Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (112)

Search Parameters:
Keywords = soy protein gel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 449 KiB  
Review
Bioactive Compounds and the Performance of Proteins as Wall Materials for Their Encapsulation
by Therys Senna de Castro Oliveira, Jhonathan Valente Ferreira Gusmão, Thaís Caroline Buttow Rigolon, Daiana Wischral, Pedro Henrique Campelo, Evandro Martins and Paulo Cesar Stringheta
Micro 2025, 5(3), 36; https://doi.org/10.3390/micro5030036 - 31 Jul 2025
Viewed by 216
Abstract
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for [...] Read more.
The encapsulation of bioactive compounds using proteins as wall materials has emerged as an effective strategy to enhance their stability, bioavailability, and controlled release. Proteins offer unique functional properties, including amphiphilic behavior, gel-forming ability, and interactions with bioactives, making them ideal candidates for encapsulation. Animal-derived proteins, such as whey and casein, exhibit superior performance in stabilizing lipophilic compounds, whereas plant proteins, including soy and pea protein, demonstrate greater affinity for hydrophilic bioactives. Advances in protein modification and the formation of protein–polysaccharide complexes have further improved encapsulation efficiency, particularly for heat- and pH-sensitive compounds. This review explores the physicochemical characteristics of proteins used in encapsulation, the interactions between proteins and bioactives, and the main encapsulation techniques, including spray drying, complex coacervation, nanoemulsions, and electrospinning. Furthermore, the potential applications of encapsulated bioactives in functional foods, pharmaceuticals, and nutraceuticals are discussed, highlighting the role of emerging technologies in optimizing delivery systems. Understanding the synergy between proteins, bioactives, and encapsulation methods is essential for developing more stable, bioavailable, and sustainable functional products. Full article
(This article belongs to the Section Microscale Biology and Medicines)
46 pages, 5039 KiB  
Review
Harnessing Insects as Novel Food Ingredients: Nutritional, Functional, and Processing Perspectives
by Hugo M. Lisboa, Rogério Andrade, Janaina Lima, Leonardo Batista, Maria Eduarda Costa, Ana Sarinho and Matheus Bittencourt Pasquali
Insects 2025, 16(8), 783; https://doi.org/10.3390/insects16080783 - 30 Jul 2025
Viewed by 537
Abstract
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, [...] Read more.
The rising demand for sustainable protein is driving interest in insects as a raw material for advanced food ingredients. This review collates and critically analyses over 300 studies on the conversion of crickets, mealworms, black soldier flies, and other farmed species into powders, protein isolates, oils, and chitosan-rich fibers with targeted techno-functional roles. This survey maps how thermal pre-treatments, blanch–dry–mill routes, enzymatic hydrolysis, and isoelectric solubilization–precipitation preserve or enhance the water- and oil-holding capacity, emulsification, foaming, and gelation, while also mitigating off-flavors, allergenicity, and microbial risks. A meta-analysis shows insect flours can absorb up to 3.2 g of water g−1, stabilize oil-in-water emulsions for 14 days at 4 °C, and form gels with 180 kPa strength, outperforming or matching eggs, soy, or whey in specific applications. Case studies demonstrate a successful incorporation at 5–15% into bakery, meat analogs and dairy alternatives without sensory penalties, and chitin-derived chitosan films extend the bread shelf life by three days. Comparative life-cycle data indicate 45–80% lower greenhouse gas emissions and land use than equivalent animal-derived ingredients. Collectively, the evidence positions insect-based ingredients as versatile, safe, and climate-smart tools to enhance food quality and sustainability, while outlining research gaps in allergen mitigation, consumer acceptance, and regulatory harmonization. Full article
(This article belongs to the Special Issue Insects and Their Derivatives for Human Practical Uses 3rd Edition)
Show Figures

