Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (757)

Search Parameters:
Keywords = spore production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 13770 KiB  
Article
Prediction Model of Powdery Mildew Disease Index in Rubber Trees Based on Machine Learning
by Jiazheng Zhu, Xize Huang, Xiaoyu Liang, Meng Wang and Yu Zhang
Plants 2025, 14(15), 2402; https://doi.org/10.3390/plants14152402 (registering DOI) - 3 Aug 2025
Abstract
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into [...] Read more.
Powdery mildew, caused by Erysiphe quercicola, is one of the primary diseases responsible for the reduction in natural rubber production in China. This disease is a typical airborne pathogen, characterized by its ability to spread via air currents and rapidly escalate into an epidemic under favorable environmental conditions. Accurate prediction and determination of the prevention and control period represent both a critical challenge and key focus area in managing rubber-tree powdery mildew. This study investigates the effects of spore concentration, environmental factors, and infection time on the progression of powdery mildew in rubber trees. By employing six distinct machine learning model construction methods, with the disease index of powdery mildew in rubber trees as the response variable and spore concentration, temperature, humidity, and infection time as predictive variables, a preliminary predictive model for the disease index of rubber-tree powdery mildew was developed. Results from indoor inoculation experiments indicate that spore concentration directly influences disease progression and severity. Higher spore concentrations lead to faster disease development and increased severity. The optimal relative humidity for powdery mildew development in rubber trees is 80% RH. At varying temperatures, the influence of humidity on the disease index differs across spore concentration, exhibiting distinct trends. Each model effectively simulates the progression of powdery mildew in rubber trees, with predicted values closely aligning with observed data. Among the models, the Kernel Ridge Regression (KRR) model demonstrates the highest accuracy, the R2 values for the training set and test set were 0.978 and 0.964, respectively, while the RMSE values were 4.037 and 4.926, respectively. This research provides a robust technical foundation for reducing the labor intensity of traditional prediction methods and offers valuable insights for forecasting airborne forest diseases. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

