
����������
�������

Citation: Makowski, M.; Piotrowski,

E.W. Transactional Interpretation and

the Generalized Poisson Distribution.

Entropy 2022, 24, 1416. https://

doi.org/10.3390/e24101416

Academic Editor: Rosa M. Benito

Received: 30 August 2022

Accepted: 3 October 2022

Published: 4 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Transactional Interpretation and the Generalized
Poisson Distribution
Marcin Makowski *,† and Edward Wiktor Piotrowski †

Faculty of Physics, Department of Mathematical Methods in Physics, University of Białystok,
Ul. Ciołkowskiego 1L, 15-245 Białystok, Poland
* Correspondence: m.makowski@uwb.edu.pl
† These authors contributed equally to this work.

Abstract: The aim of this paper is to study the quantum-like approach to the description of the market
in the context of the principle of minimum Fisher information. We wish to investigate the validity of
using squeezed coherent states as market strategies. For this purpose, we focus on the representation
of any squeezed coherent state with respect to the basis of the eigenvectors of the observable of
market risk. We derive a formula for the probability of being the squeezed coherent state in one of
these states. The distribution that we call generalized Poisson establishes the relation between the
squeezed coherent states and their description in the language of risk in quantum terms. We provide
a formula specifying the total risk of squeezed coherent strategy. Then, we propose a risk of risk
concept that is in fact the second central moment of the generalized Poisson distribution. This is an
important numerical characterization of squeezed coherent strategies. We provide its interpretations
on the basis of the uncertainty relation for time and energy.

Keywords: squeezed coherent states; Fisher information; Fourier transform; Schrödinger-like equation;
market; risk; supply and demand; quantum computer

1. Introduction

Developments in quantum computing and quantum information theory have helped
extend the scope of game theory to the quantum world [1–4]. This, in turn, has led to
attempts at a quantum description of the market, due to the need to develop better methods
of analyzing the dynamics of markets. It seems particularly important to create more
accurate methods of forecasting extreme events such as crises or speculative bubbles. The
history of recent crises shows that the methods developed in the framework of classical
economics have failed. It is natural to believe that new methods can be provided by quan-
tum mechanics [5], which has radically changed the way we perceive the world. In order
to describe the quantum characters of the market, we are going to build a mathematical
model on the basic postulates of quantum mechanics. The first of these postulates is that
the state of a quantum mechanical system is completely specified by the wave function. By
applying this postulate, the fluctuation of the stock price can be viewed as the evolution of
the wave function. This evolution would be characterized by a dynamical equation, such as
the Schrödinger equation. In this work, we refer to the quantum description of the market
based on quantum game theory.

One direction of such analysis is the description of market transactions in terms of
supply and demand curves [6–10]. In this approach, quantum strategies are vectors in a
certain Hilbert space and can be interpreted as superpositions of trading decisions. The
set of all such strategies defines all possible movements of market participants that can be
implemented on a physical device such as a quantum computer.

More precisely, strategies of market participants are represented by wave functions.
There are two basic representations: demand ψ(x) and supply ψ(y), where x and y are
values of random variables representing logarithms of prices at which players buy or
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sell. Cumulative values of squares of modules of market strategies |ψ(x)|2 and |ψ(y)|2
correspond to probabilistic demand or supply curves. To describe the dynamics resulting
from market participants’ tactics that modify their behaviour in the market, we use unitary
operations on the Hilbert space—the strategy space of square-integrable functions L2. The
basic tactic for changing the representation of a strategy from supply to demand and vice
versa is described by a Fourier transform (FT):

ψ(y) := FT ψ(x) .

There are also tactics that only modify the demand or supply strategy without changing
sides. The above formalism can be presented in an elegant way with the help of the Wigner
functions defined on the common domain of variables x and y (the phase space):

fn(x, y) =
1

2π

∫ ∞

−∞
ψn(x + s

2 )ψn(x− s
2 ) cos(s y)ds .

