Engineering and Characterisation of Novel Nanomedicine Formulations, 2nd Edition

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Nanomedicine and Nanotechnology".

Deadline for manuscript submissions: closed (25 April 2025) | Viewed by 19666

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
Interests: antimicrobial agents; breast cancer; cannabinoids; drug delivery; drug targeting; in situ-forming implants; nanomedicine; ovarian cancer; polymers
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Departamento de Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
Interests: parasitology; leishmania; pharmacokinetics; immunology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
Interests: nanomedicine; antifungal therapy; liposomes; microfluidics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We are pleased to invite you to contribute to our Special Issue in the engineering and characterisation of novel nanomedicines. Nanomedicine has been a hot topic in formulation science in the last few decades regarding selectively delivering drugs to target tissues. Nanomedicines can modify drug release and encapsulate poorly soluble drugs, allowing a selective targeting and minimising adverse effects. This is of key importance in antitumoral and anti-infectious therapies, in which an undesired drug release can lead to severe damage in healthy tissues. Moreover, they protect drugs from degradation, allowing the delivery of RNA. This Special Issue aims to highlight the most novel nano-approaches in the treatment of cancer and infectious diseases. In this Special Issue, original research articles and reviews are welcome. Research areas may include (but are not limited to) the following: nanoparticles, liposomes, nanocapsules and drug targeting, applied to anticancer and anti-infectious therapies.

We look forward to receiving your contributions.

Dr. Ana Isabel Fraguas-Sánchez
Prof. Dr. Francisco Bolás-Fernández
Dr. Raquel Fernández García
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticles
  • liposomes
  • solid lipid nanocapsules
  • drug targeting
  • cancer
  • infectious diseases
  • nanovaccines

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

24 pages, 3847 KiB  
Article
Silver Nanoparticles with Mebeverine in IBS Treatment: DFT Analysis, Spasmolytic, and Anti-Inflammatory Effects
by Mihaela Stoyanova, Miglena Milusheva, Vera Gledacheva, Mina Todorova, Nikoleta Kircheva, Silvia Angelova, Iliyana Stefanova, Mina Pencheva, Bela Vasileva, Kamelia Hristova-Panusheva, Natalia Krasteva, George Miloshev, Yulian Tumbarski, Milena Georgieva and Stoyanka Nikolova
Pharmaceutics 2025, 17(5), 561; https://doi.org/10.3390/pharmaceutics17050561 - 24 Apr 2025
Viewed by 354
Abstract
Background/Objectives: Mebeverine hydrochloride (MBH) is an antispasmodic agent used to regulate bowel movements and relax intestinal smooth muscle, but its application is limited by specific side effects; therefore, this study investigates the effects of previously synthesized MBH-loaded silver nanoparticles (AgNPs) on smooth [...] Read more.
Background/Objectives: Mebeverine hydrochloride (MBH) is an antispasmodic agent used to regulate bowel movements and relax intestinal smooth muscle, but its application is limited by specific side effects; therefore, this study investigates the effects of previously synthesized MBH-loaded silver nanoparticles (AgNPs) on smooth muscle contractile activity and their anti-inflammatory potential as an alternative delivery system. Methods: The interactions of AgNPs with cholinergic inhibitors, selective antagonists, Ca2+ blockers, and key neurotransmitters were analyzed. In vitro, albumin denaturation suppression and ex vivo assays evaluated the anti-inflammatory effects of AgNPs-MBH, validated using a DFT in silico approach. To comprehensively assess the systemic impact and IBS treatment potential of AgNPs-MBH, we also examined in vitro their antimicrobial activity and hepatic cell responses, as the liver is a key organ in evaluating the overall safety and efficacy of nanoparticles. Additionally, the drug-release capabilities of Ag NPs were established. Results: Our findings indicate that AgNPs with MBH do not affect blocked cholinergic receptors, but their effects are more pronounced and distinct in amplitude and character than MBH. MBH-loaded AgNPs showed a lower anti-inflammatory effect than MBH but were still better than diclofenac. They also affected hepatic cell morphology and proliferation, suggesting potential for enhanced therapeutic efficacy. Drug-loaded AgNPs are considered not bactericidal. Conclusions: Based on our results, drug-loaded AgNPs might be a promising medication delivery system for MBH and a useful treatment option for IBS. Future in vivo and preclinical experiments will contribute to the establishment of drug-loaded AgNPs in IBS treatment. Full article
Show Figures