20 pages, 3123 KiB  
Article
Plant Electrophysiological Parameters Represent Leaf Intracellular Water–Nutrient Metabolism and Immunoregulations in Brassica rapa During Plasmodiophora Infection
by Antong Xia, Yanyou Wu, Kun Zhai, Dongshan Xiang, Lin Li, Zhanghui Qin and Gratien Twagirayezu
Plants 2025, 14(15), 2337; https://doi.org/10.3390/plants14152337 - 29 Jul 2025
Viewed by 219
Abstract
Although Brassica rapa (B. rapa) is vital in agricultural production and vulnerable to the pathogen Plasmodiophora, the intracellular water–nutrient metabolism and immunoregulation of Plasmodiophora infection in B. rapa leaves remain unclear. This study aimed to analyze the responsive mechanisms of [...] Read more.
Although Brassica rapa (B. rapa) is vital in agricultural production and vulnerable to the pathogen Plasmodiophora, the intracellular water–nutrient metabolism and immunoregulation of Plasmodiophora infection in B. rapa leaves remain unclear. This study aimed to analyze the responsive mechanisms of Plasmodiophora-infected B. rapa using rapid detection technology. Six soil groups planted with Yangtze No. 5 B. rapa were inoculated with varying Plasmodiophora concentrations (from 0 to 10 × 109 spores/mL). The results showed that at the highest infection concentration (PWB5, 10 × 109 spores/mL) of B. rapa leaves, the plant electrophysiological parameters showed the intracellular water-holding capacity (IWHC), the intracellular water use efficiency (IWUE), and the intracellular water translocation rate (IWTR) declined by 41.99–68.86%. The unit for translocation of nutrients (UNF) increased by 52.83%, whereas the nutrient translocation rate (NTR), the nutrient translocation capacity (NTC), the nutrient active translocation (NAT) value, and the nutrient active translocation capacity (NAC) decreased by 52.40–77.68%. The cellular energy metabolism decreased with worsening Plasmodiophora infection, in which the units for cellular energy metabolism (∆GE) and cellular energy metabolism (∆G) of the leaves decreased by 44.21% and 78.14% in PWB5, respectively. Typically, based on distribution of B-type dielectric substance transfer percentage (BPn), we found PWB4 (8 × 109 spores/mL) was the maximal immune response concentration, as evidenced by a maximal BPnR (B-type dielectric substance transfer percentage based on resistance), with increasing lignin and cork deposition to enhance immunity, and a minimum BPnXc (B-type dielectric substance transfer percentage based on capacitive reactance), with a decreasing quantity of surface proteins in the B. rapa leaves. This study suggests plant electrophysiological parameters could characterize intracellular water–nutrient metabolism and immunoregulation of B. rapa leaves under various Plasmodiophora infection concentrations, offering a dynamic detection method for agricultural disease management. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 701 KiB  
Article
Use of Trichoderma, Aspergillus, and Rhizopus Fungi for the Biological Production of Hydrolytic Enzymes and Uronic Acids from Sargassum Biomass
by Cristina Agabo-García, Muhammad Nur Cahyanto, Widiastuti Setyaningsih, Luis I. Romero-García, Carlos J. Álvarez-Gallego and Ana Blandino
Fermentation 2025, 11(8), 430; https://doi.org/10.3390/fermentation11080430 - 27 Jul 2025
Viewed by 296
Abstract
The objective of this study was the evaluation of fungal solid-state fermentation (SSF) for the production of alginate lyase and extraction of uronic acids from Sargassum sp. For this purpose, the fungi Trichoderma asperellum, Aspergillus oryzae, and Rhizopus oryzae were applied [...] Read more.
The objective of this study was the evaluation of fungal solid-state fermentation (SSF) for the production of alginate lyase and extraction of uronic acids from Sargassum sp. For this purpose, the fungi Trichoderma asperellum, Aspergillus oryzae, and Rhizopus oryzae were applied (alone or combined) to Sargassum sp. biomass through SSF (107 spores gbiomass−1, 30 °C, and 7 days of treatment). In general, individual SSF with all three fungi degraded the biomass, achieving a marked synergy in the production of cellulase, laminarinase, and alginate lyase activities (especially for the last one). Trichoderma was the most efficient species in producing laminarinase, whereas Rhizophus was the best option for producing alginate lyase. However, when dual combinations were tested, the maximal values of alginate lyase activities were reached (13.4 ± 0.2 IU gbiomass−1 for Aspergillus oryzae and Rhizopus oryzae). Remarkably, uronic acids were the main monomeric units from algal biomass solubilization, achieving a maximum yield of 14.4 mguronic gbiomass−1, with the A + R condition being a feasible, eco-friendly alternative to chemical extraction of this monomer. Additionally, the application of all the fungal pretreatments drastically decreased the total phenolic content (TPC) in the biomass from 369 mg L−1 to values around 44–84 mg L−1, minimizing the inhibition for possible subsequent biological processes in which the residual solid can be used. Full article
Show Figures

Figure 1

26 pages, 11239 KiB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 204
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

