Enhancing Scientific Literacy in VET Health Students: The Role of Forensic Entomology in Debunking Spontaneous Generation
Abstract
1. Introduction
1.1. Students’ Misconceptions About Spontaneous Generation
1.2. Integrating the History of Science to Foster Scientific Literacy and Address Misconceptions
1.3. Scientific Education and Curricular Gaps in Vocational Education and Training
2. Objectives of the Study
- Q1. Does the knowledge of these VET students about FE and associated concepts (arthropods, biological cycles, etc.) allow them to refute the existence of SG?
- Q2. Is this knowledge influenced by their previous education and gender?
- Q3. Does their understanding improve after participating in a contextualized TLS in which students experimentally reproduce a version of Redi’s experiments?
3. Materials and Methods
3.1. Research Methodology and Participants
3.2. Intervention
3.3. Instruments and Data Collection
3.4. Assessment Criteria and Scoring
3.5. Data Analysis
4. Results
4.1. Questionnaire Validity
4.2. Descriptive and Qualitative Analysis
4.3. Student Learning
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SG | Spontaneous generation |
FE | Forensic entomology |
VET | Vocational Education and Training |
PAC | Pathological Anatomy and Cytodiagnosis |
TLS | Teaching and learning sequence |
HOS | History of science |
NOS | Nature of science |
IBL | Inquiry-based learning |
PBL | Project based learning |
Q&A | Questions and answers |
IQ | Initial questionnaire |
FQ | Final questionnaire |
Appendix A
Question | Blocks | Terms |
---|---|---|
Q1 | BI | Insect/arthropod |
BII | Death/corpse/forensic area/forensics | |
BIII | Interval/dating/location/cause | |
Q2 | BI | Invertebrate/exoskeleton |
BII | Wings/flying | |
BIII | Paired and/or jointed appendages (legs or antennae) | |
BIV | Metamorphosis/molting/life cycle stages | |
BV | Body divided into parts/head, thorax, abdomen/metamerism/tagmatization/tagmata/segments | |
BVI | Bilateral symmetry/lateral symmetry | |
BVII | Mouthparts and related terms | |
Q3 and Q4 | BI | Fly/insect/dipteran/lepidopteran/coleopteran/arthropod |
BII | Egg/oviposition | |
BIII | Larva/maggot | |
Q6 | BI | Insect/eggs/pupa/adult/arthropod taxonomy terms |
BII | Fungi | |
BIII | Bacteria | |
BIV | Protozoa | |
BV | Microorganisms |
Question (No. Blocks) | Score Assigned and Criteria | ||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | ||
Knowledge of FE | Q1 (3) | Does not meet the established criteria | Mentions one or several terms from one block | Mentions at least one term from two different blocks | Mentions at least one term from each block |
Q2 (7) | Does not meet the established criteria | Mentions one or several terms from one block | Mentions at least one term from two different blocks | Mentions at least one term from three different blocks | |
Knowledge of SG and its relation to insects and other types of organisms | Q3 (3) | Does not meet the established criteria | Mentions at least one term from one block, with an argument compatible with the denial of SG but without a correct understanding of the metamorphic cycle of insects Arguments suggesting that the worms were attracted by organic matter, resulted from environmental contamination, originated from other organisms in the environment, or have an unspecified origin | Mentions at least three different block terms but argues imprecisely for the answer Names at least two terms from different blocks, denying the SG, but shows incomplete knowledge about the metamorphic cycle of insects Names one or more terms from one of the blocks, with an argument against SG and knows about the metamorphic cycle of insects | Mentions at least one term from each block, argues against SG and understands the metamorphic cycle of insects |
Q4 (3) | Does not meet the established criteria | Mentions at least one term from one block, with an argument compatible with the denial of SG but without a correct understanding of the insect metamorphic cycle Arguments suggesting that the worms were attracted by organic matter, resulting from environmental contamination, originated from other organisms in the environment, or have an unspecified origin | Mentions at least three different terms from different blocks but provides an imprecise argument Mentions at least two terms from different blocks, denying SG but showing incomplete knowledge of the metamorphic cycle of insects Mentions one or more terms from one block, with an argument against SG and demonstrate knowledge of the metamorphic cycle of insects | Mentions at least one term from each block, argues against SG, and understands the metamorphic cycle of insects | |
Q5 (0) | Chooses option A, with or without justification, or leaves the answer blank. | Chooses option A but argues in favour of option B Chooses option B but argues in favour of option A Chooses option B without justification | Chooses option B, with an argument compatible with the negation of SG, understands the metamorphic cycle of insects, but uses colloquial or imprecise language | Chooses option B, with an argument compatible with the negation of SG, understands the metamorphic cycle of insects, and uses precise language | |
Q6 (5) | Does not meet the established criteria | Mentions one or several terms from one block | Mentions at least one term from two different blocks | Mentions at least one term from three different blocks |
R2m | R2c | Variables | p-Value | Coefficient | SE | Deviance | Variance | SE |
---|---|---|---|---|---|---|---|---|
0.59 | 0.69 | Random Effects | ||||||
Year | 0.082 | 0.286 | ||||||
Student | 1.695 | 1.302 | ||||||
Fixed Effects | ||||||||
Intercept | <0.001 | 6.617 | 0.602 | |||||
Gender (Female) | 0.008 | −1.881 | 0.713 | 45.14 | ||||
Time (Post-Intervention) | <0.001 | 4.950 | 0.700 | 1404.24 | ||||
Gender (Female):Time (Post-Intervention) | 0.060 | 1.532 | 0.815 | 17.30 |
References
- Abd-El-Khalick, F. (1999). Teaching science with history: Using Mars and Saturn to teach about the relationship between theory and observation. The Science Teacher, 66(9), 18–22. Available online: https://www.jstor.org/stable/24153760 (accessed on 25 July 2025).
