Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (60)

Search Parameters:
Keywords = spherical micro samples

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1970 KB  
Proceeding Paper
Investigation of Structural, Morphological, Optical, and Dielectric Properties of Magnesium Chromite (MgCr2O4) Spinel Oxide
by Pavithra Gurusamy, Anitha Gnanasekar and Geetha Deivasigamani
Eng. Proc. 2025, 87(1), 109; https://doi.org/10.3390/engproc2025087109 - 17 Sep 2025
Viewed by 262
Abstract
The citrate–nitrate method was employed to synthesize the magnesium chromite (MgCr2O4) spinel, followed by calcination at 700 °C for 3 h. The synthesized compound was analyzed using techniques including powder XRD, SEM-EDAX, FTIR, UV-DRS, and LCR Meter. The structural [...] Read more.
The citrate–nitrate method was employed to synthesize the magnesium chromite (MgCr2O4) spinel, followed by calcination at 700 °C for 3 h. The synthesized compound was analyzed using techniques including powder XRD, SEM-EDAX, FTIR, UV-DRS, and LCR Meter. The structural analysis was conducted using an X-ray diffractometer, which revealed the formation of the cubic crystal symmetry of the sample with the corresponding Fd-3 m space group. The average crystallite size of the sample was calculated around 15.38 nm. Using tetrahedral and octahedral positions, the lattice vibrations of the associated chemical bonds were identified using Fourier transform infrared (FTIR) spectroscopy. SEM (scanning electron microscopy) micrographs showed that the spherical nature of the particles and the constituent particles were between 10 and 40 nm in size. The optical bandgap value was evaluated using Tauc’s plot. Pellets of the powdered sample were prepared for determining the dielectric aspects, such as the dielectric constant (ε′) and tangent loss (tanδ), in the frequency range of 10 Hz–8 MHz at room temperature. The charge transport mechanism was explored from the complex impedance spectroscopy study. The obtained results indicate that magnesium chromite may be a potential candidate in the fabrication of sensors, micro-electronic devices, etc. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

23 pages, 4773 KB  
Article
Predicting Constitutive Behaviour of Idealized Granular Soils Using Recurrent Neural Networks
by Xintong Li and Jianfeng Wang
Appl. Sci. 2025, 15(17), 9495; https://doi.org/10.3390/app15179495 - 29 Aug 2025
Cited by 1 | Viewed by 489
Abstract
The constitutive modelling of granular soils has been a long-standing research subject in geotechnical engineering, and machine learning (ML) has recently emerged as a promising tool for achieving this goal. This paper proposes two recurrent neural networks, namely, the Gated Recurrent Unit Neural [...] Read more.
The constitutive modelling of granular soils has been a long-standing research subject in geotechnical engineering, and machine learning (ML) has recently emerged as a promising tool for achieving this goal. This paper proposes two recurrent neural networks, namely, the Gated Recurrent Unit Neural Network (GRU-NN) and the Long Short-Term Memory Neural Network (LSTM-NN), which utilize input parameters such as the initial void ratio, initial fabric anisotropy, uniformity coefficient, mean particle size, and confining pressure to establish the high-dimensional relationships of granular soils from micro to macro levels subjected to triaxial shearing. The research methodology consists of several steps. Firstly, 200 numerical triaxial tests on idealized granular soils comprising polydisperse spherical particles are performed using the discrete element method (DEM) simulation to generate datasets and to train and test the proposed neural networks. Secondly, LSTM-NN and GRU-NN are constructed and trained, and their prediction performance is evaluated by the mean absolute percentage error (MAPE) and R-square against the DEM-based datasets. The extremely low error values obtained by both LSTM-NN and GRU-NN indicate their outstanding capability in predicting the constitutive behaviour of idealized granular soils. Finally, the trained ML-based models are applied to predict the constitutive behaviour of a miniature glass bead sample subjected to triaxial shearing with in situ micro-CT, as well as to two extrapolated test sets with different initial parameters. The results show that both methods perform well in capturing the mechanical responses of the idealized granular soils. Full article
Show Figures