Figure 1

25 pages, 5464 KiB  
Article
Dihydromyricetin/Protein Pickering Emulsions: Interfacial Behavior, Rheology, and In Vitro Bioaccessibility
by Shengqi Mei, Lei Dou, Kaixuan Cheng, Guangqian Hou, Chi Zhang, Jianhui An, Yexing Tao, Lingli Deng and Longchen Shang
Foods 2025, 14(14), 2520; https://doi.org/10.3390/foods14142520 - 18 Jul 2025
Viewed by 334
Abstract
Protein-polyphenol-based delivery vehicles are effective strategies for encapsulating bioactive compounds, thereby enhancing their solubility and bioaccessibility. In this study, dihydromyricetin/soy protein isolate (DHM/SPI) complexes were used as emulsifiers to prepare Pickering emulsions for DHM delivery. The results show that DHM and SPI form [...] Read more.
Protein-polyphenol-based delivery vehicles are effective strategies for encapsulating bioactive compounds, thereby enhancing their solubility and bioaccessibility. In this study, dihydromyricetin/soy protein isolate (DHM/SPI) complexes were used as emulsifiers to prepare Pickering emulsions for DHM delivery. The results show that DHM and SPI form negatively charged complexes through hydrogen bonding, and the complex size decreases and stabilizes with increasing DHM addition. The size of the emulsion droplets was inversely related to the concentration of DHM addition (c), particle concentration (w), and ionic strength (i). Conversely, the increasing oil phase concentration (φ) was positively correlated with droplet size. The CLSM results confirmed the expected oil-in-water emulsion, while the rheological behavior of the Pickering emulsion highlighted its elastic, gel-like network structure and non-Newtonian fluid properties. Moreover, DHM effectively slowed lipid oxidation in the emulsion, and the bioaccessibility of DHM reached 33.51 ± 0.31% after in vitro simulated digestion. In conclusion, this emulsion system shows promising potential for delivering DHM and harnessing its bioactive effects. Full article
(This article belongs to the Special Issue Advanced Technology to Improve Plant Protein Functionality)
Show Figures

Graphical abstract

15 pages, 2695 KiB  
Article
Gelling Characteristics and Mechanisms of Heat-Triggered Soy Protein Isolated Gels Incorporating Curdlan with Different Helical Conformations
by Pei-Wen Long, Shi-Yong Liu, Yi-Xin Lin, Lin-Feng Mo, Yu Wu, Long-Qing Li, Le-Yi Pan, Ming-Yu Jin and Jing-Kun Yan
Foods 2025, 14(14), 2484; https://doi.org/10.3390/foods14142484 - 16 Jul 2025
Viewed by 233
Abstract
This study investigated the effects of curdlan (CUR) with different helical conformations on the gelling behavior and mechanisms of heat-induced soy protein isolate (SPI) gels. The results demonstrated that CUR significantly improved the functional properties of SPI gels, including water-holding capacity (0.31–5.06% increase), [...] Read more.
This study investigated the effects of curdlan (CUR) with different helical conformations on the gelling behavior and mechanisms of heat-induced soy protein isolate (SPI) gels. The results demonstrated that CUR significantly improved the functional properties of SPI gels, including water-holding capacity (0.31–5.06% increase), gel strength (7.01–240.51% enhancement), textural properties, viscoelasticity, and thermal stability. The incorporation of CUR facilitated the unfolding and cross-linking of SPI molecules, leading to enhanced network formation. Notably, SPI composite gels containing CUR with an ordered triple-helix bundled structure exhibited superior gelling performance compared to other helical conformations, characterized by a more compact and uniform microstructure. This improvement was attributed to stronger hydrogen bonding interactions between the triple-helix CUR and SPI molecules. Furthermore, the entanglement of triple-helix CUR with SPI promoted the formation of a denser and more homogeneous interpenetrating polymer network. These findings indicate that triple-helix CUR is highly effective in optimizing the gelling characteristics of heat-induced SPI gels. This study provides new insights into the structure–function relationship of CUR in SPI-based gel systems, offering potential strategies for designing high-performance protein–polysaccharide composite gels. The findings establish a theoretical foundation for applications in the food industry. Full article
(This article belongs to the Special Issue Natural Polysaccharides: Structure and Health Functions)
Show Figures