Figure 1

18 pages, 4804 KiB  
Article
Nanoparticle-Based Dry Powder Inhaler Containing Ciprofloxacin for Enhanced Targeted Antibacterial Therapy
by Petra Party, Márk László Klement, Bianca Maria Gaudio, Milena Sorrenti and Rita Ambrus
Pharmaceutics 2025, 17(4), 486; https://doi.org/10.3390/pharmaceutics17040486 - 7 Apr 2025
Viewed by 588
Abstract
Background: Ciprofloxacin (CIP) is a poorly water-soluble fluoroquinolone-type antibiotic that can be useful in the treatment of lung infections. When the drugs are delivered directly to the lungs, a smaller dosage is needed to achieve the desired effect compared to the oral [...] Read more.
Background: Ciprofloxacin (CIP) is a poorly water-soluble fluoroquinolone-type antibiotic that can be useful in the treatment of lung infections. When the drugs are delivered directly to the lungs, a smaller dosage is needed to achieve the desired effect compared to the oral administration. Moreover, the application of nanoparticles potentially enhances the effectiveness of the treatments while lowering the possible side effects. Therefore, we aimed to develop a “nano-in-micro” structured dry powder inhaler formulation containing CIP. Methods: A two-step preparation method was used. Firstly, a nanosuspension was first prepared using a high-performance planetary mill by wet milling. After the addition of different additives (leucine and mannitol), the solid formulations were created by spray drying. The prepared DPI samples were analyzed by using laser diffraction, nanoparticle tracking analysis, scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry. The solubility and in vitro dissolution tests in artificial lung fluid and in vitro aerodynamic investigations (Spraytec® device, Andersen Cascade Impactor) were carried out. Results: The nanosuspension (D50: 140.0 ± 12.8 nm) was successfully prepared by the particle size reduction method. The DPIs were suitable for inhalation based on the particle diameter and their spherical shape. Improved surface area and amorphization after the preparation processes led to faster drug release. The excipient-containing systems were characterized by large lung deposition (fine particle fraction around 40%) and suitable aerodynamic diameter (between 3 and 4 µm). Conclusions: We have successfully formulated a nanosized antibiotic-containing formulation for pulmonary delivery, which could provide a potential treatment for patients with different respiratory infections. Full article
Show Figures