- Abd-El-Khalick, F. (2013). Teaching with and about nature of science, and science teacher knowledge domains. Science & Education, 22(9), 2087–2107. [Google Scholar] [CrossRef]
- Acevedo-Díaz, J. A., Aragón-Méndez, M. D. M., & García-Carmona, A. (2018). Comprensión de futuros profesores de ciencia sobre aspectos epistémicos de la naturaleza de la ciencia en cuatro controversias de historia de la ciencia. Revista Científica, 3(33), 344–355. [Google Scholar] [CrossRef]
- Acevedo-Díaz, J. A., García-Carmona, A., & Aragón, M. D. M. (2016). La controversia Pasteur vs. Pouchet sobre la generación espontánea: Un recurso para la formación inicial del profesorado en la naturaleza de la ciencia desde un enfoque reflexivo. Ciência & Educação, 22, 913–933. [Google Scholar] [CrossRef]
- Ahmed, N., Park, J., Arteaga, C., & Stephen, H. (2023). Investigation of progressive learning within a statics course: An analysis of performance retention, critical topics, and active participation. Education Sciences, 13(6), 576. [Google Scholar] [CrossRef]
- Aikenhead, G. S. (1985). Collective decision making in the social context of science. Science Education, 69(4), 453–475. [Google Scholar] [CrossRef]
- Alisir, Z. N., & Irez, S. (2020). The effect of replicating historical scientific apparatus on high school students’ attitudes towards science and their understanding of nature of science. Science & Education, 29, 1201–1234. [Google Scholar] [CrossRef]
- Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518–542. [Google Scholar] [CrossRef]
- Ault, C. R. (1984). Intelligently wrong: Some comments on children’s misconceptions. Science and Children, 21, 22–24. Available online: https://www.jstor.org/stable/43162540 (accessed on 25 July 2025).
- Azil, A., Yakub, M., Hassan, N., & Sharip, S. (2021). Fear towards insects and other arthropods: A cross sectional study in a Malaysian university. Malaysian Journal of Society and Space, 17(1), 69–80. [Google Scholar] [CrossRef]
- Badenhorst, E., Mamede, S., Hartman, N., & Schmidt, H. G. (2015). Exploring lecturers’ views of first-year health science students’ misconceptions in biomedical domains. Advances in Health Science Education, 20, 403–420. [Google Scholar] [CrossRef]
- Bartlett, M. S. (1951). The effect of standardization on a χ2 approximation in factor analysis. Biometrika, 38(3/4), 337–344. [Google Scholar] [CrossRef]
- Barton, K. (2020). MuMIn: Multi-model inference. R package version 1.43.17. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 25 July 2025).
- Bolker, B. M. (2015). Linear and generalized linear mixed models. In G. A. Fox, S. Negrete-Yankelevich, & V. J. Sosa (Eds.), Ecological statistics: Contemporary theory and application (pp. 309–334). Oxford Academic. [Google Scholar] [CrossRef]
- Boser, U., Wilhelm, M., & Hanna, R. (2014). The power of the pygmalion effect: Teachers’ expectations strongly predict college completion. Center for American Progress. Available online: https://files.eric.ed.gov/fulltext/ED564606.pdf (accessed on 27 January 2025).
- Breuer, G. B., Schlegel, J., Kauf, P., & Rupf, R. (2015). The importance of being colorful and able to fly: Interpretation and implications of children’s statements on selected insects and other invertebrates. International Journal of Science Education, 37(16), 2664–2687. [Google Scholar] [CrossRef]
- Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., & Bolker, B. M. (2017). GlmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modelling. The R Journal, 9(2), 378–400. [Google Scholar] [CrossRef]
- Burušić, J., & Šerić, M. (2015). Girls’ and boys’ achievements differences in the school context: An overview of possible explanations. Croatian Journal of Education, 17(4), 137–173. [Google Scholar] [CrossRef]
- Byington, S. (2001). Spontaneously generating life in your classroom? Pasteur, Spallanzani & Science Process. The American Biology Teacher, 63(5), 340–345. [Google Scholar] [CrossRef]
- Carrascosa-Alís, J. (2005). El problema de las concepciones alternativas en la actualidad (parte I). Análisis sobre las causas que la originan y/o mantienen. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 2(2), 183–208. [Google Scholar] [CrossRef]
- Carrascosa-Alís, J. (2014). Ideas alternativas en conceptos científicos. Revista Científica, 18(1), 112–137. [Google Scholar] [CrossRef]
- CEDEFOP. (2023). Vocational education and training in Spain: Short description. Publications Office. Available online: http://data.europa.eu/doi/10.2801/221364 (accessed on 27 January 2025).