Figure 1

13 pages, 1890 KiB  
Article
Compound Salt-Based Coagulants for Tofu Gel Production: Balancing Quality and Protein Digestibility
by Zhaolu Li, Sisi Zhang, Zihan Gao, Xinyue Guo, Ruohan Wang, Maoqiang Zheng and Guangliang Xing
Gels 2025, 11(7), 524; https://doi.org/10.3390/gels11070524 - 6 Jul 2025
Viewed by 400
Abstract
Tofu quality is critically influenced by coagulants, though their impact on protein digestibility remains underexplored. This study aimed to investigate the effects of calcium sulfate (CaSO4), magnesium chloride (MgCl2), and their combination (CaSO4 + MgCl2) on [...] Read more.
Tofu quality is critically influenced by coagulants, though their impact on protein digestibility remains underexplored. This study aimed to investigate the effects of calcium sulfate (CaSO4), magnesium chloride (MgCl2), and their combination (CaSO4 + MgCl2) on the physicochemical properties and protein digestibility of tofu. Water-holding capacity, cooking loss, texture, protein composition, and protein digestibility were analyzed. The results showed that the CaSO4 + MgCl2 combination yielded a water-holding capacity of 99.16%, significantly higher than CaSO4 tofu (93.73%) and MgCl2 tofu (96.82%), while reducing cooking loss to 2.03% and yielding the highest hardness (897.27 g) and gumminess (765.72). Electrophoresis revealed distinct protein retention patterns, with MgCl2 (0.6% w/v) forming denser gels that minimized protein leakage into soy whey. During in vitro digestion, MgCl2-coagulated tofu exhibited superior soluble protein release (5.33 mg/mL after gastric digestion) and higher intestinal peptide (5.89 mg/mL) and total amino acid (123.06 μmol/mL) levels, indicating enhanced digestibility. Conversely, the CaSO4 + MgCl2 combination showed delayed proteolysis in electrophoresis analysis. These findings demonstrate that coagulant selection directly modulates tofu’s texture, water retention, and protein bioavailability, with MgCl2 favoring digestibility and the hybrid coagulant optimizing physical properties. This provides strategic insights for developing nutritionally enhanced tofu products. Full article
(This article belongs to the Special Issue Food Gel-Based Systems: Gel-Forming and Food Applications)
Show Figures

Graphical abstract

19 pages, 3175 KiB  
Article
Soy Protein-Based Emulsions: Application as Lipid Substitutes in Surimi Gels
by Fali Zhang, Jian Shi, Yanfei Chen, Yao Yue, Wenzheng Shi, Tanye Xu and Min Qu
Foods 2025, 14(13), 2342; https://doi.org/10.3390/foods14132342 - 1 Jul 2025
Viewed by 494
Abstract
By analyzing interfacial dynamics between soybean oil concentrations and soy protein isolate (SPI), this study established their impact on Pickering emulsion stability. Two optimal soy protein-based emulsions (EM60 with 60% oil phase; EM75 with 75%) were identified as lipid substitutes in silver carp [...] Read more.
By analyzing interfacial dynamics between soybean oil concentrations and soy protein isolate (SPI), this study established their impact on Pickering emulsion stability. Two optimal soy protein-based emulsions (EM60 with 60% oil phase; EM75 with 75%) were identified as lipid substitutes in silver carp surimi products. The results revealed that uniformly spherical droplets in EM60 enhanced interparticle interactions at emulsion interfaces. Compared to EM75 addition, EM60’s finely dispersed droplets improved gel network compactness in the surimi matrix. This increased water-holding capacity (WHC) by 12.037% and gel strength by 2414.168 g·mm. EM75 addition significantly enhanced gel whiteness by 0.8483 units (p < 0.05). It also demonstrated superior physical filling effects in sol state, reinforcing structural rigidity. As unsaturated lipids, soybean oil substitution for saturated fats (e.g., lard) contributes positively to human health. Pre-emulsified soybean oil yielded stronger structural rigidity in surimi sol than direct oil addition. Post-gelation, significant increases were observed in gel strength (+828.100 g·mm), WHC (+6.093%), and elasticity (+0.07 units). Collectively, SPI-based emulsions offer novel insights for healthy lipid substitution in surimi gels. They elucidate differential impact mechanisms on texture, WHC, whiteness, and microstructure. This provides theoretical guidance for developing premium healthy surimi products. Full article
(This article belongs to the Special Issue Oil and Protein Engineering and Its Applications in Food Industry)
Show Figures