Figure 1

21 pages, 4145 KiB  
Article
A Polysorbate-Based Lipid Nanoparticle Vaccine Formulation Induces In Vivo Immune Response Against SARS-CoV-2
by Aishwarya Saraswat, Alireza Nomani, Lin-Kin Yong, Jimmy Chun-Tien Kuo, Heather Brown, Muralikrishna Narayanareddygari, Avery Peace, Rizan Fazily, Timothy Blake, Christopher D. Petro, Bindhu Rayaprolu, Johanna Hansen, Amardeep Singh Bhalla and Mohammed Shameem
Pharmaceutics 2025, 17(4), 441; https://doi.org/10.3390/pharmaceutics17040441 - 29 Mar 2025
Viewed by 1364
Abstract
Background: Lipid nanoparticles (LNPs) have proven effective in delivering RNA-based modalities. Rapid approval of the COVID-19 vaccines highlights the promise of LNPs as a delivery platform for nucleic acid-based therapies and vaccines. Nevertheless, improved LNP designs are needed to advance next-generation vaccines and [...] Read more.
Background: Lipid nanoparticles (LNPs) have proven effective in delivering RNA-based modalities. Rapid approval of the COVID-19 vaccines highlights the promise of LNPs as a delivery platform for nucleic acid-based therapies and vaccines. Nevertheless, improved LNP designs are needed to advance next-generation vaccines and other gene therapies toward greater clinical success. Lipid components and LNP formulation excipients play a central role in biodistribution, immunogenicity, and stability. Therefore, it is important to understand, identify, and assess the appropriate lipid components for developing a safe and effective formulation. Herein, this study focused on developing a novel Polysorbate-80 (PS-80)-based LNP. We hypothesized that substituting conventional linear PEG-lipids with PS-80, a widely used, biocompatible injectable surfactant featuring a branched PEG-like structure, may change the LNPs biodistribution pattern and enhance long-term stability. By leveraging PS-80’s unique structural properties, this study aimed to develop an mRNA-LNP platform with improved extrahepatic delivery and robust freeze/thaw tolerance. Methods: We employed a stepwise optimization to establish both the lipid composition and formulation buffer to yield a stable, high-performing PS-80-based SARS-CoV-2 mRNA-LNP (SC2-PS80 LNP). We compared phosphate- versus tris-based buffers for long-term stability, examined multiple lipid ratios, and evaluated the impact of incorporating PS-80 (a branched PEG-lipid) on in vivo biodistribution. Various analytical assays were performed to assess particle size, encapsulation efficiency, mRNA purity, and in vitro potency of the developed formulation and a humanized mouse model was used to measure its immunogenicity over six months of storage at −80 °C. Results: Replacing the standard 1,2-dimyristoyl-rac-glycero-3-methoxy polyethylene glycol-2000 (PEG-DMG) lipid with PS-80 increased spleen-specific expression of the mRNA-LNPs after intramuscular injection. Formulating in a tris-sucrose-salt (TSS) buffer preserved the LNP’s physicochemical properties and in vitro potency over six months at −80 °C, whereas a conventional PBS-sucrose (PSS) buffer was less protective under frozen conditions. Notably, TSS-based SC2-PS80 LNPs elicited potent humoral immunity in mice, including high anti-spike IgG titers and robust pseudovirus neutralization, comparable to freshly prepared formulations. Conclusions: A PS-80-based mRNA-LNP platform formulated in TSS buffer confers improved extrahepatic delivery, long-term frozen stability, and strong immunogenicity against SARS-CoV-2 following six months. These findings offer a promising pathway for the design of next-generation mRNA vaccines and therapeutics with enhanced stability and clinical potential. Full article
Show Figures

Figure 1

15 pages, 2095 KiB  
Article
Characterization of VitE-TPGS Micelles Linked to Poorly Soluble Pharmaceutical Compounds Exploiting Pair Distribution Function’s Moments
by Liberato De Caro, Thibaud Stoll, Arnaud Grandeury, Fabia Gozzo and Cinzia Giannini
Pharmaceutics 2025, 17(4), 431; https://doi.org/10.3390/pharmaceutics17040431 - 27 Mar 2025
Viewed by 288
Abstract
Background: Micelles have attracted significant interest in nanomedicine as drug delivery systems. This study investigates the morphology of micelles formed by the D-α-tocopherol polyethylene glycol 1000 succinate (VitE-TPGS) surfactant in the presence and absence of, respectively, a poorly soluble pharmaceutical compound (PSC), i.e., [...] Read more.
Background: Micelles have attracted significant interest in nanomedicine as drug delivery systems. This study investigates the morphology of micelles formed by the D-α-tocopherol polyethylene glycol 1000 succinate (VitE-TPGS) surfactant in the presence and absence of, respectively, a poorly soluble pharmaceutical compound (PSC), i.e., Eltrombopag (0.08 wt%) and CaCl2 (0.03 wt%). The aim was to assess the micelles’ ability to solubilize the PSC and potentially shield it from Ca2+ ions, simulating in vivo conditions. Methods: For this purpose, we have developed a novel theoretical approach for analyzing Pair Distribution Function (PDF) data derived from Small-Angle X-ray Scattering (SAXS) measurements, based on the use of PDF’s moments. Results: Our spheroid-based model was able to characterize successfully the micellar morphology and their interactions with PSC and CaCl2, providing detailed insights into their size, shape, and electron density contrasts. The presence of PSC significantly affected the shape and integral of the PDF curves, indicating incorporation into the micelles. This also resulted in a decrease in the micelle size, regardless of the presence of CaCl2. When this salt was added, it reduced the amount of PSC within the micelles. This is likely due to a decrease in the overall PSC availability in solution, induced by Ca2+ ions. Conclusions: This advanced yet straightforward analytical model represents a powerful tool for characterizing and optimizing micelle-based drug delivery systems. Full article
Show Figures

