Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,706)

Search Parameters:
Keywords = spontaneous demonstration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 49942 KiB  
Article
Effects of Hydrogen Peroxide on Slow- and Fast-Growing NIH/3T3-Derived Cultures: Nuclear and Cytoplasmic Aspects Related to Senescence and Transformation
by Alessandra Spano and Luigi Sciola
Cells 2025, 14(16), 1268; https://doi.org/10.3390/cells14161268 (registering DOI) - 16 Aug 2025
Abstract
Cellular senescence can occur with similar phenotypes in normal cells, during aging, and in tumor cells, spontaneously or after cytostasis. The fall or increase in proliferative activity are key aspects of the respective conditions, in which the levels of reactive oxygen species can [...] Read more.
Cellular senescence can occur with similar phenotypes in normal cells, during aging, and in tumor cells, spontaneously or after cytostasis. The fall or increase in proliferative activity are key aspects of the respective conditions, in which the levels of reactive oxygen species can vary, affecting the cellular redox homeostasis. This work aimed to study the relationships between senescence and transformation by comparing cells with different proliferative activities and phenotypes attributable to transformation (NIHs cultures) or senescence (NIHv cultures), before and after incubation with hydrogen peroxide. Both cultures were derived from the NIH/3T3 cell line, which was used here as a reference (NIHb), after the serum starvation. Our experimental model can be representative of the heterogeneity of cell subpopulations, with different degrees of transformation and senescence, found in some tumors. The characterization of the functional properties of NIHb, NIHs, and NIHv cells was performed by a morphocytometric analysis of the cell cycle progression, mitochondrial and lysosomal content/activity, and superoxide anion production. The efficiency of the lysosomal compartment was also assessed by estimating the autophagic activity and measuring lipofuscin autofluorescence. Comparisons of nuclear and cytoplasmic parameters before and after the incubation with hydrogen peroxide revealed differences in the expression and modulation of cellular senescence patterns. The treatment effects were very limited in the NIHb culture; the senescence condition was essentially maintained in the NIHv cells, while the most relevant changes were found in the NIHs cells. In the latter, the acquisition of the senescent phenotype, also demonstrated by the positivity of SA-β-galactosidase, was correlated with a decrease in proliferative activity and a change in the content/activity of the mitochondria and lysosomes, which showed similarities with the basal senescence conditions of NIHv cells. In NIHs cells, increased autophagy events and lipofuscin accumulation also indicate the establishment of cytoplasmic dynamics typical of senescence. The variable responses to hydrogen peroxide, besides depending on the different basal cytokinetic activity of the cultures examined, appeared to be related to the specific cell redox state resulting from the balance between endogenous ROS and those produced after treatment. Especially in NIHs cells, the slowing down of the cell cycle was linked to dynamic interconnections between the mitochondrial and lysosomal compartments. This would indicate that transformed cells, such as NIHs, may express morpho-functional aspects and markers typical of cellular senescence, as a consequence of the modulation of their redox state. Full article
(This article belongs to the Collection Feature Papers in 'Cell Proliferation and Division')
31 pages, 900 KiB  
Article
Distribution and Timing of Verbal Backchannels in Conversational Speech: A Quantitative Study
by Michael Paierl, Anneliese Kelterer and Barbara Schuppler
Languages 2025, 10(8), 194; https://doi.org/10.3390/languages10080194 - 15 Aug 2025
Abstract
This paper explores backchannels, short listener responses such as “mhm”, which play an important role in managing turn-taking and grounding in spontaneous conversation. While previous work has largely focused on their acoustic cues or listener’s behavior in isolation, this study investigates if and [...] Read more.
This paper explores backchannels, short listener responses such as “mhm”, which play an important role in managing turn-taking and grounding in spontaneous conversation. While previous work has largely focused on their acoustic cues or listener’s behavior in isolation, this study investigates if and when backchannels occur by taking into account the prosodic characteristics together with the communicative functions of the interlocutor’s speech preceding backchannels. Using a corpus of spontaneous dyadic conversations in Austrian German annotated with continuous turn-taking labels, we analyze the distribution of backchannels across different turn-taking contexts and examine which acoustic features affect their occurrence and timing by means of Conditional Inference Trees and linear mixed-effects regression models. Our findings show that the turn-taking function of the interlocutor’s utterance is a significant predictor of whether a backchannel occurs or not: Backchannels tend to occur most frequently after longer and syntactically complete utterances by the interlocutor. Moreover, prosodic features such as utterance duration, articulation rate variability and rising or falling intensity affect the timing of listener responses, with significant differences across different turn-taking functions. These results highlight the value of using continuous turn-taking annotations to investigate conversational dynamics and demonstrate how turn-taking function and prosody jointly shape backchannel behavior in spontaneous conversation. Full article
(This article belongs to the Special Issue Current Trends in Discourse Marker Research)
Show Figures