16 pages, 3034 KiB  
Article
Identification of Avocado Fruit Disease Caused by Diaporthe phaseolorum and Colletotrichum fructicola in China
by Aosiqi Ma, Yuhang Xu, Hongxing Feng, Yanyuan Du, Huan Liu, Song Yang, Jie Chen and Xin Hao
J. Fungi 2025, 11(8), 547; https://doi.org/10.3390/jof11080547 - 23 Jul 2025
Viewed by 412
Abstract
Persea americana (avocado) is a healthy fruit, rich in unsaturated fatty acids, various minerals, and vitamins. As avocado cultivation continues to expand globally, its development is increasingly constrained by concomitant diseases, among which fruit rot and anthracnose have emerged as significant threats to [...] Read more.
Persea americana (avocado) is a healthy fruit, rich in unsaturated fatty acids, various minerals, and vitamins. As avocado cultivation continues to expand globally, its development is increasingly constrained by concomitant diseases, among which fruit rot and anthracnose have emerged as significant threats to fruit quality. Menglian in Yunnan Province is the largest avocado production area in China. In November 2024, fruit rot was observed on avocado fruits in Yunnan, China, characterized by reddish-brown discoloration, premature ripening, softening, and pericarp decay, with a field infection rate of 22%. Concurrently, anthracnose was detected in avocado fruits, presenting as small dark brown spots that developed into irregular rust-colored lesions, followed by dry rot depressions, ultimately leading to soft rot, peeling, or hardened dry rot, with a field infection rate of 15%. Infected fruit samples were collected, and fungal strains were isolated, purified, and inoculated via spore suspension, followed by re-isolation. The strains were conclusively identified as Diaporthe phaseolorum (SWFU20, SWFU21) and Colletotrichum fructicola (SWFU12, SWFU13) through an integrated approach combining DNA extraction, polymerase chain reaction (PCR), sequencing, phylogenetic reconstruction, and morphological characterization. This is the first report of D. phaseolorum causing fruit rot and C. fructicola causing anthracnose on avocado in China. In future research, we will test methods for the control of D. phaseolorum and C. fructicola. The identification of these pathogens provides a foundation for future disease management research, supporting the sustainable development of the avocado industry. Full article
Show Figures

Figure 1

13 pages, 1535 KiB  
Article
L-Lysine from Bacillus subtilis M320 Induces Salicylic-Acid–Dependent Systemic Resistance and Controls Cucumber Powdery Mildew
by Ja-Yoon Kim, Dae-Cheol Choi, Bong-Sik Yun and Hee-Wan Kang
Int. J. Mol. Sci. 2025, 26(14), 6882; https://doi.org/10.3390/ijms26146882 - 17 Jul 2025
Viewed by 323
Abstract
Powdery mildew caused by Sphaerotheca fusca poses a significant threat to cucumber (Cucumis sativus L.) production worldwide, underscoring the need for sustainable disease management strategies. This study investigates the potential of L-lysine, abundantly produced by Bacillus subtilis M 320 (BSM320), to prime [...] Read more.
Powdery mildew caused by Sphaerotheca fusca poses a significant threat to cucumber (Cucumis sativus L.) production worldwide, underscoring the need for sustainable disease management strategies. This study investigates the potential of L-lysine, abundantly produced by Bacillus subtilis M 320 (BSM320), to prime systemic acquired resistance (SAR) pathways in cucumber plants. Liquid chromatography–mass spectrometry analysis identified L-lysine as the primary bioactive metabolite in the BSM320 culture filtrate. Foliar application of purified L-lysine significantly reduced powdery mildew symptoms, lowering disease severity by up to 92% at concentrations ≥ 2500 mg/L. However, in vitro spore germination assays indicated that L-lysine did not exhibit direct antifungal activity, indicating that its protective effect is likely mediated through the activation of plant immune responses. Quantitative reverse transcription PCR revealed marked upregulation of key defense-related genes encoding pathogenesis-related proteins 1 and 3, lipoxygenase 1 and 23, WRKY transcription factor 20, and L-type lectin receptor kinase 6.1 within 24 h of treatment. Concurrently, salicylic acid (SA) levels increased threefold in lysine-treated plants, confirming the induction of an SA-dependent SAR pathway. These findings highlight L-lysine as a sustainable, residue-free priming agent capable of enhancing broad-spectrum plant immunity, offering a promising approach for amino acid-based crop protection. Full article
Show Figures