Conditional (fixed public price for buying or selling) demand and supply curves are
depicted by the graphs of the following CDFs:

CDFd(ln c) =
∫ ln c

−∞
fn(x = const., y)dy ,

CDFs(ln c) =
∫ ln 1

c

−∞
fn(x, y = const.)dx ,

where c denotes the price of the good in question. This formalism is convenient for
analyzing exceptions to the classical laws of supply and demand (Giffen goods), which we
can view as negative probabilities [10].

An important parameter that plays a key role in making decisions on the market is
the risk associated with a specific strategy. We define risk operators for both the demand
representation and the supply representation

Rdψ(x) := x2ψ(x) , Rsψ(y) := y2ψ(y) .

We call them this because of their average values

〈Rd〉 =
∫ ∞

−∞
x2 ψ2(x) dx , 〈Rs〉 =

∫ ∞

−∞
y2 ψ2(y) dy

correspond to the variance of the random variables x and y. This is a popular measure
of risk used in financial mathematics. Such a supply–demand perception of the market
indicates its connection with the principle of minimum Fisher information [11,12]. We must
remember that all games played in the real world must be implemented on the basis of
physical processes. Therefore, the fundamental quantum constraints known to us should
also be barriers respected by any complete game theory.

The article is organized as follows. In Section 2, we present the idea of a transactional
interpretation for the Principle of Minimum Fisher Information, an important element of
which is the so-called risk balance equation. This work was intended as a continuation
of this idea, so we briefly sketch it. More details can be found in [13]. In the next Section,
we discuss coherent states, which are essential for us to consider. It is not our purpose
to study this topic in detail. This is only a brief introduction to it and may be of help to
readers unfamiliar with the topic. We will restrict our attention to the definition of coherent
states as states minimizing the Heisenberg uncertainty principle. In Section 4, we find a
representation of a squeezed coherent state strategy on the basis of the eigenvectors of the
observable of market risk. In Section 5, we derive an interesting formula for the probability
of being the squeezed coherent state in one of the basis vectors. Section 6 contains a brief
summary. In this section, we provide a formula specifying the total risk of the squeezed
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coherent strategy and we introduce a risk of risk concept. The interpretation of this numeric
value is provided in the last section. Our viewpoint sheds some new light on the concept of
risk measurement in quantum terms.

2. A Brief Introduction to Transactional Interpretation for the Principle of Minimum
Fisher Information

The Fisher information IFθ
is a measure of the amount of information carried by

the observable random variable X about an unknown parameter θ of the probability
distribution f (x; θ) modeling X. It is defined as

IFθ
= E

[(
∂

∂θ
log f (X; θ)

)2
∣∣∣∣∣θ
]
=
∫ ∞

−∞

(
∂

∂θ
log f (x; θ)

)2
f (x; θ) dx.

In our article, we consider the one-dimensional case by referring to the special (but
often used in all kinds of applications) translation families, which satisfy the condition

f (x; θ) = f (x− θ) .

In this case, using the identity

−∂ f
∂θ

=
∂ f
∂x

,

we can write the definitions of Fisher information as follows:

IF =
∫ ∞

−∞
f (x)

(
d

dx
ln f (x)

)2

dx .

By substitution f (x) := ψ2(x), we obtain

IF = 4
∫ ∞

−∞

(
d

dx
ψ(x)

)2

dx . (1)

Suppose we are looking for a real wave function ψ(x) that minimizes the value of the
Fisher information under the following conditions:

1 =
∫ ∞

−∞
ψ2(x)dx , m =

∫ ∞

−∞
x ψ2(x)dx , r =

∫ ∞

−∞
(x−m)2 ψ2(x)dx .

It comes down to finding the minimum of the functional:

∫ ∞

−∞
F(ψ(x),

d
dx

ψ(x), x) dx =
∫ ∞

−∞
4
(

d
dx

ψ(x)
)2

dx−
∫ ∞

−∞
(a + b x + c x2)ψ2(x)dx ,

where a, b, c are Lagrange multipliers. The solution ψ(x) to the above variational problem
defines the probability distribution ψ2(x) of a random variable x with a certain mean m
and risk r for the minimum value of Fisher information.