Figure 1

9 pages, 213 KiB  
Article
A Retrospective Review of Gynaecological and Social Outcomes for Teenage Pregnancies from 2020 to 2022 in Stoke-on-Trent
by Maria van Veelen, Lauren Franklin, Aisling McCann and Fidelma O’Mahony
J. Clin. Med. 2025, 14(16), 5745; https://doi.org/10.3390/jcm14165745 - 14 Aug 2025
Viewed by 45
Abstract
Background/Objectives: Adolescent pregnancies are associated with negative outcomes of health and social and economic consequences for both the mother and child. The aim of this audit was to determine the incidence of gynaecological complications and adverse social determinants of health affecting pregnant [...] Read more.
Background/Objectives: Adolescent pregnancies are associated with negative outcomes of health and social and economic consequences for both the mother and child. The aim of this audit was to determine the incidence of gynaecological complications and adverse social determinants of health affecting pregnant women less than 20 years old at the time of delivery in Stoke-on-Trent, with the goal of improving local and national trust guidelines. Methods: A retrospective case note review was conducted using electronic databases. Subjects had to be under the age of 20 years old at the time of delivery at our local tertiary hospital from January 2020 to December 2022. Results: Four hundred and seventy-three women met the inclusion criteria. The median age was 18 years old (range: 13–19 years). Most women delivered at term (mean 38+3), were primigravida (76%), and underwent spontaneous delivery (43%). Both our induction rate of 28.2% and caesarean section rate of 18.4% were below the national averages. Complications of post-partum haemorrhage and low birth weights exceeded the national averages, with third- to fourth-degree perineal tears just below the national incidence rate of 2.9%. Negative social determinants of health included smoking, mental illness, and low breastfeeding rates. Our mean 3-year breastfeeding rate was 24.3%. Conclusions: This single-centre audit at a large tertiary hospital has demonstrated that women under the age of 20 years old in socially deprived areas of the UK are more likely to experience negative gynaecological and social outcomes from their pregnancies compared to areas of low deprivation within the UK. Full article
(This article belongs to the Collection Pediatric and Adolescent Gynecology)
19 pages, 730 KiB  
Article
Exploitation of Apulian Salicornia europaea L. via NADES-UAE: Extraction, Antioxidant Activity and Antimicrobial Potential
by Francesco Limongelli, Antonella Maria Aresta, Roberta Tardugno, Maria Lisa Clodoveo, Alexia Barbarossa, Alessia Carocci, Carlo Zambonin, Pasquale Crupi, Manuela Panić, Filomena Corbo and Ivana Radojčić Redovniković
Molecules 2025, 30(16), 3367; https://doi.org/10.3390/molecules30163367 - 13 Aug 2025
Viewed by 178
Abstract
Salicornia europaea L. is a spontaneous halophytic plant, widespread in coastal environments, recognized for its high polyphenol content and bioactivities. In this study, a sustainable extraction strategy was developed by coupling natural deep eutectic solvents (NADESs) with ultrasound-assisted extraction (UAE) to recover bioactive [...] Read more.
Salicornia europaea L. is a spontaneous halophytic plant, widespread in coastal environments, recognized for its high polyphenol content and bioactivities. In this study, a sustainable extraction strategy was developed by coupling natural deep eutectic solvents (NADESs) with ultrasound-assisted extraction (UAE) to recover bioactive compounds from autochthonous S. europaea collected in the Apulia region of southern Italy. Sixty-one NADES combinations were screened using COSMOtherm software, based on the predicted solubility of isorhamnetin, the major flavonol in Salicornia spp, to identify optimal hydrogen-bond donor (HBD) and acceptor (HBA) pairs. Six selected and prepared NADESs (B:CA, B:Suc, ChCl:U, ChCl:Xil, CA:Glc and Pro:MA) were used to extract S. europaea, and the resulting extracts were evaluated for total phenolic content (TPC), antioxidant capacity (DPPH, ABTS, FRAP) and antibacterial activity against four ATCC bacterial strains (Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae and Staphylococcus aureus). Among the tested extracts, Pro:MA exhibited the highest TPC (6.79 mg GAE/g) and interesting antioxidant activity (DPPH IC50 = 0.09 mg GAE/g; ABTS = 8.12 mg TE/g; FRAP = 2.41 mg TE/g). In the antibacterial assays, the Pro:MA extract demonstrated the highest activity, with minimum inhibitory concentrations (MICs) ranging from 0.1% to 0.4% v/v and minimum bactericidal concentrations (MBCs) from 0.2% to 0.8% v/v. In addition, the Pro:MA extract maintained TPC stability over a 90-day storage period. These findings support the NADES-UAE system as a green and efficient approach for the recovery of bioactive compounds and for the valorization of halophyte plants, such as S. europaea, with promising ready-to-use applications in the food, pharmaceutical and cosmeceutical sectors. Full article
Show Figures