Figure 1

18 pages, 2307 KiB  
Article
In Vitro Sensitivity of Isolates of Neopestalotiopsis rosae, Causal Agent of Strawberry Crown Rot, to Usnic Acid
by Laura Castro-Rosalez, Antonio Juárez-Maldonado, Adalberto Benavides-Mendoza, Susana González-Morales, Elizabeth García-León, Angel Rebollar-Alviter and Fabián Pérez-Labrada
Horticulturae 2025, 11(7), 812; https://doi.org/10.3390/horticulturae11070812 - 9 Jul 2025
Viewed by 339
Abstract
Root and crown rot in strawberries caused by Neopestalotiopsis rosae (N. rosae) results in yield losses of approximately 70%. The main method of control is based on the application of fungicides; however, the excessive use of these products can induce resistance [...] Read more.
Root and crown rot in strawberries caused by Neopestalotiopsis rosae (N. rosae) results in yield losses of approximately 70%. The main method of control is based on the application of fungicides; however, the excessive use of these products can induce resistance by pathogens to the active ingredients. The use of secondary metabolites is an alternative to disease management. Usnic acid (UA), a secondary metabolite produced by lichens, has shown antimicrobial and antifungal activities that could be useful for the management of phytopathogens, particularly the (+) enantiomer. To provide alternatives to fungicides, the potential of UA as an alternative for N. rosae management was evaluated under in vitro and in vivo conditions. Using the “poisoned medium” technique, concentrations of 0 (UA0), 100 (UA1), 200 (UA2), and 400 (UA4) µg/mL UA at a dose of 2.5 mL/L PDA were evaluated on N. rosae mycelial growth and the number of spores. The UA at 400 µg/mL exhibited a fungistatic effect, reducing the mycelial growth of isolates of N. rosae in 50–60%. In the in vivo assay, sprayed UA (400 µg/mL) reduced hydrogen peroxide (48.59%) and malonaldehyde (77.62%) contents in “Albion” strawberry seedlings inoculated with 466 and FREC2 strains, respectively. These findings suggest that UA could be a potential tool for N. rosae management and could help mitigate the oxidative stress induced by infection. However, field trials are required to evaluate and validate this response. Full article
(This article belongs to the Special Issue Sustainable Management of Pathogens in Horticultural Crops)
Show Figures

Graphical abstract

15 pages, 1481 KiB  
Article
Inhibitory Effects of Origanum vulgare Essential Oil on Mycogone perniciosa Growth in Agaricus bisporus Cultivation
by Jasmina Glamočlija, Marija Ivanov, Marina Soković, Ana Ćirić, Slavica Ninković, Danijela Mišić, Ivanka Milenković and Dejan Stojković
J. Fungi 2025, 11(7), 515; https://doi.org/10.3390/jof11070515 - 9 Jul 2025
Viewed by 457
Abstract
Mycogone perniciosa is the causative agent of wet bubble disease, which induces significant losses in the production of Agaricus bisporus, indicating the high importance of the development of novel inhibitory agents. The isolation, identification, and molecular characterization of five isolates of M. [...] Read more.
Mycogone perniciosa is the causative agent of wet bubble disease, which induces significant losses in the production of Agaricus bisporus, indicating the high importance of the development of novel inhibitory agents. The isolation, identification, and molecular characterization of five isolates of M. perniciosa from diseased fruit bodies of A. bisporus was done. Moreover, the study evaluated the in vitro and in situ potential of Origanum vulgare essential oil (EO) to limit M. perniciosa growth and provided chemical characterization of its volatile components. The obtained strains differed phenotypically and according to their molecular characteristics. O. vulgare EO has shown more promising antifungal activity than the commercial fungicide Prochloraz-Mn in the microatmospheric method. In the treatment of experimentally induced wet bubble disease on A. bisporus in the growing chambers with 2% of O. vulgare EO and simultaneous application of spore suspension of mycopathogen, O. vulgare EO totally inhibited the growth of M. perniciosa. Carvacrol, p-cymene, γ-terpinene, and thymol were dominant constituents of O. vulgare EO examined in this study. O. vulgare EO has shown promising potential to limit growth of M. perniciosa and should be further explored as a novel biofungicide. Full article
Show Figures