- Cobo, C., Abril, A. M., & Romero-Ariza, M. (2022). Effectiveness of a contextualised and integrated approach to improving and retaining preservice teachers’ views of the nature of science. International Journal of Science Education, 44(18), 2783–2803. [Google Scholar] [CrossRef]
- Cofré, H., Núñez, P., Santibáñez, D., Pavez, J. M., Valencia, M., & Vergara, C. (2019). A critical review of students’ and teachers’ understandings of nature of science. Science & Education, 28(3–5), 205–248. [Google Scholar] [CrossRef]
- Cohen, J. (1968). Weighted kappa: Nominal scale agreement provision for scaled disagreement or partial credit. Psychological Bulletin, 70(4), 213. [Google Scholar] [CrossRef]
- Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334. [Google Scholar] [CrossRef]
- Curtis, H., Barnes, N. S., Schnek, A., & Massarini, A. (2008). Biology (7th ed.). Médica Panamericana. [Google Scholar]
- Custodio, E., Márquez, C., & Sanmartí, N. (2015). Aprender a justificar científicamente a partir del estudio del origen de los seres vivos. Enseñanza de las Ciencias, 33(2), 133–155. [Google Scholar] [CrossRef]
- Davey, G. C., McDonald, A. S., Hirisave, U., Prabhu, G. G., Iwawaki, S., Im Jim, C., Merckelbach, H., de Jong, P. J., Leung, P. W., & Reimann, B. C. (1998). A cross-cultural study of animal fears. Behaviour Research and Therapy, 36(7–8), 735–750. [Google Scholar] [CrossRef]
- Decree. (2022). Por el que se establece para la Comunitat Valenciana el currículo del ciclo formativo de grado superior correspondiente al título de técnico o técnica superior en anatomía patológica y citodiagnóstico. 8 de abril de 2022. DOCV 2022/3418. 38/2022. Available online: https://dogv.gva.es/datos/2022/04/21/pdf/2022_3418.pdf (accessed on 25 July 2025).
- Del Giudice, M. (2022). The Square-root scree plot: A simple improvement to classic display. OpenPsych. [Google Scholar] [CrossRef]
- Dogan, N., Manassero-Mas, M. A., & Vázquez-Alonso, Á. (2020). El pensamiento creativo en estudiantes para profesores de ciencias: Efectos del aprendizaje basado en problemas y en la historia de la ciencia. Tecné, Episteme y Didaxis: TED, (48), 163–180. [Google Scholar] [CrossRef]
- Driver, R. (1986). Psicología cognoscitiva y esquemas conceptuales de los alumnos. Enseñanza de las Ciencias, 4(1), 3–15. [Google Scholar] [CrossRef]
- Driver, R. (1988). Un enfoque constructivista para el desarrollo del currículo en ciencias. Enseñanza de las Ciencias, 6(2), 109–120. [Google Scholar] [CrossRef]
- Duschl, R. A., & Gitomer, D. H. (1991). Epistemological perspectives on conceptual change: Implications for educational practice. Journal of Research in Science Teaching, 28, 839–858. [Google Scholar] [CrossRef]
- Fernández-Rubio, F. (2016). El impacto de los artrópodos sobre la mente humana. Revista Gaditana de Entomología, 7(1), 199–224. [Google Scholar]
- Gil, D., & Carrascosa, J. (1985). Science learning as a conceptual and methodological change. European Journal of Science Education, 7(3), 231–236. [Google Scholar] [CrossRef]
- Guerra-Reyes, F., Guerra-Dávila, E., Naranjo-Toro, M., Basantes-Andrade, A., & Guevara-Betancourt, S. (2024). Misconceptions in the learning of natural sciences: A systematic review. Education Sciences, 14(5), 497. [Google Scholar] [CrossRef]
- Gunderman, H., & White, R. (2021). Critical posthumanism for all: A call to reject insect speciesism. International Journal of Sociology and Social Policy, 41(3/4), 489–505. [Google Scholar] [CrossRef]
- Hastie, T. J., & Tibshirani, R. J. (1990). Generalized additive models (Vol. 43). CRC Press. [Google Scholar] [CrossRef]
- Hejran, A., Sarwari, A., Hassand, M., Ihsas, R., & Kakar, U. (2024). The fundamental underpinning of biological theory of spontaneous generation in biology. European Journal of Theoretical and Applied Sciences, 2(2), 263–274. [Google Scholar] [CrossRef]
- Ibikunle, P. O., Rhoda, A., & Smith, M. (2021). Structural validity and reliability of the return to work assessment scale among post stroke survivors. WORK, 69(3), 969–979. [Google Scholar] [CrossRef] [PubMed]
- Infante-Cabezón, J. C., & Soria-Iglesias, F. J. (2020). Entomología forense. Boletín de la Sociedad Entomológica Aragonesa, (30), 133–146. [Google Scholar]
- Irwin, A. R. (2000). Historical case studies: Teaching the nature of science in context. Science Education, 84(1), 5–26. [Google Scholar] [CrossRef]
- Izah, S. C., Sylva, L., & Hait, M. (2024). Cronbach’s alpha: A cornerstone in ensuring reliability and validity in environmental health assessment. Energy & Environment, 23, 1057. [Google Scholar] [CrossRef]
- Jiménez Martínez, V. (2021). De la Ilíada a Pasteur: La generació espontània. Available online: https://www.cienciaoberta.cat/generacio-espontania/ (accessed on 27 January 2025).
- Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401–415. [Google Scholar] [CrossRef]
- Kellert, S. R. (1993). Values and perceptions of invertebrates. Conservation Biology, 7(4), 845–855. [Google Scholar] [CrossRef]
- Kenney-Benson, G., Pomerantz, E. M., Ryan, A. M., & Patrick, H. (2006). Sex differences in math performance: The role of children’s approach to schoolwork. Developmental Psychology, 42(1), 11–26. [Google Scholar] [CrossRef]
- King, C. J. H. (2009). An analysis of misconceptions in science textbooks: Earth science in England and Wales. International Journal of Science Education, 32(5), 565–601. [Google Scholar] [CrossRef]
- Kokotsaki, D., Menzies, V., & Wiggins, A. (2016). Project-based learning: A review of the literature. Improving Schools, 19(3), 267–277. [Google Scholar] [CrossRef]
- Kotsias, B. A. (2002). Alguna vez ardió Troya: Homero y la generación espontánea. Medicina, 62(4), 377–378. [Google Scholar]
- Kruse, J., Kent-Schneider, I., Voss, S., Zacharski, K., & Rockefeller, M. (2020). Investigating the effect of NOS question type on students’ NOS responses. Research in Science Education, 52(1), 61–78. [Google Scholar] [CrossRef]
- Kumandaş, B., Ateskan, A., & Lane, J. (2018). Misconceptions in biology: A meta-synthesis study of research, 2000–2014. Journal of Biological Education, 53(4), 350–364. [Google Scholar] [CrossRef]
- Larkin, D. (2012). Misconceptions about misconceptions: Preservice secondary science teachers’ views on the value and role of student ideas. Science Education, 96(5), 927–959. [Google Scholar] [CrossRef]
- López, F., Contreras, M., Nussbaum, M., Paredes, R., Gelerstein, D., Alvares, D., & Chiuminatto, P. (2023). Developing critical thinking in technical and vocational education and training. Education Sciences, 13(6), 590. [Google Scholar] [CrossRef]
- Mariño Pérez, M., & Mendoza Almeralla, C. M. (2006). Los insectos en el cine. Un estudio preliminar. Boletín de la Sociedad Entomológica Aragonesa, (38), 415–421. [Google Scholar]
- McClurg, P. (1984). Don’t squash it! Collect it! Science and Children, 21(8), 8–10. Available online: http://www.jstor.org/stable/43162535 (accessed on 25 July 2025).
- McComas, W. F. (2011). The history of science and the future of science education. In P. V. Kokkotas, K. S. Malamitsa, & A. A. Rizaki (Eds.), Adapting historical knowledge production to the classroom (pp. 37–53). Sense Publishers. [Google Scholar]
- McComas, W. F., Clough, M. P., & Nouri, N. (2020). Nature of science and classroom practice: A review of the literature with implications for effective NOS instruction. In W. F. McComas (Ed.), Nature of science in science instruction: Rationales and strategies (pp. 87–111). Springer. [Google Scholar]
- McQuarrie, A. D. R., & Tsai, C.-L. (1998). Regression and time series model selection. World Scientific Publishing. [Google Scholar] [CrossRef]
- Melesse, D., Menkir, S., Yemata, G., & Seifu, A. (2025). Effect of context-based instructional approach on students’ science process skills acquisition in environmental concepts. Education Inquiry, 1–17. [Google Scholar] [CrossRef]
- Menéndez-Capote, R. L., Olo-Olo, H., Obono-Engang, P., & Chappotten-Delahanty, M. Á. (2020). Miasis cutánea forunculoide. Revista Española de Casos Clínicos en Medicina Interna, 5(3), 117–119. [Google Scholar] [CrossRef]
- Molina, M. D., Sundar, S. S., Le, T., & Lee, D. (2021). “Fake news” is not simply false information: A concept explication and taxonomy of online content. American Behavioral Scientist, 65(2), 180–212. [Google Scholar] [CrossRef]
- Muñiz Estévez, L., & Torralba Burrial, A. (2022). Conociendo los insectos en educación infantil: Evaluación diagnóstica y análisis de su percepción. Didácticas Específicas, (26), 62–79. [Google Scholar] [CrossRef]
- Ngereja, B., Hussein, B., & Andersen, B. (2020). Does project-based learning (PBL) promote student learning? A performance evaluation. Education Sciences, 10(11), 330. [Google Scholar] [CrossRef]
- Núñez Acosta, D., Costillo Borrego, E., Borrache Ro Cortes, A. B., & Juanez Cubero, J. (2013). Ideas alternativas de un grupo de estudiantes para maestro sobre la sucesión ecológica. Enseñanza de las Ciencias: Revista de investigación y experiencias didácticas, núm. Extra. 02531–02538. Available online: https://raco.cat/index.php/Ensenanza/article/view/307929 (accessed on 25 July 2025).