Figure 1

17 pages, 2568 KiB  
Article
Effect of TGase Crosslinking on the Structure, Emulsification, and Gelling Properties of Soy Isolate Proteins
by Ziqi Peng, Kunlun Liu and Ning Liao
Foods 2025, 14(12), 2130; https://doi.org/10.3390/foods14122130 - 18 Jun 2025
Viewed by 435
Abstract
Soy isolate protein (SPI), as a high-quality plant protein source, is often processed into various soy products. In this study, the physicochemical properties of SPI treated with transglutaminase (TGase) were investigated in correlation with emulsification characteristics and rheological behavior. The polyacrylamide gel electrophoresis [...] Read more.
Soy isolate protein (SPI), as a high-quality plant protein source, is often processed into various soy products. In this study, the physicochemical properties of SPI treated with transglutaminase (TGase) were investigated in correlation with emulsification characteristics and rheological behavior. The polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS-PAGE) and Fourier-transform infrared spectroscopy (FTIR) and endogenous fluorescence spectrum analysis results showed that TGase was able to promote the covalent binding of lysine and glutamine residues in SPI. The moderate pre-crosslinking treatment of TGase (5–7.5 U/g TGase pre-crosslinked for 2 h or 5 U/g TGase pre-crosslinked for 2–3 h) improved the emulsification and gel properties to varying degrees: the nanoparticle and emulsification performance increased by 24.35% and the storage modulus of the gel increased by 288%. Furthermore, the surface charge of SPI increased due to the crosslinking impact of TGase, indicating a considerable rise in the surface electrostatic potential. Simultaneously, the protein surface exhibited a substantial increase in hydrophobicity, while the level of free sulfhydryl groups reduced. These changes indicate that TGase enzymatic crosslinking could significantly improve the structural stability of nanoparticles by enhancing the generation efficiency of covalent bonds between protein molecules. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

21 pages, 4203 KiB  
Article
Multiscale Characterization of Rice Starch Gelation and Retrogradation Modified by Soybean Residue (Okara) and Extracted Dietary Fiber Using Rheology, Synchrotron Wide-Angle X-Ray Scattering (WAXS), and Fourier Transform Infrared (FTIR) Spectroscopy
by Aunchalee Aussanasuwannakul and Suparat Singkammo
Foods 2025, 14(11), 1862; https://doi.org/10.3390/foods14111862 - 23 May 2025
Viewed by 700
Abstract
Okara, the soybean residue from soy milk and tofu production, offers significant potential as a sustainable, fiber-rich ingredient for starch-based and gluten-free food systems. This study investigates the comparative effects of whole okara and its extracted dietary fiber (DF) on the retrogradation, rheological [...] Read more.
Okara, the soybean residue from soy milk and tofu production, offers significant potential as a sustainable, fiber-rich ingredient for starch-based and gluten-free food systems. This study investigates the comparative effects of whole okara and its extracted dietary fiber (DF) on the retrogradation, rheological properties, and nanostructural organization of rice starch (RS) gels. Rice starch suspensions were blended with 5–20% (dry basis) of either whole okara or DF, thermally gelatinized, and analyzed using dynamic rheology, synchrotron-based Wide-Angle X-ray Scattering (WAXS), and Fourier Transform Infrared (FTIR) spectroscopy. DF markedly reduced the gelation temperature and enhanced storage modulus (G′), indicating earlier and stronger gel network formation. WAXS analysis showed that DF more effectively disrupted long-range molecular ordering, as evidenced by suppressed crystallinity development and disrupted molecular ordering within the A-type lattice. FTIR spectra revealed intensified O–H stretching and new ester carbonyl bands, with progressively higher short-range molecular order (R1047/1022) in DF-modified gels. While whole okara provided moderate retrogradation resistance and contributed to network cohesiveness via its matrix of fiber, protein, and lipid, DF exhibited superior retrogradation inhibition and gel stiffness due to its purity and stronger fiber–starch interactions. These results highlight the functional divergence of okara-derived ingredients and support their targeted use in formulating stable, fiber-enriched, starch-based foods. Full article
Show Figures