Figure 1

13 pages, 2399 KiB  
Article
Promoting Effects of Piriformospora indica on Plant Growth and Development of Tissue-Cultured Cerasus humilis Seedlings
by Lu Yin, JinYang Cheng, YunPeng Liu, YinTao Guan, LuTing Jia, Shuai Zhang, PengFei Wang, XiaoPeng Mu and JianCheng Zhang
Horticulturae 2025, 11(7), 797; https://doi.org/10.3390/horticulturae11070797 - 4 Jul 2025
Viewed by 188
Abstract
Piriformospora indica is a beneficial endophytic fungus that promotes plant growth and root development by colonizing plant roots. In order to investigate whether P. indica could promote the growth of tissue-cultured Cerasus humilis seedlings, in this study, we co-cultivated P. indica colony segments [...] Read more.
Piriformospora indica is a beneficial endophytic fungus that promotes plant growth and root development by colonizing plant roots. In order to investigate whether P. indica could promote the growth of tissue-cultured Cerasus humilis seedlings, in this study, we co-cultivated P. indica colony segments (P+) and P. indica spore suspensions (P++) in the rooting medium, and plant biomass as well as chlorophyll and root hormone contents of ‘3-19-3’ tissue-cultured C. humilis seedlings were determined under P+, P++, and CK (without fungus inoculation) treatments. The results showed that above-ground biomass and chlorophyll content of P+-and P++-treated tissue-cultured seedlings were significantly increased, and root peroxidase (POD), indole-3-acetic-acid (IAA) content, and root activities were significantly enhanced, while jasmonic acid (JA) and 1-aminocyclopropane-1-carboxylic acid (ACC) contents were reduced. Moreover, the growth-promoting effects of P++ treatment were found to be stronger than those of P+ treatment. Our results confirmed that P. indica was able to promote the growth of tissue-cultured C. humilis seedlings and effectively promoted root development by regulating hormone content. Therefore, the application of P. indica in the production of C. humilis is promising, especially in the cultivation of elite varieties. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Figure 1

23 pages, 4022 KiB  
Article
Comprehensive Analysis of Bacterial Communities and Microbiological Quality of Frozen Edible Insects
by Sasiprapa Krongdang, Nipitpong Sawongta, Jintana Pheepakpraw, Achirawit Ngamsomchat, Sutee Wangtueai, Jittimon Wongsa, Thanya Parametthanuwat, Narin Charoenphun and Thararat Chitov
Foods 2025, 14(13), 2347; https://doi.org/10.3390/foods14132347 - 1 Jul 2025
Viewed by 402
Abstract
Edible insects are gaining traction worldwide; however, the existing data regarding their microbiological quality remain inadequate. This study investigated the bacterial communities and microbiological quality of five types of frozen edible insects commercially available in Thailand. Amplicon sequencing revealed Firmicutes (Bacillota) and Proteobacteria [...] Read more.
Edible insects are gaining traction worldwide; however, the existing data regarding their microbiological quality remain inadequate. This study investigated the bacterial communities and microbiological quality of five types of frozen edible insects commercially available in Thailand. Amplicon sequencing revealed Firmicutes (Bacillota) and Proteobacteria (Pseudomonadota) as the main phyla across all samples; Bacteroidota was predominant in house crickets, Actinobacteriota in silkworms, and Desulfobacterota was exclusively found in house and mole crickets. Culture-based assays showed total viable counts, lactic acid bacteria, yeasts–molds, and spore-formers ranging from 3.41–6.58, 2.52–7.41, 1.83–5.62, to 2.00–4.70 log CFU·g−1, respectively. In some samples, Enterobacteriaceae and Escherichia coli, key hygiene indicators, reached 5.05 and 2.70 log CFU·g−1, respectively. Among foodborne pathogens, presumptive Bacillus cereus was found to vary from <1.70 to 3.93 log CFU·g−1, while Clostridium perfringens and Staphylococcus aureus were under the quantitation limit, and Salmonella was absent. Overall, the results indicate significant variation in microbial diversity and quality among different insect types. The high levels of microbial hygiene indicators and foodborne pathogens in some samples raised food safety concerns and point to the need to develop or implement production guidelines and microbiological criteria for frozen edible insects to ensure food safety. Full article
Show Figures