Figure 1

24 pages, 3339 KiB  
Article
DFT-Based Functionalization of Graphene with Lithium-Modified Groups for Enhanced Hydrogen Detection: Thermodynamic, Electronic, and Spectroscopic Properties
by Norma A. Rangel-Vázquez, Adrián Bonilla-Petriciolet, Edgar A. Márquez-Brazón, Yectli Huerta, Rosa Zavala-Arce and Juan D. Rodríguez-Macías
Nanomaterials 2025, 15(16), 1234; https://doi.org/10.3390/nano15161234 - 13 Aug 2025
Viewed by 194
Abstract
This study investigates the impact of oxygen-containing functional groups (COO-Li, CO-Li, and O-Li) on the electronic and optical properties of graphene, with a focus on hydrogen sensing applications. Using density functional theory (DFT) calculations, we evaluated the thermodynamic feasibility of the functionalization and [...] Read more.
This study investigates the impact of oxygen-containing functional groups (COO-Li, CO-Li, and O-Li) on the electronic and optical properties of graphene, with a focus on hydrogen sensing applications. Using density functional theory (DFT) calculations, we evaluated the thermodynamic feasibility of the functionalization and hydrogen adsorption processes. The Gibbs free energy changes (ΔG) for the functionalization of pristine graphene were calculated as −1233, −1157, and −1119 atomic units (a.u.) for COO-Li, CO-Li, and O-Li, respectively. These negative values indicate that the functionalization processes are spontaneous (ΔG < 0), with COO-Li being the most thermodynamically favorable. Furthermore, hydrogen adsorption on the functionalized graphene surfaces also exhibited spontaneous behavior, with ΔG values of −1269, −1204, and −1175 a.u., respectively. These results confirm that both functionalization and subsequent hydrogen adsorption are energetically favorable, enhancing the potential of these materials for hydrogen sensing applications. Among the functional groups we simulated, COO-Li exhibited the largest surface area and volume, which were attributed to the high electronegativity and steric influence of the carboxylate moiety. Based on the previously described results, we analyzed the interaction of these functionalized graphene systems with molecular hydrogen. The adsorption of two H2 molecules per system demonstrated favorable thermodynamics, with lithium atoms serving as active sites for external adsorption. The presence of lithium atoms significantly enhanced hydrogen affinity, suggesting strong potential for sensing applications. Further, electronic structure analysis revealed that all functionalized systems exhibit semiconducting behavior, with band gap values modulated by the nature of the functional group. FTIR (Fourier-Transform Infrared Spectroscopy) and Raman spectroscopy confirmed the presence of characteristic vibrational modes associated with Li-H interactions, particularly in the 659–500 cm−1 range. These findings underscore the promise of lithium-functionalized graphene, especially with COO-Li, as a tunable platform for hydrogen detection, combining favorable thermodynamics, tailored electronic properties, and spectroscopic detectability. Full article
(This article belongs to the Special Issue The Interaction of Electron Phenomena on the Mesoscopic Scale)
Show Figures