Figure 1

26 pages, 3377 KiB  
Article
Intravenous Nanoemulsions Loaded with Phospholipid Complex of a Novel Pyrazoloquinolinone Ligand for Enhanced Brain Delivery
by Tijana Stanković, Tanja Ilić, Branka Divović Matović, Milos Petkovic, Vladimir Dobričić, Ivan Jančić, Biljana Bufan, Kristina Jezdić, Jelena Đoković, Ivana Pantelić, Danijela Randjelović, Dishary Sharmin, James M. Cook, Miroslav M. Savić and Snežana Savić
Pharmaceutics 2025, 17(2), 232; https://doi.org/10.3390/pharmaceutics17020232 - 11 Feb 2025
Viewed by 910
Abstract
Background/Objectives: The novel pyrazoloquinolinone ligand CW-02-79 shows a unique profile of selective binding to σ2 receptors, but its poor solubility in both water and lipids makes its research and development a burdensome task. We aimed to develop a phospholipid-complex-based nanoemulsion formulation containing [...] Read more.
Background/Objectives: The novel pyrazoloquinolinone ligand CW-02-79 shows a unique profile of selective binding to σ2 receptors, but its poor solubility in both water and lipids makes its research and development a burdensome task. We aimed to develop a phospholipid-complex-based nanoemulsion formulation containing CW-02-79 suitable for intravenous administration in preclinical research. Methods: The decorated and undecorated nanoemulsions were formulated and subjected to detailed physiochemical characterization. The delivery and exposure to CW-02-79 from selected nanoemulsions were examined in the in vitro blood–brain barrier model based on human-induced pluripotent stem-cell-derived microvascular endothelial cells, astrocytes, and pericytes, and in vivo neuropharmacokinetic study in rats, respectively. Results: The developed biocompatible nanoemulsions loaded with a CW-02-79—phospholipid complex at a mass ratio of 1:10 exhibited a small droplet size and narrow size distribution, with satisfactory physicochemical stability during steam sterilization and short-term storage at 25 °C. The analysis of protein binding interactions revealed that the PEGylated nanoemulsions had fewer observable interactions compared to the undecorated nanoemulsions, especially when 0.2% DSPE-PEG2000 and 0.1% DSPE-PEG2000-mannose were combined. An in vitro BBB study demonstrated that a substantial part of CW-02-79 present in the applied nanoemulsion is able to permeate the barrier. The quantification of CW-02-79 in plasma/brain homogenate and calculated pharmacokinetic parameters confirmed good systemic and brain availability after intravenous administration. There were subtle differences in the pharmacokinetic parameters in favor of a dual surface-functionalized nanoemulson containing the glucose transporter-1-targeting ligand (mannose). Conclusions: The developed and characterized nanoemulsions enable substantial brain exposure to CW-02-79 as a prerequisite for a pharmacologically and clinically relevant selective modulation of σ2 receptors. Full article
Show Figures

Graphical abstract

21 pages, 9653 KiB  
Article
Bioactive Hydrogel Supplemented with Stromal Cell-Derived Extracellular Vesicles Enhance Wound Healing
by Matteo Galbiati, Fabio Maiullari, Maria Grazia Ceraolo, Salma Bousselmi, Nicole Fratini, Klajdi Gega, Sandro Recchia, Anna Maria Ferretti, Giovanni Scala, Marco Costantini, Tommaso Sciarra, Roberto Rizzi and Claudia Bearzi
Pharmaceutics 2025, 17(2), 162; https://doi.org/10.3390/pharmaceutics17020162 - 25 Jan 2025
Viewed by 1000
Abstract
Background/Objectives: Skin regeneration is a rapidly advancing field with significant implications for regenerative medicine, particularly in treating wounds and burns. This study explores the potential of hydrogels functionalized with fibroblast-derived extracellular vesicles (EVs) to enhance skin regeneration in vivo. Being immunoprivileged, EVs [...] Read more.
Background/Objectives: Skin regeneration is a rapidly advancing field with significant implications for regenerative medicine, particularly in treating wounds and burns. This study explores the potential of hydrogels functionalized with fibroblast-derived extracellular vesicles (EVs) to enhance skin regeneration in vivo. Being immunoprivileged, EVs minimize immune rejection, offering an attractive alternative to whole-cell therapies by replicating fibroblasts’ key roles in tissue repair. Methods: To promote EVs’ versatility and effective application across different conditions, a lyophilization method with lyoprotectants was optimized. Then, EVs were used to functionalize a hydrogel to perform experiments on murine cutaneous wound models. Results: Gelatin methacrylate (GelMA) was selected as the polymeric hydrogel due to its biocompatibility, tunable mechanical properties, and ability to support wound healing. Mechanical tests confirmed GelMA’s strength and elasticity for this application. Fibroblast-derived EVs were characterized using Western blot, Transmission Electron Microscopy, and NanoSight analysis, proving their integrity, size distribution, and stability. miRNome profiling identified enriched biological pathways related to cell migration, differentiation, and angiogenesis, emphasizing the critical role of EV cargo in promoting wound repair. In a murine model, hydrogels loaded with fibroblast-derived EVs significantly accelerated wound healing compared to controls (mean wound area 0.62 mm2 and 4.4 mm2, respectively), with faster closure, enhanced epithelialization, increased vascularization, and reduced fibrosis. Notably, the lyoprotectants successfully preserved the EVs’ structure and bioactivity during freeze-drying, reducing EVs loss by 35% compared to the control group and underscoring the feasibility of this approach for long-term storage and clinical application. Conclusions: This study introduces a novel scalable and adaptable strategy for regenerative medicine by combining fibroblast-derived EVs with GelMA, optimizing EVs’ stability and functionality for enhanced wound healing in clinical settings, even in challenging contexts such as combat zones or large-scale natural disasters. Full article
Show Figures