It turns out that the above variational problem leads to solutions to the equation

− 1
2ω

∂2ψ

∂x2 +
ω

2
(x−m)2 ψ = ε ψ , (2)

where ω, ε, and m are constants used to parametrize Lagrange multipliers (a = 8 ε µ− 4 x2
0 µ2,

b = 8 x0 µ2, c = −4 µ2 and translation x 7→ x + x0 −m). For the detailed derivation of the
above equation, readers are referred to [10]. This is the popular Schrödinger-type equation
for a quantum harmonic oscillator. This is one of the basic equations of non-relativistic quan-
tum mechanics. It plays a key role in many fields such as quantum optics and solid-state
physics, and it is also the basis of modern chemistry. It is worth noting that this equation
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is derived with minimal assumptions. Only the definition of the Fisher information and
assumptions about the real value of ψ(x) were used.

The solutions of Equation (2) form a discrete set of functions:

ψn(x) =

√ √
ω

2nn!
√

π
e−

ω (x−m)2
2 Hn(

√
ω(x−m)), (3)

where Hn(x) is the n–th Hermite polynomial. This complete orthonormal set of functions
stretches the vector space L2 over the field C square-integrable functions [14]. We identify
the ψn(x) functions as market strategies that determine the supply and demand curves [6].
The eigenvalues corresponding to the above eigenvectors take the form

ε = εn = n +
1
2

,

for n = 0, 1, 2, . . . . The above quantity represents the total (supply and demand) risk
observed as a result of the measurement of strategy ψn(x). Moreover,

IFn = 4µεn ,

where IFn denotes the Fisher information carried by the strategy ψn(x) [13].
Market strategies with minimal Fisher information may better reflect the specifics of

the market. There are at least two sorts of arguments for minimizing information about
markets.

1. If we have no information on the measures of probabilities of elementary events then
we should treat all of them on the same footing (i.e., as equivalent). This argument is
based on the famous Laplace principle of indifference.

2. One should not expect anything else—more information involves higher costs on the
revealing information side (information is physical [15]). This argument is based on the
no free lunch principle.

It turns out there is an important relationship between Fisher information and
risk [13]. The risk associated with a given strategy is the sum of the risk in its demand and
supply representation. Note that the left side of the Equation (2) is the sum of the supply
operator Rd := x2 and − ∂2

∂x2 . The operator − ∂2

∂x2 is in fact the supply risk operator Rs. It
results directly from the properties of the Fourier transform

−d2ψ(x)
dx2

FT−→ y2 ψ(y) , x2 ψ(x) FT−→ −d2ψ(y)
dy2 ,

where ψ(y) := FT ψ(x). Therefore, the Fourier transform of Equation (2) leads to an
equation of the same type. We have a connection between risk and information associated
with strategy.

Hence, the Equation (2) is called risk balance equation [10] and lies at the root of the so-
called the transactional interpretation for the principle of minimum Fisher information [13].
The left side of the Equation (2) is the the total risk operator (observable of market risk) of
the buy–sell cycle.

3. The State Minimizing the Position-Momentum Uncertainty Principle

A natural continuation of analyses of a quantum description of the market in the
context of minimum Fisher information is to examine the validity of describing market
strategies using coherent states, in particular, squeezed coherent states.

In quantum mechanics, coherent states are the quantum states of a harmonic oscillator
whose dynamics most closely resemble the oscillatory behaviour of a classical harmonic
oscillator. Therefore, coherent states may better reflect the description of real financial
markets, where we do not observe quantum effects. Furthermore, they are minimum



Entropy 2022, 24, 1416 5 of 11

uncertainty states for which the product of standard deviations of position and momentum
measurements has the smallest value (they minimize Heisenberg’s uncertainty principle).
In the quantum description of the market, we equate these two quantities with supply and
demand. In such a supply-and-demand description of the market, the strategy that mini-
mizes the uncertainty principle of position and momentum (in the market interpretation,
supply and demand), i.e., the coherent state, can be treated as the most predictable when
measuring market transactions.