Figure 1

17 pages, 4979 KB  
Article
Dispersion Stability and Tribological Properties of Cold Plasma-Modified h-BN Nanofluid
by Zhenjing Duan, Ziheng Wang, Yishuai Jia, Shuaishuai Wang, Peng Bian, Ji Tan, Jinlong Song and Xin Liu
Nanomaterials 2025, 15(11), 874; https://doi.org/10.3390/nano15110874 - 5 Jun 2025
Cited by 1 | Viewed by 818
Abstract
h-BN spherical nanoparticles, known as white graphene, have good anti-wear properties, long service life, chemical inertness, and stability, which provide superior lubricating performance as a solid additive item to nanofluids. However, the poor dispersion stability of h-BN nanoparticles in nanofluids is a bottleneck [...] Read more.
h-BN spherical nanoparticles, known as white graphene, have good anti-wear properties, long service life, chemical inertness, and stability, which provide superior lubricating performance as a solid additive item to nanofluids. However, the poor dispersion stability of h-BN nanoparticles in nanofluids is a bottleneck that restricts their application. Currently, to prepare h-BN nanofluids with good dispersion stability, a cold plasma (CP) modification of h-BN nanoparticles is proposed in this study. In this research, h-BN nanofluid with added surfactant (SNL), CP-modified h-BN nanofluid with N2 as the working gas (CP(N2)NL), and CP-modified h-BN nanofluid with O2 as the working gas (CP(O2)NL) were prepared, separately. The mechanism of the dispersion stability of CP-modified h-BN nanofluid was analyzed using X-ray photoelectron spectroscopy (XPS), and the performance of CP-modified nanofluid was analyzed based on static observation of nanofluid, kinematic viscosity, and heat transfer properties. Finally, friction and wear experiments were conducted to further analyze the tribological performance of h-BN nanofluids based on the coefficient of friction, 3D surface morphology, surface roughness (Sa), scratches, and micro-morphology. The results show that CP-modified h-BN nanofluid has excellent dispersed suspension stability and can be statically placed for more than 336 h. The CP-modified h-BN nanofluid showed stable friction-reducing, anti-wear, and heat transfer performance, in which the coefficient of friction of h-BN nanofluid was about 0.66 before and after 24 h of settling. The Sa value of the sample was reduced by 31.6–49.2% in comparison with pure cottonseed oil (CO). Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

18 pages, 4804 KB  
Article
Nanoparticle-Based Dry Powder Inhaler Containing Ciprofloxacin for Enhanced Targeted Antibacterial Therapy
by Petra Party, Márk László Klement, Bianca Maria Gaudio, Milena Sorrenti and Rita Ambrus
Pharmaceutics 2025, 17(4), 486; https://doi.org/10.3390/pharmaceutics17040486 - 7 Apr 2025
Viewed by 1293
Abstract
Background: Ciprofloxacin (CIP) is a poorly water-soluble fluoroquinolone-type antibiotic that can be useful in the treatment of lung infections. When the drugs are delivered directly to the lungs, a smaller dosage is needed to achieve the desired effect compared to the oral [...] Read more.
Background: Ciprofloxacin (CIP) is a poorly water-soluble fluoroquinolone-type antibiotic that can be useful in the treatment of lung infections. When the drugs are delivered directly to the lungs, a smaller dosage is needed to achieve the desired effect compared to the oral administration. Moreover, the application of nanoparticles potentially enhances the effectiveness of the treatments while lowering the possible side effects. Therefore, we aimed to develop a “nano-in-micro” structured dry powder inhaler formulation containing CIP. Methods: A two-step preparation method was used. Firstly, a nanosuspension was first prepared using a high-performance planetary mill by wet milling. After the addition of different additives (leucine and mannitol), the solid formulations were created by spray drying. The prepared DPI samples were analyzed by using laser diffraction, nanoparticle tracking analysis, scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. The solubility and in vitro dissolution tests in artificial lung fluid and in vitro aerodynamic investigations (Spraytec® device, Andersen Cascade Impactor) were carried out. Results: The nanosuspension (D50: 140.0 ± 12.8 nm) was successfully prepared by the particle size reduction method. The DPIs were suitable for inhalation based on the particle diameter and their spherical shape. Improved surface area and amorphization after the preparation processes led to faster drug release. The excipient-containing systems were characterized by large lung deposition (fine particle fraction around 40%) and suitable aerodynamic diameter (between 3 and 4 µm). Conclusions: We have successfully formulated a nanosized antibiotic-containing formulation for pulmonary delivery, which could provide a potential treatment for patients with different respiratory infections. Full article
Show Figures