Figure 1

17 pages, 2453 KiB  
Article
Development and Characterization of Novel Combinations and Compositions of Nanostructured Lipid Carrier Formulations Loaded with Trans-Resveratrol for Pulmonary Drug Delivery
by Iftikhar Khan, Sunita Sunita, Nozad R. Hussein, Huner K. Omer, Abdelbary Elhissi, Chahinez Houacine, Wasiq Khan, Sakib Yousaf and Hassaan A. Rathore
Pharmaceutics 2024, 16(12), 1589; https://doi.org/10.3390/pharmaceutics16121589 - 12 Dec 2024
Cited by 2 | Viewed by 1535
Abstract
Background/Objectives: This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers. Methods: Novel TRES-NLC formulations (F1–F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan [...] Read more.
Background/Objectives: This study aimed to fabricate, optimize, and characterize nanostructured lipid carriers (NLCs) loaded with trans-resveratrol (TRES) as an anti-cancer drug for pulmonary drug delivery using medical nebulizers. Methods: Novel TRES-NLC formulations (F1–F24) were prepared via hot, high-pressure homogenization. One solid lipid (Dynasan 116) was combined with four liquid lipids (Capryol 90, Lauroglycol 90, Miglyol 810, and Tributyrin) in three different ratios (10:90, 50:50, and 90:10 w/w), with a surfactant (Tween 80) in two different concentrations (0.5 and 1.5%), and a co-surfactant, soya phosphatidylcholine (SPC S-75; 50 mg). Results: Amongst the analyzed 24 TR-NLC formulations, F8, F14, and F22 were selected based on their physicochemical stability when freshly prepared and following storage (4 weeks 25 °C), as well as in terms of particle size (<145 nm), polydispersity index (PDI; <0.21) and entrapment efficiency (>96%). Furthermore, F14 showed greater stability at 4 and 25 °C for six months and exhibited enhanced aerosolization performance, demonstrating the greater deposition of TRES in the later stages of the next-generation impactor (NGI) when using an air-jet nebulizer than when using an ultrasonic nebulizer. The F14 formulation exhibited greater stability and release in acetate buffer (pH 5.4), with a cumulative release of 95%. Conclusions: Overall, formulation F14 in combination with an air-jet nebulizer was identified as a superior combination, demonstrating higher emitted dose (ED; 80%), fine particle dose (FPD; 1150 µg), fine particle fraction (FPF; 24%), and respirable fraction (RF; 94%). These findings are promising in the optimization and development of NLC formulations, highlighting their versatility and targeting the pulmonary system via nebulization. Full article
Show Figures