Graphical abstract

8 pages, 232 KiB  
Article
Inflamed Pathways to Motherhood: Evaluating Obstetric and Neonatal Outcomes in Rheumatic Pregnancies
by Batuhan Turgay, Uğurcan Zorlu, Bulut Varlı, Gülşah Aynaoğlu Yıldız, Şahin Kaan Baydemir, Cem Somer Atabekoğlu and Tahsin Murat Turgay
J. Clin. Med. 2025, 14(16), 5692; https://doi.org/10.3390/jcm14165692 - 12 Aug 2025
Viewed by 157
Abstract
Objective: This study aims to evaluate obstetric and neonatal outcomes in pregnancies complicated by RDs and to identify hemogram-derived biomarkers associated with adverse perinatal events. Methods: This retrospective cohort study analyzed 360 pregnancies in individuals diagnosed with rheumatoid arthritis (RA), systemic lupus erythematosus [...] Read more.
Objective: This study aims to evaluate obstetric and neonatal outcomes in pregnancies complicated by RDs and to identify hemogram-derived biomarkers associated with adverse perinatal events. Methods: This retrospective cohort study analyzed 360 pregnancies in individuals diagnosed with rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), ankylosing spondylitis (AS), Sjögren’s disease, sarcoidosis, undifferentiated connective tissue disease (UCTD), and other autoimmune conditions, followed up at the Department of Obstetrics and Gynecology, Ankara University Faculty of Medicine, between 2013 and 2018. Data on disease activity, maternal complications, neonatal outcomes, and inflammatory markers were extracted from electronic medical records. Results: Patients with SSc had the highest rates of preterm birth (57.1%) and fetal growth restriction (FGR) (42.9%), whereas those with SLE (50%) and AS (25%) exhibited the highest disease flare rates. Neonates born to mothers with SSc, SLE, and Sjögren’s disease had significantly lower Apgar scores, suggesting increased neonatal distress. NICU admission was associated with elevated neutrophil-to-lymphocyte ratio (NLR) and eosinophil-to-lymphocyte ratio (ELR), with higher NLR and ELR also predicting spontaneous abortion. Monocyte-to-lymphocyte ratio (MLR) and ELR demonstrated the highest predictive value for composite adverse perinatal outcomes. Additionally, RA patients experiencing disease flares had an 87.5% cesarean section (CS) rate, significantly exceeding the general population rate. Conclusions: This study underscores the increased risk of preterm birth, FGR, and neonatal complications in RD pregnancies, particularly in SSc and SLE patients. The findings suggest that early risk assessment using hemogram-based inflammatory markers may improve perinatal management and patient stratification. Full article
(This article belongs to the Special Issue Recent Advances in Adverse Pregnancy and Neonatal Outcomes)
25 pages, 4390 KiB  
Article
Sustainable Adsorption of Amoxicillin and Sulfamethoxazole onto Activated Carbon Derived from Food and Agricultural Waste: Isotherm Modeling and Characterization
by Arzum Işıtan
Processes 2025, 13(8), 2528; https://doi.org/10.3390/pr13082528 - 11 Aug 2025
Viewed by 162
Abstract
This study investigates the adsorption performance of activated carbon (AC) derived from food and agricultural waste, specifically coffee grounds, coffee skin, bamboo, and palm leaves, for the removal of two antibiotics: amoxicillin (AMX) and sulfamethoxazole (SMX). The ACs were synthesized via KOH and [...] Read more.
This study investigates the adsorption performance of activated carbon (AC) derived from food and agricultural waste, specifically coffee grounds, coffee skin, bamboo, and palm leaves, for the removal of two antibiotics: amoxicillin (AMX) and sulfamethoxazole (SMX). The ACs were synthesized via KOH and ZnCl2 chemical activation and characterized through BET surface area analysis, thermal stability, electrical conductivity, SEM, EDS, and FTIR. Among all samples, bamboo-derived AC (B-AC) exhibited superior properties, such as the highest surface area (860 m2/g), thermal stability (855 °C), conductivity (0.063 S/cm), and adsorption capacities (292.6 mg/g for AMX and 195.7 mg/g for SMX). SEM and EDS analyses confirmed successful antibiotic adsorption with morphological and elemental changes, while FTIR spectra indicated interaction with surface functional groups. Adsorption data were best described by the Langmuir and Dubinin–Radushkevich isotherm models, suggesting a monolayer physical adsorption process dominated by micropore filling (E < 8 kJ/mol). In contrast, BET and Flory–Huggins models exhibited poor fit, confirming the absence of multilayer or partition-based adsorption mechanisms. Kinetic modeling showed that AMX followed a pseudo-second-order model, while SMX exhibited a more complex adsorption behavior. Thermodynamic studies confirmed that both processes were spontaneous, with AMX adsorption being endothermic and entropy-driven and SMX being exothermic but favorable. These findings demonstrate the high potential of B-AC as a low-cost, eco-friendly, and efficient adsorbent for pharmaceutical removal from water, supporting circular economy and sustainability goals. Full article
(This article belongs to the Special Issue Sustainable Adsorbent Materials for Wastewater Treatment)
Show Figures

