W.; Canfield, B.K.; Kuzyk, M.G. Fabrication and characterization of single-mode electro-optic polymer optical fiber. Opt. Lett. 1998, 23, 1826–1828. [Google Scholar] [CrossRef]
- Zheng, J.; Lu, M.; Wagner, C.J.; Cunningham, B.T.; Eden, J.G. Spectral characteristics of single and coupled microresonator lasers comprising a replica-molded Bragg grating and dye-doped polymer. J. Opt. Soc. Am. B 2012, 29, 209. [Google Scholar] [CrossRef]
- Koeppen, C.; Yamada, S.; Jiang, G.; Garito, A.F.; Dalton, L.R. Rare-earth organic complexes for amplification in polymer optical fibers and waveguides. J. Opt. Soc. Am. B 1997, 14, 155. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Compton, G.D.; Kuzyk, M.G. Deterministic Shaping of Quantum Light Statistics. Photonics 2024, 11, 287. https://doi.org/10.3390/photonics11040287
Compton GD, Kuzyk MG. Deterministic Shaping of Quantum Light Statistics. Photonics. 2024; 11(4):287. https://doi.org/10.3390/photonics11040287
Chicago/Turabian StyleCompton, Garrett D., and Mark G. Kuzyk. 2024. "Deterministic Shaping of Quantum Light Statistics" Photonics 11, no. 4: 287. https://doi.org/10.3390/photonics11040287
APA StyleCompton, G. D., & Kuzyk, M. G. (2024). Deterministic Shaping of Quantum Light Statistics. Photonics, 11(4), 287. https://doi.org/10.3390/photonics11040287