Figure 1

27 pages, 11207 KiB  
Article
Future-Oriented Nanosystems Composed of Polyamidoamine Dendrimer and Biodegradable Polymers as an Anticancer Drug Carrier for Potential Targeted Treatment
by Katarzyna Strzelecka, Adam Kasiński, Tadeusz Biela, Anita Bocho-Janiszewska, Anna Laskowska, Łukasz Szeleszczuk, Maciej Gawlak, Marcin Sobczak and Ewa Oledzka
Pharmaceutics 2024, 16(11), 1482; https://doi.org/10.3390/pharmaceutics16111482 - 20 Nov 2024
Viewed by 1008
Abstract
Background/Objectives: Camptothecin (CPT) is a well-known chemical compound recognized for its significant anticancer properties. However, its clinical application remains limited due to challenges related to CPT’s high hydrophobicity and the instability of its active form. To address these difficulties, our research focused [...] Read more.
Background/Objectives: Camptothecin (CPT) is a well-known chemical compound recognized for its significant anticancer properties. However, its clinical application remains limited due to challenges related to CPT’s high hydrophobicity and the instability of its active form. To address these difficulties, our research focused on the development of four novel nanoparticulate systems intended for either oral or intravenous administration. Methods: These nanosystems were based on a poly(amidoamine) (PAMAM) dendrimer/CPT complex, which had been coated with biodegradable homo- and copolymers, designed with appropriate physicochemical properties and chain microstructures. Results: The resulting nanomaterials, with diameters ranging from 110 to 406 nm and dispersity values between 0.10 and 0.67, exhibited a positive surface charge and were synthesized using biodegradable poly(L-lactide) (PLLA), poly(L-lactide-co-ε-caprolactone) (PLACL), and poly(glycolide-co-ε-caprolactone) (PGACL). Biological assessments, including cell viability and hemolysis tests, indicated that all polymers demonstrated less than 5% hemolysis, confirming their hemocompatibility for potential intravenous use. Furthermore, fibroblasts exposed to these matrices showed concentration-dependent viability. The entrapment efficiency (EE) of CPT reached up to 27%, with drug loading (DL) values as high as 17%. The in vitro drug release studies lasted over 400 h with the use of phosphate buffer solutions at two different pH levels, demonstrating that time-dependent processes allowed for a gradual and controlled release of CPT from the developed nanosystems. The release kinetics of the active compound at pH 7.4 ± 0.05 and 6.5 ± 0.05 followed near-first-order or first-order models, with diffusion and Fickian/non-Fickian transport mechanisms. Importantly, the nanoparticulate systems enabled the stabilization of the pharmacologically active form of CPT, while providing protection against hydrolysis, even in physiological environments. Conclusions: In our opinion, these results underscore the promising future of biodegradable nanosystems as effective drug delivery systems (DDSs) for targeted cancer treatment, offering stability and efficacy over short, medium, and long-term applications. Full article
Show Figures

Figure 1

21 pages, 10743 KiB  
Article
Cationic Curcumin Nanocrystals Liposomes for Improved Oral Bioavailability: Formulation Development, Optimization, In Vitro and In Vivo Evaluation
by Xiang Cheng, Xiaoran Han, Jia Si, Cong Dong, Zhongjuan Ji, Shicong Zhao, Xiangting Wu, Haiyan Li and Xiangqun Jin
Pharmaceutics 2024, 16(9), 1155; https://doi.org/10.3390/pharmaceutics16091155 - 31 Aug 2024
Cited by 4 | Viewed by 1585
Abstract
Curcumin, a naturally occurring poorly water-soluble polyphenol with a broad spectrum, is a typical BCS IV drug. The objective of this study was to develop curcumin nanocrystals liposomes with the aim of improving bioavailability. In this study, we prepared cationic curcumin nanocrystals with [...] Read more.
Curcumin, a naturally occurring poorly water-soluble polyphenol with a broad spectrum, is a typical BCS IV drug. The objective of this study was to develop curcumin nanocrystals liposomes with the aim of improving bioavailability. In this study, we prepared cationic curcumin nanocrystals with a particle size of only 29.42 nm; such a phenomenal range of particle sizes is very rare. Moreover, we summarized and evaluated the parameters of the nanocrystal preparation process, including methods, formulations, etc., and the rules we concluded can be generalized to other nanocrystal preparation processes. To counteract the instability of the nanocrystals in the digestive tract, cationic curcumin nanocrystals were loaded into negatively charged liposomes through gravitational force between different charges. Unexpectedly, chitosan oligosaccharide was found to promote the self-assembly process of curcumin nanocrystal liposomes. In vitro and in vivo experiments demonstrated that chitosan-modified curcumin nanocrystal liposomes exhibited enhanced resistance to enzyme barriers, mucus barriers, and cellular barriers, resulting in a 5.4-fold increase in bioavailability compared to crude powder formulations. It can be concluded that cationic nanocrystals liposomes represent an appropriate novel strategy for improving the dissolution rate and bioavailability of poorly soluble natural products such as curcumin. Full article
Show Figures