Graphical abstract

22 pages, 4751 KiB  
Article
Biophysical Insights into the Binding Interactions of Inhibitors (ICA-1S/1T) Targeting Protein Kinase C-ι
by Radwan Ebna Noor, Shahedul Islam, Tracess Smalley, Katarzyna Mizgalska, Mark Eschenfelder, Dimitra Keramisanou, Aaron Joshua Astalos, James William Leahy, Wayne Charles Guida, Aleksandra Karolak, Ioannis Gelis and Mildred Acevedo-Duncan
Biophysica 2025, 5(3), 36; https://doi.org/10.3390/biophysica5030036 - 11 Aug 2025
Viewed by 137
Abstract
The overexpression of atypical protein kinase C-iota (PKC-ι) is a biomarker for carcinogenesis in various cell types, such as glioma, ovarian, renal, etc., manifesting as a potential drug target. In previous in vitro studies, ICA-1S and ICA-1T, experimental candidates for inhibiting PKC-ι, have [...] Read more.
The overexpression of atypical protein kinase C-iota (PKC-ι) is a biomarker for carcinogenesis in various cell types, such as glioma, ovarian, renal, etc., manifesting as a potential drug target. In previous in vitro studies, ICA-1S and ICA-1T, experimental candidates for inhibiting PKC-ι, have demonstrated their specificity and promising efficacy against various cancers. Moreover, the in vivo studies have demonstrated low toxicity levels in acute and chronic murine models. Despite these prior developments, the binding affinities of the inhibitors were never thoroughly explored from a biophysical perspective. Here, we present the biophysical characterizations of PKC-ι in combination with ICA-1S/1T. Various methods based on molecular docking, light scattering, intrinsic fluorescence, thermal denaturation, and heat exchange were applied. The biophysical characteristics including particle sizing, thermal unfolding, aggregation profiles, enthalpy, entropy, free energy changes, and binding affinity (Kd) of the PKC-ι in the presence of ICA-1S were observed. The studies indicate the presence of domain-specific stabilities in the protein–ligand complex. Moreover, the results indicate a spontaneous reaction with an entropic gain, resulting in a possible entropy-driven hydrophobic interaction and hydrogen bonds in the binding pocket. Altogether, these biophysical studies reveal important insights into the binding interactions of PKC-ι and its inhibitors ICA-1S/1T. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Figure 1

11 pages, 1243 KiB  
Article
Fast and Robust Optical Cooling via Shortcut to Adiabaticity
by Zhiyu Wang and Jie Lu
Entropy 2025, 27(8), 851; https://doi.org/10.3390/e27080851 - 11 Aug 2025
Viewed by 147
Abstract
Optical cooling is a key technique for preparing ultracold atoms in quantum technologies and precision experiments. We employ shortcut-to-adiabaticity (STA) techniques to accelerate and stabilize laser-based atomic cooling protocols. This approach improves the performance of conventional adiabatic momentum transfer schemes by addressing key [...] Read more.
Optical cooling is a key technique for preparing ultracold atoms in quantum technologies and precision experiments. We employ shortcut-to-adiabaticity (STA) techniques to accelerate and stabilize laser-based atomic cooling protocols. This approach improves the performance of conventional adiabatic momentum transfer schemes by addressing key limitations such as Doppler shifts, laser intensity fluctuations, and spontaneous emission. We first examine two- and three-level atomic systems subjected to counter-propagating laser pulses that induce momentum reduction through photon recoil. STA methods are then employed to construct pulse sequences that are robust against detuning errors and amplitude noise, outperforming standard π-pulse schemes in resilience. Meanwhile, we analyze the dissipative dynamics during the momentum transfer and demonstrate the superiority of the STA protocol in enhancing momentum transfer efficiency via accelerated control. The results demonstrate that STA can significantly improve both the efficiency and robustness of cooling. These findings have implications for applications in atomic physics, quantum information processing, and precision metrology. Full article
(This article belongs to the Special Issue Shortcut to Adiabaticity in Classical and Quantum Systems)
Show Figures