Figure 1

20 pages, 6111 KB  
Article
Preliminary Study on Multi-Scale Modeling of Asphalt Materials: Evaluation of Material Behavior through an RVE-Based Approach
by Ahmed Ibrahim Hassanin Mohamed, Oliver Giraldo-Londoño, Baolin Deng, Zhen Chen, Punyaslok Rath and William G. Buttlar
Materials 2024, 17(20), 5041; https://doi.org/10.3390/ma17205041 - 15 Oct 2024
Cited by 5 | Viewed by 1769
Abstract
This study employs a microstructure-based finite element modeling approach to understand the mechanical behavior of asphalt mixtures across different length scales. Specifically, this work aims to develop a multi-scale modeling approach employing representative volume elements (RVEs) of optimal size; this is a key [...] Read more.
This study employs a microstructure-based finite element modeling approach to understand the mechanical behavior of asphalt mixtures across different length scales. Specifically, this work aims to develop a multi-scale modeling approach employing representative volume elements (RVEs) of optimal size; this is a key issue in asphalt modeling for high-fidelity fracture modeling of heterogeneous asphalt mixtures. To determine the optimal RVE size, a convergence analysis of homogenized elastic properties is conducted using two types of RVEs, one made with polydisperse spherical inclusions, and another made with polydisperse truncated cylindrical inclusions, each aligned with the American Association of State Highway and Transportation Official’s maximum density gradation curve for a 12.5 mm Nominal Maximum Aggregate Size (NMAS). The minimum RVE lengths for this NMAS were found to be in the range of 32–34 mm. After the optimal RVE size for each inclusion shape is obtained, computational models of heterogeneous Indirect Tensile Asphalt Cracking Test samples are then generated. These models include the components of viscoelastic mastic, linear elastic aggregates, and cohesive zone modeling to simulate the rate-dependent failure evolution from micro- to macro-cracking. Examination of load-displacement responses at multiple loading rates shows that both heterogeneous models replicate experimentally measured data satisfactorily. Through micro- and macro-level analyses, this study enhances our understanding of the composition-performance relationships in asphalt pavement materials. The procedure proposed in this study allows us to identify the optimal RVE sizes that preserve computational efficiency without significantly compromising their ability to capture the asphalt material behavior under specific operational conditions. Full article
(This article belongs to the Special Issue Mechanical Property Research of Advanced Asphalt-Based Materials)
Show Figures

Figure 1

13 pages, 2526 KB  
Article
A Novel Nano-Spherical Tip for Improving Precision in Elastic Modulus Measurements of Polymer Materials via Atomic Force Microscopy
by Tianyu Fu, Paul C. Uzoma, Xiaolei Ding, Pengyuan Wu, Oleksiy Penkov and Huan Hu
Micromachines 2024, 15(9), 1175; https://doi.org/10.3390/mi15091175 - 22 Sep 2024
Cited by 4 | Viewed by 2621
Abstract
Micro-nano-scale mechanical properties are vital for engineering and biological materials. The elastic modulus is generally measured by processing the force–indentation curves obtained by atomic force microscopy (AFM). However, the measurement precision is largely affected by tip shape, tip wear, sample morphology, and the [...] Read more.
Micro-nano-scale mechanical properties are vital for engineering and biological materials. The elastic modulus is generally measured by processing the force–indentation curves obtained by atomic force microscopy (AFM). However, the measurement precision is largely affected by tip shape, tip wear, sample morphology, and the contact model. In such research, it has been found that the radius of the sharp tip increases due to wear during contact scanning, affecting elastic modulus calculations. For flat-ended tips, it is difficult to identify the contact condition, leading to inaccurate results. Our research team has invented a nano-spherical tip, obtained by implanting focused helium ions into a silicon microcantilever, causing it to expand into a silicon nanosphere. This nano-spherical tip has the advantages of sub-micro size and a smooth spherical surface. Comparative tests of the elastic modulus measurement were conducted on polytetrafluoroethylene (PTFE) and polypropylene (PP) using these three tips. Overall, the experimental results show that our nano-spherical tip with a consistent tip radius, symmetrical geometric shape, and resistance to wear and contamination can improve precision in elastic modulus measurements of polymer materials. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