Figure 1

19 pages, 3355 KiB  
Article
Iron-Reduced Graphene Oxide Core–Shell Micromotors Designed for Magnetic Guidance and Photothermal Therapy under Second Near-Infrared Light
by Orlando Donoso-González, Ana L. Riveros, José F. Marco, Diego Venegas-Yazigi, Verónica Paredes-García, Camila F. Olguín, Cristina Mayorga-Lobos, Lorena Lobos-González, Felipe Franco-Campos, Joseph Wang, Marcelo J. Kogan, Soledad Bollo, Claudia Yañez and Daniela F. Báez
Pharmaceutics 2024, 16(7), 856; https://doi.org/10.3390/pharmaceutics16070856 - 25 Jun 2024
Cited by 1 | Viewed by 2305
Abstract
Core–shell micro/nanomotors have garnered significant interest in biomedicine owing to their versatile task-performing capabilities. However, their effectiveness for photothermal therapy (PTT) still faces challenges because of their poor tumor accumulation, lower light-to-heat conversion, and due to the limited penetration of near-infrared (NIR) light. [...] Read more.
Core–shell micro/nanomotors have garnered significant interest in biomedicine owing to their versatile task-performing capabilities. However, their effectiveness for photothermal therapy (PTT) still faces challenges because of their poor tumor accumulation, lower light-to-heat conversion, and due to the limited penetration of near-infrared (NIR) light. In this study, we present a novel core–shell micromotor that combines magnetic and photothermal properties. It is synthesized via the template-assisted electrodeposition of iron (Fe) and reduced graphene oxide (rGO) on a microtubular pore-shaped membrane. The resulting Fe-rGO micromotor consists of a core of oval-shaped zero-valent iron nanoparticles with large magnetization. At the same time, the outer layer has a uniform reduced graphene oxide (rGO) topography. Combined, these Fe-rGO core–shell micromotors respond to magnetic forces and near-infrared (NIR) light (1064 nm), achieving a remarkable photothermal conversion efficiency of 78% at a concentration of 434 µg mL−1. They can also carry doxorubicin (DOX) and rapidly release it upon NIR irradiation. Additionally, preliminary results regarding the biocompatibility of these micromotors through in vitro tests on a 3D breast cancer model demonstrate low cytotoxicity and strong accumulation. These promising results suggest that such Fe-rGO core–shell micromotors could hold great potential for combined photothermal therapy. Full article
Show Figures

Figure 1

31 pages, 5090 KiB  
Article
Transferrin-Bearing, Zein-Based Hybrid Lipid Nanoparticles for Drug and Gene Delivery to Prostate Cancer Cells
by Khadeejah Maeyouf, Intouch Sakpakdeejaroen, Sukrut Somani, Jitkasem Meewan, Hawraa Ali-Jerman, Partha Laskar, Margaret Mullin, Graeme MacKenzie, Rothwelle J. Tate and Christine Dufès
Pharmaceutics 2023, 15(11), 2643; https://doi.org/10.3390/pharmaceutics15112643 - 20 Nov 2023
Cited by 2 | Viewed by 2141
Abstract
Gene therapy holds great promise for treating prostate cancer unresponsive to conventional therapies. However, the lack of delivery systems that can transport therapeutic DNA and drugs while targeting tumors without harming healthy tissues presents a significant challenge. This study aimed to explore the [...] Read more.
Gene therapy holds great promise for treating prostate cancer unresponsive to conventional therapies. However, the lack of delivery systems that can transport therapeutic DNA and drugs while targeting tumors without harming healthy tissues presents a significant challenge. This study aimed to explore the potential of novel hybrid lipid nanoparticles, composed of biocompatible zein and conjugated to the cancer-targeting ligand transferrin. These nanoparticles were designed to entrap the anti-cancer drug docetaxel and carry plasmid DNA, with the objective of improving the delivery of therapeutic payloads to prostate cancer cells, thereby enhancing their anti-proliferative efficacy and gene expression levels. These transferrin-bearing, zein-based hybrid lipid nanoparticles efficiently entrapped docetaxel, leading to increased uptake by PC-3 and LNCaP cancer cells and significantly enhancing anti-proliferative efficacy at docetaxel concentrations exceeding 1 µg/mL. Furthermore, they demonstrated proficient DNA condensation, exceeding 80% at polymer–DNA weight ratios of 1500:1 and 2000:1. This resulted in increased gene expression across all tested cell lines, with the highest transfection levels up to 11-fold higher than those observed with controls, in LNCaP cells. These novel transferrin-bearing, zein-based hybrid lipid nanoparticles therefore exhibit promising potential as drug and gene delivery systems for prostate cancer therapy. Full article
Show Figures