Figure 1

32 pages, 7515 KiB  
Article
Unveiling the Adsorptive Potential of Natural Biopolymers for Olive Mill Wastewater Treatment: A Synergistic Approach Using RSM-BBD, Mixture Design, Kinetics, and Mechanistic Analysis
by Sabah Elamraoui, Nouhaila Asdiou, Rachid El kaim Billah, Mounir El Achaby, Said Kounbach, Rachid Benhida and Mounia Achak
Int. J. Mol. Sci. 2025, 26(16), 7738; https://doi.org/10.3390/ijms26167738 - 11 Aug 2025
Viewed by 279
Abstract
This study evaluates the structural properties and adsorption capacities of four bio-based adsorbents, sawdust (SD), straw (ST), chicken feathers (CFs), and shrimp shells (SSs), for chemical oxygen demand (COD) removal from olive mill wastewater (OMW). Response Surface Methodology (RSM) with a Box–Behnken Design [...] Read more.
This study evaluates the structural properties and adsorption capacities of four bio-based adsorbents, sawdust (SD), straw (ST), chicken feathers (CFs), and shrimp shells (SSs), for chemical oxygen demand (COD) removal from olive mill wastewater (OMW). Response Surface Methodology (RSM) with a Box–Behnken Design (BBD) was applied to optimize the operational parameters, resulting in maximum COD uptake capacities of 450 mg/g (SD), 575 mg/g (ST), 700 mg/g (CFs), and 750 mg/g (SSs). Among these materials, SSs exhibited the highest COD removal efficiency of 85% under optimal conditions (pH 8, 20 g/L, 30 °C, 5 h, 111 rpm). A mixture design approach was then used to explore the synergistic effects of combining lignocellulosic (SD and ST), chitin-based (SSs), and keratin-based (CFs) adsorbents. The optimized blend (SD 10%, ST 28.9%, SS 38.3%, and CF 22.6%) achieved a COD removal efficiency of 82%, demonstrating the advantage of using mixed biopolymer systems over individual adsorbents. Adsorption mechanisms were investigated through isotherm models (Langmuir, Freundlich, Temkin, and Redlich–Peterson) and kinetic models (pseudo-first-order, pseudo-second-order, Elovich, and intraparticle diffusion). Lignocellulosic adsorbents predominantly followed physisorption mechanisms, while chitin- and keratin-rich materials exhibited a combination of physisorption and chemisorption. Thermodynamic analysis confirmed the spontaneous nature of the adsorption process, with SSs showing the most favorable Gibbs free energy (ΔG = −21.29 kJ/mol). A proposed mechanism for the adsorption of organic compounds onto the bio-adsorbents involves hydrogen bonding, electrostatic interactions, π–π interactions, n–π stacking interactions, hydrophobic interactions, and van der Waals forces. These findings highlight the potential of biopolymer-based adsorbents and their optimized combinations as cost-effective and sustainable solutions for OMW treatment. Full article
(This article belongs to the Special Issue Molecular Advances in Adsorbing Materials)
Show Figures