Graphical abstract

15 pages, 9151 KiB  
Article
Study of the Herbicidal Potential and Infestation Mechanism of Fusarium oxysporum JZ-5 on Six Broadleaved Weeds
by Suifang Zhang, Haixia Zhu, Yongqiang Ma and Liang Cheng
Microorganisms 2025, 13(7), 1541; https://doi.org/10.3390/microorganisms13071541 - 30 Jun 2025
Viewed by 227
Abstract
Weeds compete with crops for resources, posing multiple negative impacts for agricultural production systems and triggering degradation of ecosystem services (e.g., alterations in the soil microbial community structure). Under the guidance of green plant protection, the development of efficient biocontrol strains with environmentally [...] Read more.
Weeds compete with crops for resources, posing multiple negative impacts for agricultural production systems and triggering degradation of ecosystem services (e.g., alterations in the soil microbial community structure). Under the guidance of green plant protection, the development of efficient biocontrol strains with environmentally friendly characteristics has become a crucial research direction for sustainable agriculture. This study aimed to develop a fungal bioherbicide by isolating and purifying a pathogenic fungal strain (JZ-5) from infected redroot pigweed (Amaranthus retroflexus L.). The strain exhibited pathogenicity rates ranging from 23.46% to 86.25% against six weed species, with the most pronounced control efficacy observed against henbit deadnettle (Lamium amplexicaule L.), achieving a pathogenicity rate of 86.25%. Through comprehensive characterization of cultural features, morphological observations, and molecular biological identification, the strain was taxonomically classified as Fusarium oxysporum. Scanning electron microscopy revealed that seven days post-inoculation, F. oxysporum JZ-5 formed dense mycelial networks on the leaf surfaces of cluster mallow (Malva verticillata L.), causing severe tissue damage. Safety assessments demonstrated that the spore suspension (104 spores/mL) had no adverse effects on three crops: hulless barley (Hordeum vulgare var. coeleste L.), wheat (Triticum aestivum L.), and potato (Solanum tuberosum L.). These findings suggest that F. oxysporum strain JZ-5 warrants further investigation as a potential bioherbicide for controlling three problematic weed species—Chenopodium album L. (common lambsquarters), Elsholtzia densa Benth. (dense-flowered elsholtzia), and Lamium amplexicaule L. (henbit deadnettle)—in cultivated fields of hulless barley (Hordeum vulgare var. coeleste L.), wheat (Triticum aestivum L.), and potato (Solanum tuberosum L.). This discovery provides valuable fungal resources for ecologically sustainable weed management strategies, contributing significantly to the advancement of sustainable agricultural practices. Full article
(This article belongs to the Special Issue Fungal Biology and Interactions—3rd Edition)
Show Figures