- Organic Law. (2003). Por la que se modifica la Ley Orgánica 6/1985, de 1 de julio, del Poder Judicial. 23 de diciembre de 2003. BOE-A-2003-23644. 19/2003. Available online: https://www.boe.es/boe/dias/2003/12/26/pdfs/A46025-46096.pdf (accessed on 25 July 2025).
- Pedaste, M., Mäeots, M., Siiman, L. A., De Jong, T., Van Riesen, S. A., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and the inquiry cycle. Educational Research Review, 14, 47–61. [Google Scholar] [CrossRef]
- Pérez-Velázquez, M. D. (2011). Miedo, pánico y terror a los insectos, reales e imaginarios: Entomofobia y otras enfermedades. In J. L. Navarrete-Heredia, G. Castaño-Meneses, & G. A. Quiroz-Rocha (Eds.), Facetas de la ciencia: Ensayos sobre entomología cultural (pp. 49–50). Universidad de Zaragoza. [Google Scholar]
- Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227. [Google Scholar] [CrossRef]
- Rama Espejo, L. M. (2018). Búsqueda de pruebas para poner en conflicto las concepciones sobre la generación espontánea en ESO [Master’s thesis, Universidad de Almería]. Available online: http://hdl.handle.net/10835/7127 (accessed on 25 July 2025).
- Rau, G., & Shih, Y.-S. (2021). Evaluation of Cohen’s kappa and other measures of inter-rater agreement for genre analysis and other nominal data. Journal of English for Academic Purposes, 53, 101026. [Google Scholar] [CrossRef]
- Raynaud, D. (2017). Scientific controversies: A socio-historical perspective on the advancement of science. Routledge. [Google Scholar]
- R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Google Scholar]
- Redi, F. (1668). Esperienze intorno alla generazione degli insetti (1668). In P. Cristofolini (Ed.), Redi, Vallisneri, Spallanzani. La scuola galileiana e l’origine della vita. Loescher. [Google Scholar] [CrossRef]
- Revelle, W. (2025). psych: Procedures for psychological, psychometric, and personality research (R package version 2.5.6). Northwestern University. Available online: https://CRAN.R-project.org/package=psych (accessed on 25 July 2025).
- Rizopoulos, D. (2006). Ltm: An R package for latent variable modelling and item response theory analyses. Journal of Statistical Software, 17(5), 1–25. [Google Scholar] [CrossRef]
- Royal Decree. (2014). De 12 de septiembre, por el que se establece el título de Técnico Superior en Anatomía Patológica y Citodiagnóstico y se fijan sus enseñanzas mínimas. 4 de octubre de 2014. BOE-A-2014-10064. 767/2014. Available online: https://www.boe.es/boe/dias/2014/10/04/pdfs/BOE-A-2014-10064.pdf (accessed on 25 July 2025).
- Royal Decree. (2022a). De 1 de marzo, por el que se establecen la ordenación y las enseñanzas mínimas de la Educación Primaria. 02 de marzo de 2022. BOE-A-2022-3296. 157/2022. Available online: https://www.boe.es/buscar/pdf/2022/BOE-A-2022-3296-consolidado.pdf (accessed on 25 July 2025).
- Royal Decree. (2022b). De 29 de marzo, por el que se establece la ordenación y las enseñanzas mínimas de la Educación Secundaria Obligatoria. 30 de marzo de 2022. BOE-A-2022-4975. 217/2022. Available online: https://www.boe.es/boe/dias/2022/03/30/pdfs/BOE-A-2022-4975.pdf (accessed on 25 July 2025).
- Royal Decree. (2022c). De 5 de abril, por el que se establecen la ordenación y las enseñanzas mínimas del Bachillerato. 6 de abril de 2022. BOE-A-2022-5521. 243/2022. Available online: https://www.boe.es/boe/dias/2022/04/06/pdfs/BOE-A-2022-5521.pdf (accessed on 25 July 2025).