Graphical abstract

18 pages, 2566 KiB  
Article
Texture-Modified Soy Protein Gels Using Transglutaminase and Agar for Elderly Dysphagia Management
by Puchcharin Paleekui, Benjamard Rattanamato, Nattapong Kanha, Kanyasiri Rakariyatham, Wannaporn Klangpetch, Sukhuntha Osiriphun and Thunnop Laokuldilok
Gels 2025, 11(4), 303; https://doi.org/10.3390/gels11040303 - 20 Apr 2025
Viewed by 847
Abstract
Dysphagia, a condition characterized by difficulty swallowing, is commonly found in the elderly, increasing the risk of choking and aspiration. This study aimed to develop a texturally modified soy protein gel that meets the Universal Design Food (UDF) standard, specifically for elderly individuals [...] Read more.
Dysphagia, a condition characterized by difficulty swallowing, is commonly found in the elderly, increasing the risk of choking and aspiration. This study aimed to develop a texturally modified soy protein gel that meets the Universal Design Food (UDF) standard, specifically for elderly individuals with dysphagia. To create soft-textured foods, the gel’s texture was modified using transglutaminase at varying concentrations (0.5%, 1.0%, and 2.0%, w/v) in combination with agar. The soy protein gel prepared with 0.5% transglutaminase exhibited the lowest hardness value (2.2 × 103 N/m2) and was classified as Level 4 under the UDF standard, indicating that it requires no chewing and is easy to swallow, making it suitable for individuals with severe dysphagia. In contrast, the gel formulated with 2.0% transglutaminase and 0.5% agar had the highest hardness value (3.29 × 104 N/m2) and was classified as Level 2, meaning it can be easily mashed with the gums, making it appropriate for individuals with moderate dysphagia. Structural analyses revealed that modifying with transglutaminase altered the protein’s secondary structure by reducing the content of α-helixes and β-sheets while increasing β-turns, potentially enhancing gel network flexibility. These findings suggest that the combined use of transglutaminase and agar effectively modifies soy protein gel texture to meet the dietary needs of elderly individuals with dysphagia. This approach shows promise for the food industry by providing safer and more diverse food options for aging populations facing dysphagia. Full article
(This article belongs to the Special Issue Recent Advances in Protein Gels)
Show Figures

Graphical abstract

19 pages, 4550 KiB  
Article
Development of Biomimetic Edible Scaffolds for Cultured Meat Based on the Traditional Freeze-Drying Method for Ito-Kanten (Japanese Freeze-Dried Agar)
by Ping Xia, Hiroki Miyajima and Satoshi Fujita
Gels 2025, 11(4), 299; https://doi.org/10.3390/gels11040299 - 18 Apr 2025
Cited by 1 | Viewed by 888
Abstract
In this study, we aimed to develop soy protein-derived edible porous hydrogel scaffolds for cultured meat based on mechanical anisotropy to mimic the physical and biochemical properties of muscle tissues. Based on the traditional Japanese Ito-Kanten (thread agar) freeze–thaw process, we used liquid [...] Read more.
In this study, we aimed to develop soy protein-derived edible porous hydrogel scaffolds for cultured meat based on mechanical anisotropy to mimic the physical and biochemical properties of muscle tissues. Based on the traditional Japanese Ito-Kanten (thread agar) freeze–thaw process, we used liquid nitrogen directional freezing combined with ion crosslinking to fabricate an aligned scaffold composed of soy protein isolate (SPI), carrageenan (CA), and sodium alginate (SA). SPI, CA, and SA were dissolved in water, heated, mixed, and subjected to directional freezing in liquid nitrogen. The frozen gel was immersed in Ca2+ and K+ solutions for low-temperature crosslinking, followed by a second freezing step and lyophilization to create the SPI/CA/SA cryogel scaffold with anisotropic pore structure. Furthermore, C2C12 myoblasts were seeded onto the scaffold. After 14 d of dynamic culture, the cells exhibited significant differentiation along the aligned structure of the scaffold. Overall, our developed anisotropic scaffold provided a biocompatible environment to promote directed cell differentiation, showing potential for cultured meat production and serving as a sustainable protein source. Full article
(This article belongs to the Special Issue Customizing Hydrogels: A Journey from Concept to End-Use Properties)
Show Figures