18 pages, 4707 KB  
Article
Development of Precision Controllable Magnetic Field-Assisted Platform for Micro Electrical Machining
by Cheng Guo, Weizhen Zhuang and Jingwen He
Micromachines 2024, 15(8), 1002; https://doi.org/10.3390/mi15081002 - 1 Aug 2024
Cited by 1 | Viewed by 1499
Abstract
In order to introduce the magnetic field into micro electrical machining technology to explore the influence of magnetic field on micro electrical machining, the development of a precision controllable magnetic field-assisted platform is particularly important. This platform needs to precisely control the spatial [...] Read more.
In order to introduce the magnetic field into micro electrical machining technology to explore the influence of magnetic field on micro electrical machining, the development of a precision controllable magnetic field-assisted platform is particularly important. This platform needs to precisely control the spatial magnetic field. This study first completes the hardware design and construction of the magnetic field generation device, using electromagnetic coils with soft iron cores as the sources of the magnetic field. Mathematical models of the magnetic field are established and calibrated. Since the magnetic dipole model cannot effectively describe the magnetic field generated by the electromagnetic coil, this study adopts a more precise description method: the spherical harmonic function expansion model and the magnetic multipole superposition model. The calibration of the magnetic field model is based on actual excitation magnetic field data, so a magnetic field sampling device is designed to obtain the excitation magnetic field of the workspace. The model is calibrated based on a combination of the theoretical model and magnetic field data, and the performance of the constructed setup is analyzed. Finally, a magnetic field-assisted platform has been developed which can generate magnetic fields in any direction within the workspace with intensities ranging from 0 to 0.2 T. Its magnetic field model arrives at an error percentage of 2.986%, a variance of 0.9977, and a root mean square error (RMSE) of 0.71 mT, achieving precise control of the magnetic field in the workspace. Full article
Show Figures

Figure 1

23 pages, 12323 KB  
Article
Correlation of Microstructural Features within Short Carbon Fiber/ABS Manufactured via Large-Area Additive- Manufacturing Beads
by Neshat Sayah and Douglas E. Smith
J. Compos. Sci. 2024, 8(7), 246; https://doi.org/10.3390/jcs8070246 - 28 Jun 2024
Cited by 8 | Viewed by 1897
Abstract
Short carbon fiber-reinforced polymer composites are widely used in polymer extrusion additive manufacturing (AM), including large-area additive manufacturing (LAAM), due to their enhanced mechanical properties as compared to neat polymers. However, the mechanical properties of these composites depend on microstructural characteristics, including fibers [...] Read more.
Short carbon fiber-reinforced polymer composites are widely used in polymer extrusion additive manufacturing (AM), including large-area additive manufacturing (LAAM), due to their enhanced mechanical properties as compared to neat polymers. However, the mechanical properties of these composites depend on microstructural characteristics, including fibers and micro-voids, which are determined during processing. In this work, the correlation between fibers and micro-voids within the microstructure of LAAM polymer composites throughout various processing stages of short carbon fiber-reinforced acrylonitrile butadiene styrene (SCF/ABS) is investigated. The processing stages considered here include the incoming pellets, a single freely extruded strand, a single regularly deposited bead, and a single regularly deposited bead pressed by a mechanical roller. A high-resolution X-ray micro-computed tomography (µCT) system is employed to characterize the microstructural features in terms of the fibers (volume fraction, fiber orientation tensor) and micro-voids (volume fraction, sphericity) in the SCF/ABS samples. The results indicate that micro-voids exist within the microstructure of the SCF/ABS composite in all four stages considered here and that the micro-void volume fraction and micro-void sphericity vary among the test samples. Moreover, the results show a considerable variation in fiber orientation and fiber volume fraction within the microstructure throughout all the stages considered; however, all the samples show the highest alignment in the extrusion/print direction. Furthermore, a correlation is identified between the fiber orientation and the micro-void volume fraction within samples from all four stages considered here. This finding suggests that fibers tend to align more in the extrusion/print direction in regions with less micro-void content. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, Volume II)
Show Figures