- Rubie-Davies, C. M., & Hattie, J. A. (2025). The powerful impact of teacher expectations: A narrative review. Journal of the Royal Society of New Zealand, 55(2), 343–371. [Google Scholar] [CrossRef] [PubMed]
- Samarapungavan, A., & Wiers, R. (1997). Children’s thoughts on the origin of species: A study of explanatory coherence. Cognitive Science, 21(2), 147–177. [Google Scholar] [CrossRef]
- Schneider, K., & Meyer, J. (2024). Do future biology teachers bug out with higher insect-related knowledge and more positive attitudes? A comparison of different education levels. Frontiers in Education, 9, 1477841. [Google Scholar] [CrossRef]
- Scudder, G. G. E. (2009). The importance of insects. In R. Footit, & P. Adler (Eds.), Insect biodiversity: Science and society (pp. 7–32). Blackwell Publishing. [Google Scholar]
- Sircar, M., Orr, S., Madis, C., & DiMaria, S. (2024). Conceptualizing an initial framework to support discipline-rich project-based learning in STEM. Education Sciences, 14(7), 793. [Google Scholar] [CrossRef]
- Sitar, G. M., & Rusu, A. S. (2023). The impact of environmental educational programs in promoting insects conservation awareness: A scoping review. Journal of Educational Sciences, 24, 74–92. [Google Scholar] [CrossRef]
- Solbes, J. (2009). Dificultades de aprendizaje y cambio conceptual, procedimental y axiológico (I): Resumen del camino avanzado. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 6(1), 2–20. [Google Scholar] [CrossRef]
- Solomon, J., Duveen, J., Scot, L., & McCarthy, S. (1992). Teaching about the nature of science through history: Action research in the classroom. Journal of Research in Science Teaching, 29(4), 409–421. [Google Scholar] [CrossRef]
- Stahl, A. (1992). The interference of traditional beliefs and concepts in the study of science. Journal of Science Teacher Education, 3(1), 5–10. [Google Scholar] [CrossRef]
- Stender, A., Schwichow, M., Zimmerman, C., & Härtig, H. (2018). Making inquiry-based science learning visible: The influence of CVS and cognitive skills on content knowledge learning in guided inquiry. International Journal of Science Education, 40, 1812–1831. [Google Scholar] [CrossRef]
- Stoyanova, M., & Hope, D. A. (2012). Gender, gender roles, and anxiety: Perceived confirmability of self report, behavioral avoidance, and physiological reactivity. Journal of Anxiety Disorders, 26(1), 206–214. [Google Scholar] [CrossRef]
- Strat, T. T. S., Henriksen, E. K., & Jegstad, K. M. (2024). Inquiry-based science education in science teacher education: A systematic review. Studies in Science Education, 60(2), 191–249. [Google Scholar] [CrossRef]
- Szumski, G., & Karwowski, M. (2019). Exploring the Pygmalion effect: The role of teacher expectations, academic self-concept, and class context in students’ math achievement. Contemporary Educational Psychology, 59, 101787. [Google Scholar] [CrossRef]
- Tong, W. (2024). A validation study of a self-assessment questionnaire for middle school students’ self-presentation skills. Journal of Language Learning and Assessment, 2(1), 20–23. [Google Scholar] [CrossRef]
- Treagust, D. F., & Duit, R. (2008). Conceptual change: A discussion of theoretical, methodological and practical challenges for science education. Cultural Studies of Science Education, 3(2), 297–328. [Google Scholar] [CrossRef]
- Urdanivia Alarcon, D. A., Talavera-Mendoza, F., Rucano Paucar, F. H., Cayani Caceres, K. S., & Machaca Viza, R. (2023). Science and inquiry-based teaching and learning: A systematic review. Frontiers in Education, 8, 1170487. [Google Scholar] [CrossRef]
- Vijapurkar, J., & Konde, P. (2014). ‘Omne vivum ex vivo’? A study of middle school students’ explanations of the seemingly sudden appearance of some life forms. Research in Science Education, 44, 885–902. [Google Scholar] [CrossRef]
- Wallengren Lynch, M. (2017). Using conferences poster presentations as a tool for student learning and development. Innovations in Education and Teaching International, 55, 633–639. [Google Scholar] [CrossRef]
- Wood, S. N. (2011). Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(1), 3–36. [Google Scholar] [CrossRef]
- World Health Organization. (2024). Vector-borne diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 27 January 2025).