Figure 1

17 pages, 1011 KiB  
Article
Bioprocessing of Spent Coffee Grounds as a Sustainable Alternative for the Production of Bioactive Compounds
by Karla A. Luna, Cristóbal N. Aguilar, Nathiely Ramírez-Guzmán, Héctor A. Ruiz, José Luis Martínez and Mónica L. Chávez-González
Fermentation 2025, 11(7), 366; https://doi.org/10.3390/fermentation11070366 - 26 Jun 2025
Viewed by 775
Abstract
Spent coffee grounds are the most abundant waste generated during the preparation of coffee beverages, amounting to 60 million tons per year worldwide. Excessive food waste production has become a global issue, emphasizing the need for waste valorization through the bioprocess of solid-state [...] Read more.
Spent coffee grounds are the most abundant waste generated during the preparation of coffee beverages, amounting to 60 million tons per year worldwide. Excessive food waste production has become a global issue, emphasizing the need for waste valorization through the bioprocess of solid-state fermentation (SSF) for high added-value compounds. This work aims to identify the operational conditions for optimizing the solid-state fermentation process of spent coffee grounds to recover bioactive compounds (as polyphenols). An SSF process was performed using two filamentous fungi (Trichoderma harzianum and Rhizopus oryzae). An exploratory design based on the Hunter & Hunter method was applied to analyze the effects of key parameters such as inoculum size (spores/mL), humidity (%), and temperature (°C). Subsequently, a Box–Behnken experimental design was carried out to recovery of total polyphenols. DPPH, ABTS, and FRAP assays evaluated antioxidant activity. The maximum concentration of polyphenols was observed in treatment T3 (0.279 ± 0.002 TPC mg/g SCG) using T. harzianum, and a similar result was obtained with R. oryzae in the same treatment (0.250 ± 0.011 TPC mg/g SCG). In the Box–Behnken design, the most efficient treatment for T. harzianum was T12 (0.511 ± 0.017 TPC mg/g SCG), and for R. oryzae, T9 (0.636 ± 0.003 TPC mg/g SCG). These extracts could have applications in the food industry to improve preservation and functionality. Full article
(This article belongs to the Special Issue Valorization of Food Waste Using Solid-State Fermentation Technology)
Show Figures

Graphical abstract

19 pages, 4704 KiB  
Article
Adapting to UV: Integrative Genomic and Structural Analysis in Bacteria from Chilean Extreme Environments
by Mauricio Núñez, Antonia Naciff, Fabián Cuadros, Constanza Rojas, Gastón Carvallo and Carolina Yáñez
Int. J. Mol. Sci. 2025, 26(12), 5842; https://doi.org/10.3390/ijms26125842 - 18 Jun 2025
Viewed by 411
Abstract
Extremophilic bacteria from extreme environments, such as the Atacama Desert, Salar de Huasco, and Antarctica, exhibit adaptations to intense UV radiation. In this study, we investigated the genomic and structural mechanisms underlying UV resistance in three bacterial isolates identified as Bacillus velezensis PQ169, [...] Read more.
Extremophilic bacteria from extreme environments, such as the Atacama Desert, Salar de Huasco, and Antarctica, exhibit adaptations to intense UV radiation. In this study, we investigated the genomic and structural mechanisms underlying UV resistance in three bacterial isolates identified as Bacillus velezensis PQ169, Pseudoalteromonas sp. AMH3-8, and Rugamonas violacea T1-13. Through integrative genomic analyses, we identified key genes involved in DNA-repair systems, pigment production, and spore formation. Phylogenetic analyses of aminoacidic sequences of the nucleotide excision repair (NER) system revealed conserved evolutionary patterns, indicating their essential role across diverse bacterial taxa. Structural modeling of photolyases from Pseudoalteromonas sp. AMH3-8 and R. violacea T1-13 provided further insights into protein function and interactions critical for DNA repair and UV resistance. Additionally, the presence of a complete violacein operon in R. violacea T1-13 underscores pigment biosynthesis as a crucial protective mechanism. In B. velezensis PQ169, we identified the complete set of genes responsible for sporulation, suggesting that sporulation may represent a key protective strategy employed by this bacterium in response to environmental stress. Our comprehensive approach underscores the complexity and diversity of microbial adaptations to UV stress, offering potential biotechnological applications and advancing our understanding of microbial resilience in extreme conditions. Full article
Show Figures