Figure 1

17 pages, 2819 KB  
Article
Isolation and Characterization of Spherical Cellulose Nanocrystals Extracted from the Higher Cellulose Yield of the Jenfokie Plant: Morphological, Structural, and Thermal Properties
by Solomon Estifo Wossine, Ganesh Thothadri, Habtamu Beri Tufa, Wakshum Mekonnen Tucho, Adil Murtaza, Abhilash Edacherian and Gulam Mohammed Sayeed Ahmed
Polymers 2024, 16(12), 1629; https://doi.org/10.3390/polym16121629 - 8 Jun 2024
Cited by 4 | Viewed by 3353
Abstract
Scholars are looking for solutions to substitute hazardous substances in manufacturing nanocellulose from bio-sources to preserve the world’s growing environmental consciousness. During the past decade, there has been a notable increase in the use of cellulose nanocrystals (CNCs) in modern science and nanotechnology [...] Read more.
Scholars are looking for solutions to substitute hazardous substances in manufacturing nanocellulose from bio-sources to preserve the world’s growing environmental consciousness. During the past decade, there has been a notable increase in the use of cellulose nanocrystals (CNCs) in modern science and nanotechnology advancements because of their abundance, biocompatibility, biodegradability, renewability, and superior mechanical properties. Spherical cellulose nanocrystals (J–CNCs) were successfully synthesized from Jenfokie micro-cellulose (J–MC) via sulfuric acid hydrolysis in this study. The yield (up to 58.6%) and specific surface area (up to 99.64 m2/g) of J–CNCs were measured. A field emission gun–scanning electron microscope (FEG-SEM) was used to assess the morphology of the J–MC and J–CNC samples. The spherical shape nanoparticles with a mean nano-size of 34 nm for J–CNCs were characterized using a transmission electron microscope (TEM). X-ray diffraction (XRD) was used to determine the crystallinity index and crystallinity size of J–CNCs, up to 98.4% and 6.13 nm, respectively. The chemical composition was determined using a Fourier transform infrared (FT–IR) spectroscope. Thermal characterization of thermogravimetry analysis (TGA), derivative thermogravimetry (DTG), and differential thermal analysis (DTA) was conducted to identify the thermal stability and cellulose pyrolysis behavior of both J–MC and J–CNC samples. The thermal analysis of J–CNC indicated lower thermal stability than J–MC. It was noted that J–CNC showed higher levels of crystallinity and larger crystallite sizes than J–MC, indicating a successful digestion and an improvement of the main crystalline structure of cellulose. The X-ray diffraction spectra and TEM images were utilized to establish that the nanocrystals’ size was suitable. The novelty of this work is the synthesis of spherical nanocellulose with better properties, chosen with a rich source of cellulose from an affordable new plant (studied for the first time) by stepwise water-retted extraction, continuing from our previous study. Full article
(This article belongs to the Special Issue Advances in Cellulose-Based Polymers and Composites, 2nd Edition)
Show Figures

Figure 1

11 pages, 1445 KB  
Article
Experimental Study on Near-Wall Laser-Induced Cavitation Bubble Micro-Dimple Formation on 7050 Aluminum Alloy
by Yupeng Cao, Ranran Hu, Weidong Shi and Rui Zhou
Water 2024, 16(10), 1410; https://doi.org/10.3390/w16101410 - 15 May 2024
Cited by 3 | Viewed by 1761
Abstract
To investigate the feasibility and formation laws of fabricating micro-dimples induced by near-wall laser-induced cavitation bubble (LICB) on 7050 aluminum alloy. A high-speed camera and a fiber-optic hydrophone system were used to capture pulsation evolution images and acoustic signals of LICB. Meanwhile, a [...] Read more.
To investigate the feasibility and formation laws of fabricating micro-dimples induced by near-wall laser-induced cavitation bubble (LICB) on 7050 aluminum alloy. A high-speed camera and a fiber-optic hydrophone system were used to capture pulsation evolution images and acoustic signals of LICB. Meanwhile, a three-dimensional profilometer was employed to examine the contour morphology of the surface micro-dimple on the specimen. The results show that at an energy level of 500 mJ, the total pulsation period for the empty bubble is 795 μs, with individual pulsation periods of 412.5 μs, 217 μs, and 165 μs for the first, second, and third cycles, respectively, with most energy of the laser and bubble being consumed during the first evolution period. Under the synergy of the plasma shock wave and collapse shock wave, a spherical dimple with a diameter of 450 μm is formed on the sample surface with copper foil as the absorption layer. A model of micro-dimple formed by LICB impact is established. As the energy increases, the depth of the surface micro-dimple peaks at an energy of 400 mJ and then decreases. The depth of the surface micro-dimple increases with the increase in the number of impacts; the optimal technology parameters for the micro-dimple formation by LICB impact are as follows: the absorption layer is copper foil, the energy is 400 mJ, and the number of impacts is three. Full article
(This article belongs to the Special Issue Hydraulics and Hydrodynamics in Fluid Machinery)
Show Figures