Figure 1

16 pages, 2888 KiB  
Article
Research on Methods to Improve Liquefaction Efficiency of Supersonic Cyclone Devices
by Yuan Tian, Huang Qian, Huirong Huang and Xueyuan Long
Processes 2025, 13(8), 2523; https://doi.org/10.3390/pr13082523 - 11 Aug 2025
Viewed by 236
Abstract
This research explores supersonic cyclonic separation for natural gas liquefaction (LNG). A 3D computational model was developed using the Eulerian–Eulerian two-fluid framework to simulate spontaneous gas condensation. The model tracks droplet formation/growth mechanisms and employs Reynolds stress modeling (RSM) for turbulence, implemented in [...] Read more.
This research explores supersonic cyclonic separation for natural gas liquefaction (LNG). A 3D computational model was developed using the Eulerian–Eulerian two-fluid framework to simulate spontaneous gas condensation. The model tracks droplet formation/growth mechanisms and employs Reynolds stress modeling (RSM) for turbulence, implemented in Fluent via user-defined functions (UDFs). Validated against experimental data, it accurately predicted condensation onset and shock wave behavior. A prototype separator designed for a natural gas peak-shaving station demonstrated lower temperatures than throttling valves but modest liquefaction efficiency (4.28% at 5 MPa inlet pressure). Two enhancement strategies were tested: (1) injecting submicron LNG condensation nuclei (radius < 1 × 10−9 m) significantly boosted liquefaction by reducing nucleation energy barriers and suppressing condensation shocks; (2) a multi-stage configuration increased total liquefaction by 156% versus single-stage operation. These findings highlight the technology’s potential for energy-efficient gas processing. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 2398 KiB  
Article
Heating up the Blunts: Prothrombin Activation, with Factor Va as an Obligate Cofactor, Is the Dominant Procoagulant Mechanism of Blunt-Nosed Viper Venoms (Macrovipera Species)
by Patrick S. Champagne, Lorenzo Seneci and Bryan G. Fry
Toxins 2025, 17(8), 398; https://doi.org/10.3390/toxins17080398 - 8 Aug 2025
Viewed by 1060
Abstract
Venoms of the Palearctic vipers in the Macrovipera genus cause severe procoagulant clinical effects, yet the precise molecular targets remain incompletely defined. To fill this toxicological knowledge gap, we tested five Macrovipera venoms—M. lebetina cernovi, M. l. obtusa, M. l. [...] Read more.
Venoms of the Palearctic vipers in the Macrovipera genus cause severe procoagulant clinical effects, yet the precise molecular targets remain incompletely defined. To fill this toxicological knowledge gap, we tested five Macrovipera venoms—M. lebetina cernovi, M. l. obtusa, M. l. turanica (Turkmenistan and Uzbekistan localities), and M. schweizeri—using plasma clotting assays, Factors VII, X, XI, and XII and prothrombin zymogen activation assays, and SDS-PAGE to visualise Factor V (FV) cleavage. All venoms induced extremely rapid clot formation (10.5–12.5 s) compared with the negative control (spontaneous clotting) of 334.6 ± 3.6 s) and the positive control (kaolin trigger) of 55.8 ± 1.9 s. Activation of FVII or FXI was negligible, whereas consistent FX activation and species-variable FXII activation, both moderate, were observed. Prothrombin remained inert in the absence of cofactors, but the presence of FV or FVa elicited potent thrombin generation. SDS-PAGE confirmed proteolytic conversion of the 330 kDa FV zymogen into the ~105 kDa heavy and ~80 kDa light chains of FVa by the venoms of all species. This data demonstrates that Macrovipera venoms rely on a dual enzyme strategy: (i) activation of FV to FVa by serine proteases and (ii) FVa-dependent prothrombin activation by metalloproteases. These results reveal that prothrombin activation is the dominant procoagulant pathway and overshadows the historically emphasised FX activation. This mechanism mirrors, yet is evolutionarily independent from, the FXa:FVa prothrombinase formation seen in Australian elapid venoms, highlighting convergent evolution of cofactor-hijacking strategies among snakes. The discovery of potent FVa-mediated prothrombin activation in Macrovipera challenges existing paradigms of viperid venom action, prompts re-evaluation of related genera (e.g., Daboia), and underpins the design of targeted antivenom and therapeutic interventions. Full article
(This article belongs to the Special Issue Toxins from Venoms and Poisons)
Show Figures

Graphical abstract

13 pages, 7865 KiB  
Article
FlbD: A Regulator of Hyphal Growth, Stress Resistance, Pathogenicity, and Chlamydospore Production in the Nematode-Trapping Fungus Arthrobotrys flagrans
by Yu Zhang, Shun-Qiao Peng, Wang-Ting He, Fei-Fei Gao, Qian-Fei Shi and Guo-Hong Li
Microorganisms 2025, 13(8), 1847; https://doi.org/10.3390/microorganisms13081847 - 7 Aug 2025
Viewed by 227
Abstract
Arthrobotrys flagrans is a typical nematode-trapping fungus that captures nematodes by producing three-dimensional networks. FlbD is a DNA-binding protein containing a Myb domain, which plays a significant role in fungal development. However, the biological function of FlbD in nematode-trapping fungi remains unknown. In [...] Read more.
Arthrobotrys flagrans is a typical nematode-trapping fungus that captures nematodes by producing three-dimensional networks. FlbD is a DNA-binding protein containing a Myb domain, which plays a significant role in fungal development. However, the biological function of FlbD in nematode-trapping fungi remains unknown. In this study, we analyzed the physicochemical properties and conserved domains of AfFlbD and constructed the AfFlbD knockout strains (ΔAfFlbD) using homologous recombination. Our functional analysis revealed that the mutants produced more cottony aerial mycelia at the colony center. Additionally, the cell length of the mutants was reduced, indicating that AfFlbD regulates cell morphology in A. flagrans. Chemical stress tolerance assays of the mutants demonstrated reduced sensitivity to NaCl and sorbitol stresses but increased sensitivity to SDS and H2O2 stresses compared to the WT strain. Interestingly, the mutants spontaneously produced traps, and its pathogenicity to nematodes was significantly enhanced, suggesting that AfFlbD negatively regulates the pathogenicity of A. flagrans. Furthermore, the number of chlamydospores produced by the mutants was markedly reduced, though their morphology remained unchanged. Fluorescence localization analysis showed that AfFlbD localizes to the nuclei of chlamydospores, thereby regulating chlamydospore formation. This study provides important theoretical insights into the biological function of the FlbD transcription factor and offers new perspectives for the application of nematode-trapping fungi as a method of controlling plant-parasitic nematodes. Full article
(This article belongs to the Special Issue Microorganisms as Biocontrol Agents in Plant Pathology, 2nd Edition)
Show Figures