As we mentioned before, we take Fisher information as a measure of the information
carried by market strategies. It plays a fundamental role in the theory of estimation, which
is reflected in the Cramér–Rao bound [16]

IFθ
· var

(
θ̂
)
> 1 .

The above inequality expresses a lower bound on the variance of unbiased estimators θ̂ of
parameter θ. The symbol IFθ

means Fisher information.
We come across a similar type of inequality in physics. These are the famous uncer-

tainty principles mentioned above. The principles say that there are pairs of quantities that
cannot be measured with any precision at the same time. Their mathematical form is as
follows (see also [17,18]):

∆M A · ∆MB ≥ h̄
2
|〈{A, B}h̄〉M| . (4)

where

A, B—any observable ,
∆M A, ∆MB—the uncertainties of, respectively, A and B observables in the M state ,
{A, B}h̄ := 1

ih̄ (AB− BA)—the quantum Poisson bracket and h̄—the Planck constant .

The left side of the inequality (4) is minimized by coherent states. These are the basic objects
we deal with in this article; therefore, we will derive the above inequality.

Let A and B denote any observables. By the inner product properties, we can write:

〈(A + iαB)ψ|(A + iαB)ψ〉 = 〈A2ψ|ψ〉+ α2〈B2ψ|ψ〉+ iα〈ψ(AB− BA)|ψ〉
= 〈A2ψ|ψ〉+ α2〈B2ψ|ψ〉 − αh̄〈ψ{A, B}h̄|ψ〉 .

Since for any α ∈ R

0 ≤ 〈(A + iαB)ψ|(A + iαB)ψ〉 , (5)

we have
0 ≤ 〈A2ψ|ψ〉+ α2〈B2ψ|ψ〉 − αh̄〈ψ{A, B}h̄|ψ〉 . (6)

Let Pv := |v〉〈v| and M := ∑k pkPψk . By adding (with the weights pk) the inequalities
of the form (6), we have

0 ≤ 〈A2〉M + α2〈B2〉M − αh̄〈{A, B}h̄〉M , (7)

where 〈A〉M := TrAM .
In order for the above inequality to be satisfied for every α, it is necessary and sufficient

that the discriminant of the second degree polynomial is non-positive, i.e.,

∆ = h̄2〈{A, B}h̄〉2M − 4〈A2〉M〈B2〉M ≤ 0 .

Hence
4〈A2〉M〈B2〉M ≥ h̄2〈{A, B}h̄〉2M . (8)

Substituting A− 〈A〉M −→ A and B− 〈B〉M −→ B into (8), we obtain
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∆M A · ∆MB ≥ h̄
2
|〈{A, B}h̄〉M| , (9)

where ∆M A :=
√

Tr(A− 〈A〉M)2M. The minimum of the left side of the inequality (5) is
achieved when

(A + iαB)|ψ〉 = 0 . (10)

Let us define the position and momentum operators

A|ψ(x)〉 = (x− µ)|ψ(x)〉 , B|ψ〉 = − i
α

σ2 dψ

dx
.

The wave function solving the Equation (10) is well defined due to the phase factor eiνx.
The general form of the ψµ,ν,σ state that minimizes the left side of the position-momentum
uncertainty principle is of the form

ψµ,ν,σ =
1√√

πσ
eiνxe−

(x−µ)2

2σ2 . (11)

This is the so-called squeezed coherent state formed from the deformation of the coherent
state involving the broadening (or narrowing) of its wave function. The Function (11) is a
Gaussian function. The Fourier transform of this type of function is also a Gaussian function
but with a different width, i.e., if σ2 is large/small then the graph of the Fourier transform
is narrow/broad. This property is reflected in signal analysis. The more concentrated a
signal is in the time domain, the more spread out it is in the frequency domain. To be
more precise, the product of measure of signal duration and the corresponding measure of
the width of its frequency spectrum is bounded from below. This property of the Fourier
transform is closely related to the uncertainty principle in quantum mechanics. For us, it
will be crucial in describing the total risk of the squeezed coherent strategy, which we will
address later in the paper.