Figure 1

18 pages, 5875 KB  
Article
(Sb0.5Li0.5)TiO3-Doping Effect and Sintering Condition Tailoring in BaTiO3-Based Ceramics
by Juanwen Yan, Bijun Fang, Shuai Zhang, Xiaolong Lu and Jianning Ding
Materials 2024, 17(9), 2085; https://doi.org/10.3390/ma17092085 - 29 Apr 2024
Cited by 4 | Viewed by 1749
Abstract
(1-x)(Ba0.75Sr0.1Bi0.1)(Ti0.9Zr0.1)O3-x(Sb0.5Li0.5)TiO3 (abbreviated as BSBiTZ-xSLT, x = 0.025, 0.05, 0.075, 0.1) ceramics were prepared via a conventional solid-state sintering method under different sintering temperatures. All BSBiTZ-xSLT ceramics [...] Read more.
(1-x)(Ba0.75Sr0.1Bi0.1)(Ti0.9Zr0.1)O3-x(Sb0.5Li0.5)TiO3 (abbreviated as BSBiTZ-xSLT, x = 0.025, 0.05, 0.075, 0.1) ceramics were prepared via a conventional solid-state sintering method under different sintering temperatures. All BSBiTZ-xSLT ceramics have predominantly perovskite phase structures with the coexistence of tetragonal, rhombohedral and orthogonal phases, and present mainly spherical-like shaped grains relating to a liquid-phase sintering mechanism due to adding SLT and Bi2O3. By adjusting the sintering temperature, all compositions obtain the highest relative density and present densified micro-morphology, and doping SLT tends to promote the growth of grain size and the grain size distribution becomes nonuniform gradually. Due to the addition of heterovalent ions and SLT, typical relaxor ferroelectric characteristic is realized, dielectric performance stability is broadened to ~120 °C with variation less than 10%, and very long and slim hysteresis loops are obtained, which is especially beneficial for energy storage application. All samples show extremely fast discharge performance where the discharge time t0.9 (time for 90% discharge energy density) is less than 160 ns and the largest discharge current occurs at around 30 ns. The 1155 °C sintered BSBiTZ-0.025SLT ceramics exhibit rather large energy storage density, very high energy storage efficiency and excellent pulse charge–discharge performance, providing the possibility to develop novel BT-based dielectric ceramics for pulse energy storage applications. Full article
(This article belongs to the Special Issue Ferroelectric/Dielectric Materials for Energy Storage Applications)
Show Figures