Figure 1

Review

Jump to: Research

32 pages, 2635 KiB  
Review
Nanomedicines for Pulmonary Drug Delivery: Overcoming Barriers in the Treatment of Respiratory Infections and Lung Cancer
by Raquel Fernández-García and Ana I. Fraguas-Sánchez
Pharmaceutics 2024, 16(12), 1584; https://doi.org/10.3390/pharmaceutics16121584 - 11 Dec 2024
Cited by 3 | Viewed by 1832
Abstract
The pulmonary route for drug administration has garnered a great deal of attention in therapeutics for treating respiratory disorders. It allows for the delivery of drugs directly to the lungs and, consequently, the maintenance of high concentrations at the action site and a [...] Read more.
The pulmonary route for drug administration has garnered a great deal of attention in therapeutics for treating respiratory disorders. It allows for the delivery of drugs directly to the lungs and, consequently, the maintenance of high concentrations at the action site and a reduction in systemic adverse effects compared to other routes, such as oral or intravenous. Nevertheless, the pulmonary administration of drugs is challenging, as the respiratory system tries to eliminate inhaled particles, being the main responsible mucociliary escalator. Nanomedicines represent a primary strategy to overcome the limitations of this route as they can be engineered to prolong pulmonary retention and avoid their clearance while reducing drug systemic distribution and, consequently, systemic adverse effects. This review analyses the use of pulmonary-administered nanomedicines to treat infectious diseases affecting the respiratory system and lung carcinoma, two pathologies that represent major health threats. Full article
Show Figures

Figure 1

32 pages, 4572 KiB  
Review
Exploiting Pharma 4.0 Technologies in the Non-Biological Complex Drugs Manufacturing: Innovations and Implications
by Vera Malheiro, Joana Duarte, Francisco Veiga and Filipa Mascarenhas-Melo
Pharmaceutics 2023, 15(11), 2545; https://doi.org/10.3390/pharmaceutics15112545 - 28 Oct 2023
Cited by 11 | Viewed by 3521
Abstract
The pharmaceutical industry has entered an era of transformation with the emergence of Pharma 4.0, which leverages cutting-edge technologies in manufacturing processes. These hold tremendous potential for enhancing the overall efficiency, safety, and quality of non-biological complex drugs (NBCDs), a category of pharmaceutical [...] Read more.
The pharmaceutical industry has entered an era of transformation with the emergence of Pharma 4.0, which leverages cutting-edge technologies in manufacturing processes. These hold tremendous potential for enhancing the overall efficiency, safety, and quality of non-biological complex drugs (NBCDs), a category of pharmaceutical products that pose unique challenges due to their intricate composition and complex manufacturing requirements. This review attempts to provide insight into the application of select Pharma 4.0 technologies, namely machine learning, in silico modeling, and 3D printing, in the manufacturing process of NBCDs. Specifically, it reviews the impact of these tools on NBCDs such as liposomes, polymeric micelles, glatiramer acetate, iron carbohydrate complexes, and nanocrystals. It also addresses regulatory challenges associated with the implementation of these technologies and presents potential future perspectives, highlighting the incorporation of digital twins in this field of research as it seems to be a very promising approach, namely for the optimization of NBCDs manufacturing processes. Full article
Show Figures

Graphical abstract

Back to TopTop