- Yacoubian, H. A., & BouJaoude, S. (2010). The effect of reflective discussions following inquiry-based laboratory activities on students’ views of nature of science. Journal of Research in Science Teaching, 47(10), 1229–1252. [Google Scholar] [CrossRef]
- Yip, D. (1998). Identification of misconceptions in novice biology teachers and remedial strategies for improving biology learning. International Journal of Science, 4(20), 461–477. [Google Scholar] [CrossRef]
Academic Year | Participants | Age | Gender | Level of Education | Educational Background | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M 1 | F | NB | I | H | B | U | S | Other | |||
2020–2021 | 25 | 20.9 ± 1.8 | 8 | 17 | 0 | 12 | 4 | 9 | 0 | 23 | 2 |
2021–2022 | 27 | 22.7 ± 6.3 | 2 | 25 | 0 | 13 | 4 | 9 | 1 | 26 | 1 |
2022–2023 | 24 | 21.7 ± 3.2 | 10 | 14 | 0 | 15 | 4 | 4 | 1 | 23 | 1 |
Phases | Sessions/Topic | Teacher-Led Intervention | Individual Activities | Small-Group Activities | Whole-Class Activities |
---|---|---|---|---|---|
Exploration | S0. Exploration and data collection | Pre-intervention knowledge questionnaire | 0.1 Answering the questionnaire on prior knowledge of FE and SG | ||
Intervention | S1. Contextualization of the historical controversy of SG | Distribution of the reference material on the acceptance or refutation of SG | 1.1 Development of an explanatory/dissemination material (including illustrations, diagrams, and keywords) on a relevant scientific episode of the HOS related to SG 1.2 Oral presentation of the material prepared | 1.3 Compilation of the complete chronology of scientific thinking on SG, based on the results from the different subgroups | |
S2. Experimental design to refute SG | Analysis of the scientific method and its main phases: identification of previous errors Explanation of variable types (independent, dependent, and constant/controlled) | 2.2 Design of the experiment to refute SG at the macroscopic level, revisiting Francesco Redi’s original setup: ’Redi 2.0’ experiment | 2.1 Cooperative construction of the scientific method stages. 2.3 Review and refinement of the designed experiments | ||
S3. Introduction to Entomology | Explanation of arthropods and their subgroups Use of a virtual board to share students’ drawings collectively | 3.1 Drawing different insects, in both their immature and adult stages, without using any visual reference | 3.2 Reaching a consensus on possible anatomical and developmental patterns of the drawn insects 3.3 Reformulation of the previously identified patterns (after teacher-led intervention) | ||
S4. Transversality of Entomology | Expanding entomology from an applied perspective, focusing on forensics Explanation of different types of metamorphosis | 4.1 Associating the drawn insects with the main hexapod groups related to FE | |||
S5. Initiation of research: Launch of the ’Redi 2.0’ experiment | 5.1 Setting up the experiment | ||||
S6–S14. Experiment follow-up | 6.1 Examination of the insects found at different developmental stages (repeated until session 14) 6.2 Dating the larval stage of dipterans (repeated until session 14) | 6.3 Small-group execution of the individual activities mentioned | |||
Extrapolation | S15. Poster preparation | Explanation of guidelines and necessary criteria for poster development Supervision, guidance, and feedback on student work | 15.1 Discussion on the poster’s approach 15.2 Drafting the poster 15.3 Applying improvements to the draft | ||
S16. Poster presentation | Providing constructive criticism for future posters Public positive reinforcement of the strengths of each poster | 16.1 Oral presentation of the poster | 16.2 Q&A session following the presentation of each poster’s content | ||
S17. Self-assessment of learning | Student evaluation of their perception of learning throughout the sessions | 17.1 Numerical response (0 to 10) to a question on self-perceived learning | 17.2 Reflection on how FE disproves the idea of SG | ||
Synthesis | S18. Evaluation | Post-intervention knowledge questionnaire | 18.1 Answering the post-intervention questionnaire on acquired knowledge of FE and SG |
Question | Statement |
---|---|
Q1 | How would you define Forensic Entomology? |
Q2 | What are the distinctive morphological characteristics of the main organisms involved in Forensic Entomology? |
Q3 | You have been away for the weekend and left the hamburger thawing on the kitchen table on an uncovered plate. Upon your return, you notice white maggots in the meat. How would you explain their appearance? |