Figure 1

21 pages, 609 KiB  
Article
Enhancing Scientific Literacy in VET Health Students: The Role of Forensic Entomology in Debunking Spontaneous Generation
by Laia Fontana-Bria, Carla Quesada, Ángel Gálvez and Tatiana Pina
Educ. Sci. 2025, 15(8), 1015; https://doi.org/10.3390/educsci15081015 - 7 Aug 2025
Viewed by 253
Abstract
This study analyses the effectiveness of a contextualized teaching and learning sequence (TLS) based on forensic entomology (FE) to disprove the idea of spontaneous generation (SG) among students enrolled in the Higher Vocational Education and Training (VET) Cycle in Pathological Anatomy and Cytodiagnosis. [...] Read more.
This study analyses the effectiveness of a contextualized teaching and learning sequence (TLS) based on forensic entomology (FE) to disprove the idea of spontaneous generation (SG) among students enrolled in the Higher Vocational Education and Training (VET) Cycle in Pathological Anatomy and Cytodiagnosis. Through an inquiry- and project-based learning approach, students replicate a version of Francesco Redi’s historical experiments, enabling them to engage with core scientific concepts such as the metamorphic cycle of insects and the role of entomology in forensic science. The research adopts a semiquantitative and exploratory design. It investigates: (1) whether students’ prior knowledge about FE and related biological processes is sufficient to refute SG; (2) to what extent this knowledge is influenced by their previous academic background and gender; and (3) whether a contextualized TLS can significantly enhance their conceptual understanding. The results reveal that most students begin with limited initial knowledge of FE and multiple misconceptions related to SG, irrespective of their previous study. Gender differences were observed at baseline, with women showing lower prior knowledge, but these differences disappeared after the intervention. The post-intervention data demonstrate a significant improvement in student’s ability to reject SG and explain biological processes coherently. The study highlights the importance of integrating entomology into health-related VET programs, both as a means to promote scientific literacy and correct misconceptions and as a pedagogical tool to foster critical thinking. It also highlights the potential and historically grounded methodologies to equalize learning outcomes and strengthen the scientific preparation of future healthcare professionals. Full article
Show Figures

Figure 1

24 pages, 1028 KiB  
Review
Biocontrol of Phage Resistance in Pseudomonas Infections: Insights into Directed Breaking of Spontaneous Evolutionary Selection in Phage Therapy
by Jumpei Fujiki, Daigo Yokoyama, Haruka Yamamoto, Nana Kimura, Manaho Shimizu, Hinatsu Kobayashi, Keisuke Nakamura and Hidetomo Iwano
Viruses 2025, 17(8), 1080; https://doi.org/10.3390/v17081080 - 4 Aug 2025
Viewed by 547
Abstract
Phage therapy, long overshadowed by antibiotics in Western medicine, has a well-established history in some Eastern European countries and is now being revitalized as a promising strategy against antimicrobial resistance (AMR). This resurgence of phage therapy is driven by the urgent need for [...] Read more.
Phage therapy, long overshadowed by antibiotics in Western medicine, has a well-established history in some Eastern European countries and is now being revitalized as a promising strategy against antimicrobial resistance (AMR). This resurgence of phage therapy is driven by the urgent need for innovative countermeasures to AMR, which will cause an estimated 10 million deaths annually by 2050. However, the emergence of phage-resistant variants presents challenges similar to AMR, thus necessitating a deeper understanding of phage resistance mechanisms and control strategies. The highest priority must be to prevent the emergence of phage resistance. Although phage cocktails targeting multiple receptors have demonstrated a certain level of phage resistance suppression, they cannot completely suppress resistance in clinical settings. This highlights the need for strategies beyond simple resistance suppression. Notably, recent studies examining fitness trade-offs associated with phage resistance have opened new avenues in phage therapy that offer the potential of restoring antibiotic susceptibility and attenuating pathogen virulence despite phage resistance. Thus, controlling phage resistance may rely on both its suppression and strategic redirection. This review summarizes key concepts in the control of phage resistance and explores evolutionary engineering as a means of optimizing phage therapy, with a particular focus on Pseudomonas infections. Harnessing evolutionary dynamics by intentionally breaking the spontaneous evolutionary trajectories of target bacterial pathogens could potentially reshape bacterial adaptation by acquisition of phage resistance, unlocking potential in the application of phage therapy. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

Back to TopTop