At the end of this paragraph, it is worth noting that coherent states are present in many
research topics covering such fields of physics as quantum mechanics, optics, quantum
chemistry, atomic physics, statistical physics, nuclear physics, particle physics, and cosmol-
ogy. Recently, they have also found practical application in quantum communication, the
distribution of quantum keys, and quantum digital signatures [19]. All this confirms the
importance of coherent states for the development of various scientific theories.

4. Squeezed Coherent State and the Eigenstates of Quantum Harmonic Oscillator

Without losing the generality of our considerations and in order to obtain greater
clarity of results, we can assume ω = 1 and m = 0. From now on, by the eigenstate of the
Hamiltonian of the quantum oscillator (3) we will understand the state of the form

ψn(x) =
1√

2nn!
√

π
Hn(x) e−

x2
2 . (12)

The set of all vectors (12) forms the orthogonal basis of the space L2 of square-integrable
functions over the field C. We can represent (11) on this basis. For this, we will find the
inner product

〈
ψn|ψµ,ν,σ

〉
.

The application of the exponential generating function of Hermite polynomials

g(x, t) = e−t2+2tx
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provides

〈
ψn|ψµ,ν,σ

〉
=

1√
π2nn!σ

dn

dtn |t=0 e−t2
∫ ∞

−∞
e(2t+iν)xe−

(x−µ)2+σ2x2

2σ2 dx .

The function under the integral contains the quadratic polynomial of the variable x in the
exponent

−(σ2 + 1)x2 + (2σ2(2t + iν) + 2µ)x− µ2

which we can rewrite as follows:

−(σ2 + 1)
(

x +
2σ2(2t + iν) + 2µ

−2(σ2 + 1)

)
+

(σ2(2t + iν) + µ)2

2σ2 + 1
− µ2 .

Since for u > 0 ∫ ∞

−∞
e−ux2

dx =

√
π

u
,

it follows that

〈
ψn|ψµ,ν,σ

〉
=

1√
2n−1n! σ2+1

σ

dn

dtn |t=0 e−t2
e

4σ2t2+4iνσ2t+4µt−ν2σ2+2iµν−µ2

2(σ2+1)

=
1√

2n−1n! σ2+1
σ

e
−ν2σ2+2iµν−µ2

2(σ2+1)
dn

dtn |t=0 e
σ2−1
σ2+1

t2+2t iνσ2+µ

σ2+1 . (13)

The final form of Formula (13) depends on making an additional assumption about the
value of σ parameter.

We consider three cases as follows:

1. If σ = 1 there would be

〈
ψn|ψµ,ν,σ=1

〉
=

1√
n!

e
−ν2+2iµν−µ2

4

(
µ + iν√

n

)n

2. If σ < 1 there would be

〈
ψn|ψµ,ν,σ<1

〉
=

1√
n!

√
2σ

1 + σ2 e
−ν2σ2+2iµν−µ2

2(σ2+1)

(
1− σ2

2(1 + σ2)

) n
2

Hn(
µ+iνσ2√

(1−σ2)(1+σ2)
)

It follows from the following formula

dn

dtn

∣∣∣∣
t=0

e
σ2−1
σ2+1

t2+2t iνσ2+µ

σ2+1 =

(
1− σ2

1 + σ2

)
dn

dτn

∣∣∣∣
τ=0

e
−τ2+2τ

iνσ2+µ√
(1−σ2)(1+σ2) ,

where τ :=
√

1−σ2

1+σ2 t.

3. If σ > 1 there would be

〈
ψn|ψµ,ν,σ>1

〉
=

1√
n!

