Introduction to Bell’s Inequality in Quantum Mechanics †
Abstract
:1. Introduction
2. Entangled and Product States: Spin 1/2 States
The Bell States
3. The Bell–CHSH Inequality
Example of Violation of the Bell–CHSH Inequality
4. Tsirelson’s Bound
- from the definition of the operator norm, it follows that
- the triangle inequality
- the so-called continuity of the norm
- if , then
- if is Hermitian, , it holds that
5. Gisin’s Theorem
6. The Bell–CHSH Inequality for Spin 1 and Spin 3/2
- for any integer spin
- for any half-integer spin
7. Coherent States
7.1. The Pseudospin Operators
7.2. Entangled Coherent States
8. Squeezed States
9. Mermin’s Inequalities and GHZ States
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Bell Theorem
1 | As usual, the states are eigenstates of the diagonal Pauli matrix along the z-axix:
|
2 | See Appendix A for an account of original Bell’s proof. |
3 | The supremum of a set of real numbers is the smallest number which is greater than or equal to every element of the set. |
References
- Bell, J.S. On the einstein podolsky rosen paradox. Fizika 1964, 1, 195. [Google Scholar] [CrossRef]
- Bell, J.S. Bertlmann’s socks and the nature of reality. J. Phys. Colloq. 1981, 42, 41–62. [Google Scholar] [CrossRef]
- Bell, J.S.; Aspect, A. Speakable and Unspeakable in Quantum Mechanics; Cambridge University Press: Cambridge, UK, 2004; ISBN 978-0-511-81567-6. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 1969, 23, 880. [Google Scholar] [CrossRef]
- Freedman, S.J.; Clauser, J.F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 1972, 28, 938–941. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A. Experimental consequences of objective local theories. Phys. Rev. D 1974, 10, 526. [Google Scholar] [CrossRef]
- Clauser, J.F.; Shimony, A. Bell’s theorem. Experimental tests and implications. Rept. Prog. Phys. 1978, 41, 1881–1927. [Google Scholar] [CrossRef]
- Aspect, A. Proposed experiment to test the nonseparability of quantum mechanics. Phys. Rev. D 1976, 14, 1944. [Google Scholar] [CrossRef]
- Grangier, A.A.P.; Roger, G. Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 1981, 47, 460–463. [Google Scholar]
- Aspect, A.; Grangier, P.; Roger, G. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Lett. 1982, 49, 91. [Google Scholar] [CrossRef]
- Aspect, A.; Dalibard, J.; Roger, G. Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 1982, 49, 1804. [Google Scholar] [CrossRef]
- Giustina, M.; Mech, A.; Ramelow, S.; Wittmann, B.; Kofler, J.; Beyer, J.; Lita, A.; Calkins, B.; Gerrits, T.; Nam, S.W.; et al. Bell violation using entangled photons without the fair-sampling assumption. Nature 2013, 497, 227. [Google Scholar] [CrossRef] [PubMed]
- Giustina, M.; Versteegh, M.A.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.Å.; Abellán, C.; et al. Significant-loophole-free test of Bell’s theorem with entangled photons. Phys. Rev. Lett. 2015, 115, 250401. [Google Scholar] [CrossRef] [PubMed]
- Einstein, A.; Podolsky, B.; Rosen, N. EinsteinPodolskyRosen. Phys. Rev. 1935, 47, 777. [Google Scholar] [CrossRef]
- Zwiebach, B. Mastering Quantum Mechanics; MIT Press: Cambridge, UK, 2022. [Google Scholar]
- Peres, A. Quantum Theory: Concepts and Methods; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th Anniversary ed.; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Scarani, V. Bell Nonlocality; Oxford Graduate Texts; Oxford University Press: Oxford, UK, 2019. [Google Scholar]