Figure 1

26 pages, 17665 KB  
Article
A Novel Combined Dry Powder Inhaler Comprising Nanosized Ketoprofen-Embedded Mannitol-Coated Microparticles for Pulmonary Inflammations: Development, In Vitro–In Silico Characterization, and Cell Line Evaluation
by Heba Banat, Ildikó Csóka, Dóra Paróczai, Katalin Burian, Árpád Farkas and Rita Ambrus
Pharmaceuticals 2024, 17(1), 75; https://doi.org/10.3390/ph17010075 - 7 Jan 2024
Cited by 14 | Viewed by 6622
Abstract
Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their considerable side effects. By utilizing particle engineering [...] Read more.
Pulmonary inflammations such as chronic obstructive pulmonary disease and cystic fibrosis are widespread and can be fatal, especially when they are characterized by abnormal mucus accumulation. Inhaled corticosteroids are commonly used for lung inflammations despite their considerable side effects. By utilizing particle engineering techniques, a combined dry powder inhaler (DPI) comprising nanosized ketoprofen-embedded mannitol-coated microparticles was developed. A nanoembedded microparticle system means a novel advance in pulmonary delivery by enhancing local pulmonary deposition while avoiding clearance mechanisms. Ketoprofen, a poorly water-soluble anti-inflammatory drug, was dispersed in the stabilizer solution and then homogenized by ultraturrax. Following this, a ketoprofen-containing nanosuspension was produced by wet-media milling. Furthermore, co-spray drying was conducted with L-leucine (dispersity enhancer) and mannitol (coating and mucuactive agent). Particle size, morphology, dissolution, permeation, viscosity, in vitro and in silico deposition, cytotoxicity, and anti-inflammatory effect were investigated. The particle size of the ketoprofen-containing nanosuspension was ~230 nm. SEM images of the spray-dried powder displayed wrinkled, coated, and nearly spherical particles with a final size of ~2 µm (nano-in-micro), which is optimal for pulmonary delivery. The mannitol-containing samples decreased the viscosity of 10% mucin solution. The results of the mass median aerodynamic diameter (2.4–4.5 µm), fine particle fraction (56–71%), permeation (five-fold enhancement), and dissolution (80% release in 5 min) confirmed that the system is ideal for local inhalation. All samples showed a significant anti-inflammatory effect and decreased IL-6 on the LPS-treated U937 cell line with low cytotoxicity. Hence, developing an innovative combined DPI comprising ketoprofen and mannitol by employing a nano-in-micro approach is a potential treatment for lung inflammations. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

14 pages, 5271 KB  
Article
Effect of Polyvinylpyrrolidone Content on Pure Titanium Injection Molding
by Weichen Zhang, Lu Li, Chuanyong Li, Yanhua Sun, Muhammad Dilawer Hayat, Yugeng Li, Gang Chen, Zhentao Yuan and Xiao Wang
Crystals 2023, 13(11), 1563; https://doi.org/10.3390/cryst13111563 - 1 Nov 2023
Cited by 1 | Viewed by 1794
Abstract
In water-soluble binder systems, polyethylene glycol (PEG) and polymethylmethacrylate (PMMA) are often used as primary and secondary components. The PEG/PMMA binder system is clean and environmentally friendly, but the discrepancy between the crystallization temperature of PEG and the glass transition temperature of PMMA [...] Read more.
In water-soluble binder systems, polyethylene glycol (PEG) and polymethylmethacrylate (PMMA) are often used as primary and secondary components. The PEG/PMMA binder system is clean and environmentally friendly, but the discrepancy between the crystallization temperature of PEG and the glass transition temperature of PMMA leads to the generation of pores in the feedstock. The solidification pores have an adverse impact on the final mechanical properties of the samples. Polyvinylpyrrolidone (PVP), as a crystallization inhibitor, can inhibit the formation of porosity. In this study, spherical titanium powder with a diameter of less than 45 μm was used as metal powder; the binder system consisted of PEG, PMMA and SA. Different increments of PVP (0, 10%, 20%, 30 wt.%) were added to the PEG/PMMA binder system. The uniformity of the feedstock and the open channels generated after debinding were observed using SEM. The pores’ condition before and after debinding was studied using Micro CT, and the mechanical properties of the samples were also detected. By comparing the macroscopic and microscopic morphologies of the injected samples and mechanical properties of the sintered samples, it was found that a PVP content of 20 wt.% resulted in the best properties. Full article
Show Figures