Q4 | When you take the jar of flour from a kitchen shelf, you notice that, although nobody has opened it for a long time, there are worms inside along with the flour. How would you explain their appearance? |
Q5 | IQ: Imagine you were given the opportunity to scientifically prove that larvae: (a) Can spontaneously appear on meat and flour. (b) Cannot spontaneously appear on meat and flour. Which option would you choose? Please, justify your answer. |
FQ: You have been given the opportunity to scientifically demonstrate that larvae: (a) Can spontaneously appear on meat and flour. (b) Cannot spontaneously appear on meat and flour. Which option did you choose? Please, justify your answer. | |
Q6 | Besides larvae, do you think that other types of organisms can appear? List as many examples as you can. |
Question | Score | Pre-Intervention Questionnaire | Post-Intervention Questionnaire | ||||
---|---|---|---|---|---|---|---|
Male (n = 2) | Female (n = 56) | Total (n = 76) | Male (n = 2) | Female (n = 56) | Total (n = 76) | ||
Q1 | 0 | 2 (10%) | 2 (3.57%) | 4 (5.26%) | 0 (0%) | 0 (0%) | 0 (0%) |
1 | 4 (20%) | 22 (39.29%) | 26 (34.21%) | 3 (15%) | 7 (12.5%) | 10 (13.16%) | |
2 | 10 (50%) | 23 (41.07%) | 33 (43.42%) | 11 (55%) | 33 (58.93%) | 44 (57.89%) | |
3 | 4 (20%) | 9 (16.07%) | 13 (17.11%) | 6 (30%) | 16 (28.57%) | 22 (28.95%) | |
Q2 | 0 | 13 (65%) | 39 (69.64%) | 52 (68.42%) | 0 (0%) | 7 (12.5%) | 7 (9.21%) |
1 | 6 (30%) | 13 (23.21%) | 19 (25%) | 3 (15%) | 13 (23.21%) | 16 (21.05%) | |
2 | 1 (5%) | 4 (7.14.%) | 5 (6.58%) | 5 (25%) | 17 (30.36%) | 22 (28.95%) | |
3 | 0 (0%) | 0 (0%) | 0 (0%) | 12 (60%) | 19 (33.93%) | 31 (40.79%) | |
Q3 | 0 | 5 (25%) | 36 (64.29%) | 41 (53.95%) | 0 (0%) | 4 (7.14%) | 4 (5.26%) |
1 | 1 (5%) | 3 (5.36%) | 4 (5.26%) | 0 (0%) | 2 (3.57%) | 2 (2.63%) | |
2 | 10 (50%) | 14 (25%) | 24 (31.58%) | 8 (40%) | 18 (32.14%) | 26 (34.21%) | |
3 | 4 (20%) | 3 (5.36%) | 7 (9.21%) | 12 (60%) | 32 (57.14%) | 44 (57.89%) | |
Q4 | 0 | 11 (55%) | 46 (82.14%) | 57 (75%) | 1 (5%) | 8 (14.29%) | 9 (11.84%) |
1 | 6 (30%) | 7 (12.5%) | 13 (17.11%) | 10 (50%) | 17 (30.36%) | 27 (35.53%) | |
2 | 3 (15%) | 3 (5.36%) | 6 (7.89%) | 4 (20%) | 23 (41.07%) | 27 (35.53%) | |
3 | 0 (0%) | 0 (0%) | 0 (0%) | 5 (25%) | 8 (14.29%) | 13 (17.11%) | |
Q5 | 0 | 2 (10%) | 26 (46.43%) | 28 (36.84%) | 0 (0%) | 1 (1.79%) | 1 (1.32%) |
1 | 16 (80%) | 24 (42.86%) | 40 (52.63%) | 12 (60%) | 23 (41.07%) | 35 (46.05%) | |
2 | 1 (5%) | 6 (10.71%) | 7 (9.21%) | 3 (15%) | 10 (17.86%) | 13 (17.11%) | |
3 | 1 (5%) | 0 (0%) | 1 (1.32%) | 5 (25%) | 22 (39.29%) | 27 (35.53%) | |
Q6 | 0 | 5 (25%) | 17 (30.36%) | 22 (28.95%) | 1 (5%) | 8 (14.29%) | 9 (11.84%) |
1 | 9 (45%) | 25 (44.64%) | 34 (44.74%) | 16 (80%) | 33 (58.93%) | 49 (64.47%) | |
2 | 3 (15%) | 9 (16.07%) | 12 (15.79%) | 2 (10%) | 7 (12.5%) | 9 (11.84%) | |
3 | 3 (15%) | 5 (8.93%) | 8 (10.53%) | 1 (5%) | 8 (14.29%) | 9 (11.84%) |
Academic Year | Pre-Intervention Questionnaire | Post-Intervention Questionnaire | ||||
---|---|---|---|---|---|---|
Male | Female | Total Score | Male | Female | Total Score | |
2020–2021 | 7.0 ± 3.1 (n = 8) | 5.4 ± 2.6 (n = 17) | 5.9 ± 2.8 (n = 25) | 11.1 ± 2.1 (n = 8) | 11.6 ± 2.9 (n = 17) | 11.4 ± 2.7 (n = 25) |
2021–2022 | 8.0 ± 2.8 (n = 2) | 4.5 ± 2.3 (n = 25) | 4.7 ± 2.5 (n = 27) | 8.5 ± 0.7 (n = 2) | 10.2 ± 2.8 (n = 25) | 10 ± 2.8 (n = 27) |
2022–2023 | 6.2 ± 2.0 (n = 10) | 4.3 ± 2.6 (n = 14) | 5.1 ± 2.5 (n = 24) | 12.7 ± 1.4 (n = 10) | 12.5 ± 2.7 (n = 14) | 12.6 ± 2.2 (n = 24) |
Total | 6.7 ± 2.5 (n = 20) | 4.7 ± 2.5 (n = 56) | 5.2 ± 2.6 (n = 76) | 11.7 ± 2.1 (n = 20) | 11.2 ± 3.0 (n = 56) | 11.3 ± 2.7 n = 76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontana-Bria, L.; Quesada, C.; Gálvez, Á.; Pina, T. Enhancing Scientific Literacy in VET Health Students: The Role of Forensic Entomology in Debunking Spontaneous Generation. Educ. Sci. 2025, 15, 1015. https://doi.org/10.3390/educsci15081015
Fontana-Bria L, Quesada C, Gálvez Á, Pina T. Enhancing Scientific Literacy in VET Health Students: The Role of Forensic Entomology in Debunking Spontaneous Generation. Education Sciences. 2025; 15(8):1015. https://doi.org/10.3390/educsci15081015
Chicago/Turabian StyleFontana-Bria, Laia, Carla Quesada, Ángel Gálvez, and Tatiana Pina. 2025. "Enhancing Scientific Literacy in VET Health Students: The Role of Forensic Entomology in Debunking Spontaneous Generation" Education Sciences 15, no. 8: 1015. https://doi.org/10.3390/educsci15081015
APA StyleFontana-Bria, L., Quesada, C., Gálvez, Á., & Pina, T. (2025). Enhancing Scientific Literacy in VET Health Students: The Role of Forensic Entomology in Debunking Spontaneous Generation. Education Sciences, 15(8), 1015. https://doi.org/10.3390/educsci15081015