Figure 1

19 pages, 2577 KiB  
Article
Rainfall and High Humidity Influence the Seasonal Dynamics of Spores of Glomerellaceae and Botryosphaeriaceae Genera in Avocado Orchards and Their Fruit Rot Association
by Lorena Tapia, Diyanira Castillo-Novales, Natalia Riquelme, Ana Luisa Valencia, Alejandra Larach, Ricardo Cautín and Ximena Besoain
Agronomy 2025, 15(6), 1453; https://doi.org/10.3390/agronomy15061453 - 14 Jun 2025
Viewed by 491
Abstract
Avocado, a fruit consumed worldwide and essential for countries like Mexico and Chile, faces significant postharvest challenges, particularly during prolonged storage and transportation periods, where Botryosphaeriaceae and Glomerellaceae genera cause fruit rots that can generate substantial economic losses. This study investigated three Hass [...] Read more.
Avocado, a fruit consumed worldwide and essential for countries like Mexico and Chile, faces significant postharvest challenges, particularly during prolonged storage and transportation periods, where Botryosphaeriaceae and Glomerellaceae genera cause fruit rots that can generate substantial economic losses. This study investigated three Hass avocado orchards in the Valparaíso region of Chile to identify spore dispersion peaks, analyze the aerial dynamics of fungal inoculum, and evaluate the association with climatic conditions, as well as the incidence (I) and damage index (DI) of fruit rots. Spore traps were installed in symptomatic trees and monitored weekly over 13 months. Meteorological data were collected in parallel. Fruits from these orchards were sampled to evaluate postharvest rots, physiological maturity, and disease severity using molecular techniques, including DNA sequencing and phylogenetic analysis of isolated pathogens. The results revealed that spore peaks for both fungal families were closely associated with increased rainfall and high relative humidity, particularly from June to mid-September (winter season). The Santo Domingo orchard exhibited the highest disease pressure, with stem-end rot reaching an I of 44% and a DI of 17.25%, and anthracnose reaching an I of 23% and a DI of 12.25%. This study provides the first long-term, field-based evidence of airborne spore dynamics of Botryosphaeriaceae and Glomerellaceae in Chilean avocado orchards and their statistical relationship with environmental variables. These findings highlight the potential of incorporating climatic indicators—such as rainfall thresholds and humidity levels—into monitoring and early-warning systems to optimize fungicide application timing, reduce unnecessary chemical use, and improve postharvest disease management in avocado production. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

20 pages, 2000 KiB  
Article
Germination and Heat Resistance of Parageobacillus and Geobacillus spp. Spores
by Maika Salvador, Santiago Condón and Elisa Gayán
Foods 2025, 14(12), 2061; https://doi.org/10.3390/foods14122061 - 11 Jun 2025
Viewed by 538
Abstract
Geobacillus and Parageobacillus spores are major spoilage agents in thermally treated, shelf-stable foods, particularly milk products, due to their high heat resistance. This study aimed to investigate how spore purification, maturation time, and sporulation temperature influence the germination and heat resistance of P. [...] Read more.
Geobacillus and Parageobacillus spores are major spoilage agents in thermally treated, shelf-stable foods, particularly milk products, due to their high heat resistance. This study aimed to investigate how spore purification, maturation time, and sporulation temperature influence the germination and heat resistance of P. thermoglucosidasius, G. thermodenitrificans, and G. stearothermophilus spores, with the goal of improving the reliability of microbial risk assessment. All three species germinate efficiently in milk, likely triggered by lactose and glucose. Ethanol-treated spores during purification germinated without heat activation, while water-washed spores required it. At least four days of maturation were needed for efficient germination, though extending maturation to seven days led to strain-dependent changes in heat resistance: it increased in G. thermodenitrificans, decreased in P. thermoglucosidasius, and remained stable in G. stearothermophilus. Sporulation at 55 °C consistently favored germination at the same revival temperature. G. stearothermophilus reached the highest heat resistance at 55 °C, whereas the other species were more resistant when sporulated at 60 °C. These findings underscore the importance of standardizing spore-preparation protocols, as key parameters such as purification, maturation time, and sporulation temperature critically affect spore properties relevant to food stability. Full article
Show Figures

Figure 1

Back to TopTop