√
2σ

σ2 + 1e
−ν2σ2+2iµν−µ2

2(σ2+1)

(
σ2 − 1

2(σ2 + 1)

) n
2

inHn(
νσ2−iµ√

(σ2−1)(σ2+1)
) .

It follows from the following formula

dn

dtn

∣∣∣∣
t=0

e
σ2−1
σ2+1

t2+2t iνσ2+µ

σ2+1 = in
(

σ2 − 1
σ2 + 1

)
dn

dτn

∣∣∣∣
τ=0

e
−τ2+2τ

iνσ2−iµ√
(σ2−1)(σ2+1) ,
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where τ := i
√

σ2−1
σ2+1 t .

5. The Generalized Poisson Distribution

Let us determine the probability pn :=
∣∣〈ψµ,ν,σ|ψn

〉∣∣2 that the state ψµ,ν,σ will be found
in the state ψn.

1. If we take σ = 1, we obtain

pn =
1
n!

e−
µ2+ν2

2

(
µ2 + ν2

2

)n

.

This is the standard Poisson distribution.
2. If σ < 1, then

pn =
1
n!

2σ

1 + σ2 e−
ν2σ2+µ2

σ2+1

(
1− σ2

2(1 + σ2)

)n

Hn(
µ + iνσ2
√

1− σ4
)Hn(

µ− iνσ2
√

1− σ4
) .

By Mehler’s formula, we obtain the moment-generating function:

∞

∑
n=0

pnesn =
2σ

1 + σ2 e−
ν2σ2+µ2

σ2+1
1√

1− t2
e2 vt−wt2

1−t2

∣∣∣∣
v= µ2+ν2σ4

1−σ4 ,w=
µ2−ν2σ4

1−σ4 ,t= 1−σ2
1+σ2 es

.

3. If σ > 1, then

pn =
1
n!

2σ

σ2 + 1
e−

ν2σ2+µ2

σ2+1

(
σ2 − 1

2(σ2 + 1)

)n

Hn(
νσ2 + iµ√

σ4 − 1
)Hn(

νσ2 − iµ√
σ4 − 1

) .

The moment-generating function corresponding to the above probability distribution
is of the form

∞

∑
n=0

pnesn =
2σ

σ2 + 1
e−

ν2σ2+µ2

σ2+1
1√

1− t2
e2 vt−wt2

1−t2

∣∣∣∣
v= µ2+ν2σ4

σ4−1
,w=

ν2σ4−µ2

σ4−1
,t= σ2−1

σ2+1
es

.

It is worth noting that in case 2 and 3, the moment-generating functions are the same.
Hence, the conclusions presented in the next paragraph apply to both of these cases. Let us
call the obtained distribution as the generalized Poisson distribution.

6. Risk and the Risk of Risk

Let us recall that the starting point of our analysis was to take Fisher information as a
measure of the information carried by market strategies ψ ∈ L2. The Fisher information has
a wide range of applications, from the optimal design of experiments and its relationship
to the laws of physics [11,12,20], to the role it plays in estimation theory and statistics [16].
We adopted the variance of a random variable (in our case, the logarithm of the price) with
a probability density ψ2 as a measure of the risk associated with the market strategy. Next,
we posed the question: which probability distributions determined by market strategies
ψ produce, at a given variance, the minimum Fisher information? The search for an
answer to this question leads to a one-dimensional quantum harmonic oscillator equation.
The solutions to this equation determine our market strategies with the minimum Fisher
information. They form an orthogonal complete basis of the space L2, which allows us to
write any strategy from L2 in this basis. Its elements are the eigenvectors of the total risk
operator—the left-hand side of the equation (2). These strategies have the best defined risk
as the variance of the risk operator in these states is 0.

Let us denote by R the the total risk operator. By the total risk associated with a
given strategy ψ, we understand the expectation value of R in the state φ, denoted as 〈R〉φ.
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The R operator has a complete set of eigenvectors ψn, with eigenvalues εn = n + 1
2 , for

n = 0, 1, 2, . . .. The expectation value of R can be expressed as

〈R〉φ =
∞

∑
n=0

εn|〈φ|ψn〉|2 . (14)

The above formula determines the total risk carried by the market strategy φ.
In this article, we focus on the ψµ,ν,σ strategies, which are provided by the Formula (11).