- Tsirelson, B.S. Quantum analogues of the Bell inequalities. The case of two spatially separated domains. J. Math. Sci. 1987, 36, 557–558. [Google Scholar] [CrossRef]
- Bratteli, O.; Robinson, D.W. Operator Algebras and Quantum Statistical Mechanics 1; Springer: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Gisin, N. Bell’s inequality holds for all non-product states. Phys. Lett. A 1991, 154, 201. [Google Scholar] [CrossRef]
- Gisin, N.; Peres, A. Maximal violation of Bell’s inequality for arbitrarily large spin. Phys. Lett. A 1992, 162, 15–17. [Google Scholar] [CrossRef]
- Peruzzo, G.; Sorella, S.P. Entanglement and maximal violation of the CHSH inequality in a system of two spins j: A novel construction and further observations. Phys. Lett. A 2023, 474, 128847. [Google Scholar] [CrossRef]
- Gazeau, J.P. Coherent States in Quantum Physics; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Sanders, B.C. Review of entangled coherent states. J. Phys. A Math. Theor. 2012, 45, 244002. [Google Scholar] [CrossRef]
- Chen, Z.B.; Pan, J.W.; Hou, G.; Zhang, Y.D. Maximal violation of Bell’s inequalities for continuous variable systems. Phys. Rev. Lett. 2002, 88, 040406. [Google Scholar] [CrossRef] [PubMed]
- Larsson, J.A. Qubits from number states and Bell inequalities for number measurements. Phys. Rev. A 2003, 67, 022108. [Google Scholar] [CrossRef]
- Dorantes, M.M.; Lucio Martinez, J.L. Generalizations of the pseudospin operator to test the bell inequality for the TMSV state. J. Phys. A Math. Theor. 2009, 42, 285309. [Google Scholar] [CrossRef]
- Gerry, C.C.; Knight, P.L. Quantum Optics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2024. [Google Scholar]
- Fabritiis, P.D.; Guedes, F.M.; Peruzzo, G.; Sorella, S.P. Entangled coherent states and violations of Bell–CHSH inequalities. Phys. Lett. A 2023, 486, 129111. [Google Scholar] [CrossRef]
- Fabritiis, P.D.; Roditi, I.; Sorella, S.P. Probing Mermin’s inequalities violations through pseudospin operators. Phys. Open 2023, 17, 100177. [Google Scholar] [CrossRef]
- Mermin, N.D. Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 1990, 65, 1838. [Google Scholar] [CrossRef] [PubMed]
- Greenberger, D.M.; Horne, M.A.; Shimony, A.; Zeilinger, A. Bell’s theorem without inequalities. Am. J. Phys. 1990, 58, 1131. [Google Scholar] [CrossRef]
- Fabritiis, P.D.; Roditi, I.; Sorella, S.P. Mermin’s inequalities in Quantum Field Theory. Phys. Lett. B 2023, 846, 138198. [Google Scholar] [CrossRef]
N | Bell–CHSH Correlator |
---|---|
3 | 2.403 |
4 | 2 |
10 | 2.10555 |
2.03108 | |
2.00374 | |
2.00039 | |
2.00004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guimaraes, M.S.; Roditi, I.; Sorella, S.P. Introduction to Bell’s Inequality in Quantum Mechanics. Universe 2024, 10, 396. https://doi.org/10.3390/universe10100396
Guimaraes MS, Roditi I, Sorella SP. Introduction to Bell’s Inequality in Quantum Mechanics. Universe. 2024; 10(10):396. https://doi.org/10.3390/universe10100396
Chicago/Turabian StyleGuimaraes, Marcelo Santos, Itzhak Roditi, and Silvio Paolo Sorella. 2024. "Introduction to Bell’s Inequality in Quantum Mechanics" Universe 10, no. 10: 396. https://doi.org/10.3390/universe10100396
APA StyleGuimaraes, M. S., Roditi, I., & Sorella, S. P. (2024). Introduction to Bell’s Inequality in Quantum Mechanics. Universe, 10(10), 396. https://doi.org/10.3390/universe10100396