Figure 1

17 pages, 5943 KB  
Article
Characteristics and Research Significance of Micro-Nanoparticles in Geothermal Fluids in the Central Area of Shandong Province
by Lei Zuo, Peng Zhang, Yaqin Wang, Rui Liu and Guangxi Ma
Water 2023, 15(21), 3737; https://doi.org/10.3390/w15213737 - 26 Oct 2023
Cited by 4 | Viewed by 1879
Abstract
The micro-nanoparticles found in geothermal fluids exhibit distinct characteristics that hold great potential for detecting deeply concealed geothermal resources. Utilizing a nanoparticle tracking analyzer (NTA), we conducted observations on karst geothermal fluids collected from the central region of Shandong Province, specifically Jinan and [...] Read more.
The micro-nanoparticles found in geothermal fluids exhibit distinct characteristics that hold great potential for detecting deeply concealed geothermal resources. Utilizing a nanoparticle tracking analyzer (NTA), we conducted observations on karst geothermal fluids collected from the central region of Shandong Province, specifically Jinan and Zibo. Our investigation revealed the presence of a significant quantity of naturally occurring micro-nanoparticles within these geothermal fluids, with particle sizes typically falling in the range of 100 nm to 5 μm. To gain a comprehensive understanding of these micro-nanoparticles, we subjected them to a detailed analysis, encompassing their type, shape, crystal structure, and chemical composition. This in-depth examination was carried out using transmission electron microscopy (TEM). Our findings, supported by TEM images and energy dispersive spectroscopy, indicated that these micro-nanoparticles in the geothermal fluid samples predominantly exhibit amorphous characteristics and possess irregular or nearly spherical shapes, often accompanied by rough edges. Furthermore, it was evident that the composition of these micro-nanoparticles primarily consists of carbonates, sulfates, and chlorides, which contain elements such as Fe, Ca, and Na. The distinctive features of these micro-nanoparticles provide valuable insights into the properties of the high-temperature reservoirs and aquifers from which they originate. As a result, we firmly assert that natural micro-nanoparticles can significantly contribute to the detection and comprehensive study of concealed geothermal resources within the Earth. This novel approach offers a promising method for exploring and gaining a deeper understanding of these hidden geothermal resources. Full article
Show Figures

Figure 1

22 pages, 4297 KB  
Article
Production and Incorporation of Calcium-Hydrolyzed Nanoparticles in Alkali-Activated Mine Tailings
by Yibran Perera-Mercado, Nan Zhang, Ahmadreza Hedayat, Linda Figueroa, Esmeralda Saucedo-Salazar, Cara Clements, Héctor Gelber Bolaños Sosa, Néstor Tupa, Isaac Yanqui Morales and Reynaldo Sabino Canahua Loza
Nanomaterials 2023, 13(12), 1875; https://doi.org/10.3390/nano13121875 - 17 Jun 2023
Cited by 6 | Viewed by 2497
Abstract
This work presented the production and incorporation of calcium-hydrolyzed nano-solutions at three concentrations (1, 2, and 3 wt.%) in alkali-activated gold mine tailings (MTs) from Arequipa, Perú. As the primary activator solution, a sodium hydroxide (NaOH) solution at 10 M was used. Calcium-hydrolyzed [...] Read more.
This work presented the production and incorporation of calcium-hydrolyzed nano-solutions at three concentrations (1, 2, and 3 wt.%) in alkali-activated gold mine tailings (MTs) from Arequipa, Perú. As the primary activator solution, a sodium hydroxide (NaOH) solution at 10 M was used. Calcium-hydrolyzed nanoparticles with a particle size of 10 nm were localized inside self-assembled molecular spherical systems (micelles) with diameters of less than 80 nm that were well-dispersed in aqueous solutions and acted as secondary activator, and also as additional calcium resource for alkali-activated materials (AAMs) based on low-calcium gold MTs. High-resolution transmission electron microscopy/energy-dispersive X-ray spectroscopy (HR-TEM/EDS) analyses were carried out to characterize the morphology, size, and structure of the calcium-hydrolyzed nanoparticles. Fourier transform infrared (FTIR) analyses were then used to understand the chemical bonding interactions in the calcium-hydrolyzed nanoparticles and in the AAMs. Scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) and quantitative X-ray diffraction (QXRD) were performed to study the structural, chemical, and phase compositions of the AAMs; uniaxial compressive tests evaluated the compressive strength of the reaction AAMs; and nitrogen adsorption–desorption analyses measured porosity changes in the AAMs at the nanostructure level. The results indicated that the main cementing product generated was amorphous binder gel with low quantities of nanostructured C-S-H and C-A-S-H phases. The surplus production of this amorphous binder gel produced denser AAMs at the micro-level and nano-level (macroporous systems). In addition, each increase in the concentration of calcium-hydrolyzed nano-solution had a direct/proportional effect on the mechanical properties of the AAM samples. AAM with 3 wt.% calcium-hydrolyzed nano-solution had the highest compressive strength, with a value of 15.16 MPa, which represented an increase of 62% compared with the original system without nanoparticles that were aged under the same conditions at 70 °C for seven days. These results provided useful information about the positive effect of calcium-hydrolyzed nanoparticles on gold MTs and their conversion into sustainable building materials through alkali activation. Full article
Show Figures

Figure 1

Back to TopTop