They are the so-called squeezed coherent states. These are specific strategies because of the
position-momentum uncertainty principle minimizing property. In the previous paragraph,
we determined the probability of finding these strategies in the eigenstates of the total risk
operator.

The resulting generalized Poisson distribution determines the relationship between
the family of all squeezed coherent states and their image in terms of quantum risk. Its
expectation value

〈R〉ψµ,ν,σ = 1
2 µ2 + 1

4 σ2 + 1
2 ν2 + 1

4 σ−2 , (15)

determines the total risk of the strategy (11). The above formula can be obtained by the
property of the moment-generating function of distribution of the random variable n
determined in Section 5. Here, we consider the n + 1

2 random variable, and its expected
value is greater than the expected value of the n random variable by 1

2 . The higher-order
moments are the same for both of these random variables.

By the definition of the Fourier transform, we have

f̂ (y) :=
∞∫
−∞

f (x) e−iyxdx =
√

2πσe−iµye
−σ2(y−ν)2

2 ,

where f̂ is the Fourier transform of

f (x) = eiνxe
−(x−µ)2

2σ2 .

Hence, the demand and supply representations of the strategy (11) are of the same
form (but not equal). The role of the µ and ν parameters has changed, i.e., µ→ ν and ν→ µ
and σ→ σ−1. Therefore, the expression (15) represents both the supply and demand parts
of the total risk of the market strategy.

The µ, ν, and σ parameters define the strategies (11) and the total risk associated with
this strategy, expressed by the Formula (15). The uncertainty of this risk (let us call it the
risk of risk) is the second central moment of the εn random variable with the distribution
determined by our sqeezed coherent state. The risk of risk formula in our case is as follows:

µ2σ2 + ν2σ−2

2
+

σ4 + σ−4 − 2
8

. (16)

The above expression takes the smallest value for µ = ν = 0 and σ = 1, that is, when the
wave function of the strategy is the oscillator ground state.

Strategies (11) for which the estimation of the moments of the distribution carries the
minimum information about their parameters µ, ν, σ seem to be particularly important. The
average profit of a strategy (see profit intensity [21]) is determined by the parameters µ and
ν. If we assume one of them (e.g., µ) is equal to 0 and select a small enough σ−1 (if ν = 0 then
small should be σ), then the moment (16) will not carry information about the parameter
ν (respectively µ). Such squeezed coherent states are characterized by the flattened error
function of demand (buying equally willingly at any logarithm of price) and the Heaviside
step function of supply (or vice versa). Determining the value of the parameter ν (or µ) that
maximizes the profit intensity obtained by such strategies is described in the paper [21] and
involves a unique extreme property of the profit intensity function at its fixed point [22].
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7. Conclusions

The construction of a complete theory of the quantum market should respect all the
limitations of quantum mechanics. Examples of such constraints are those established by
the famous principles of uncertainty (hence the need to study such strategies as coherent
strategies that minimize the uncertainty principle).

In the article, we analyzed the risks carried by this type of strategy. We introduced the
squeezed coherent strategies’ risk of risk concept in their transactional interpretation. This
is their essential numerical characteristic. After all, the risk of a squeezed-coherent strategy
modelled on a physical object realizing the physical system of a quantum oscillator is the
energy of that oscillator state. Therefore, the risk of risk of such a strategy is the square
of the uncertainty of its energy, and through the famous uncertainty relation for time and
energy [23] sets a lower limit for the uncertainty of time, usually interpreted as the lifetime
of the perturbation that is this impermanent oscillator state, or the preparation time of this
state. The necessary lifetime of a strategy operating in the market is inversely proportional
to the intensity of profits achievable by it. The shorter the transactions last, the higher the
profits.
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