Figure 1

16 pages, 3230 KiB  
Article
Influence of Interactions Between Drawing Soy Protein and Myofibrillar Proteins on Gel Properties
by Tong Jiang, Yujie Zhao, Mingming Huang, Zhiyong Zhang, Yanwei Mao and Huixin Zuo
Foods 2025, 14(6), 1064; https://doi.org/10.3390/foods14061064 - 20 Mar 2025
Cited by 1 | Viewed by 593
Abstract
Drawing soy protein (DSP) exhibits a well-defined fibrous structure, conferring significant market potential. This study investigates the interactions between DSP and myofibrillar proteins (MP) and their effects on gel properties. Porcine myofibrillar protein (MP) was used as the raw material, and mixed systems [...] Read more.
Drawing soy protein (DSP) exhibits a well-defined fibrous structure, conferring significant market potential. This study investigates the interactions between DSP and myofibrillar proteins (MP) and their effects on gel properties. Porcine myofibrillar protein (MP) was used as the raw material, and mixed systems were prepared by incorporating different concentrations of DSP at 0%, 2%, 4%, 6%, and 8% to evaluate their physicochemical properties and gel characteristics. The results demonstrated that the addition of DSP enhanced the gel strength, hardness, and water-holding capacity (WHC) of MP, thereby improving the overall properties and water retention of the gels. Among them, the trend of change was most obvious when the addition amount was 6%. The gel strength increased by 196.5%, the water retention capacity improved by 68.3%, and the hardness rose by 33.3%. Furthermore, as the addition amount of DSP increases, the total thiol content decreases, the hydrogen bond content increases, and the surface hydrophobicity enhances. This leads to a more compact arrangement of protein molecules, which is conducive to a denser and more stable solution and improves the stability of the protein solution. The α-helical structures in the proteins progressively transformed into β-turn structures, exposing more amino acid side chains and inducing conformational changes in MP, resulting in denser and more uniform gel network structures. The most pronounced changes were observed at a 6% addition level. These findings contribute to diversifying meat products and provide a theoretical basis for improving the WHC and yield of emulsified meat products in pork processing. Full article
(This article belongs to the Special Issue Animal Source Food Processing and Quality Control)
Show Figures

Figure 1

28 pages, 17464 KiB  
Article
Effect of the Number of Gallate Groups of Polyphenols on the Structure, Gel Properties, and Biological Activity of Soy Protein Fibrils
by Tianhe Xu, Ruihan Su, Bowen Yang, Shicheng Dai, Junzheng Wang, Weixiang Zhu, Qi Fang, Huan Wang and Lianzhou Jiang
Foods 2025, 14(6), 974; https://doi.org/10.3390/foods14060974 - 12 Mar 2025
Viewed by 930
Abstract
Amyloid fibril hydrogels prepared via protein acid heating currently exhibit inadequate gel properties and biological activity. These limitations can be addressed by modifying the amyloid fibrils with polyphenols. In this study, two types of polyphenols—tannic acid (TA) and gallic acid (GA)—were selected to [...] Read more.
Amyloid fibril hydrogels prepared via protein acid heating currently exhibit inadequate gel properties and biological activity. These limitations can be addressed by modifying the amyloid fibrils with polyphenols. In this study, two types of polyphenols—tannic acid (TA) and gallic acid (GA)—were selected to prepare hydrogels with soy protein fibrils (SPIFs) at varying proportions to investigate structure, gel properties, and biological activity. TEM results revealed that polyphenols are deposited on the surface of SPIFs by hydrogen bonding and hydrophobic interaction to form hybrid supramolecules. The greater the mass ratio of polyphenols to SPIF, the more pronounced the structural changes. When the mass ratios of TA, GA, and SPIF were 1:20 and 1:2, respectively, the β-sheet content reached the maximum. The gel strength increased by 6 times and 5 times, respectively, with the modulus reaching 334.91 Pa and 317.79 Pa, respectively. The hydrogels exhibited optimal apparent viscosity and structural recovery properties. Bacteriostatic and cytotoxicity tests demonstrated that the hydrogels exhibited excellent antibacterial properties while maintaining safety. In summary, TA demonstrates significant advantages in remodeling SPIF at low concentrations, thereby enhancing the gel characteristics and antibacterial properties of the hydrogel. Full article
Show Figures

Graphical abstract

14 pages, 3849 KiB  
Article
Tyrosinase-Catalyzed Soy Protein and Tannic Acid Interaction: Effects on Structural and Rheological Properties of Complexes
by Yaqiong Pei, Lei Yuan, Wenjing Zhou and Jun Yang
Gels 2025, 11(3), 195; https://doi.org/10.3390/gels11030195 - 12 Mar 2025
Cited by 1 | Viewed by 845
Abstract
This study investigated the structural, rheological, and microstructural properties of soy protein isolate (SPI) induced by tyrosinase-catalyzed crosslinking with tannic acid (TA) at 25 °C under neutral conditions at pH 6.5. The particle size and polydispersity index of modified SPI progressively increased with [...] Read more.
This study investigated the structural, rheological, and microstructural properties of soy protein isolate (SPI) induced by tyrosinase-catalyzed crosslinking with tannic acid (TA) at 25 °C under neutral conditions at pH 6.5. The particle size and polydispersity index of modified SPI progressively increased with rising TA concentrations. Tyrosinase-induced polymerization significantly impacted the conformational structure of SPI, evidenced by a notable decrease in intrinsic fluorescence, a pronounced red shift, and a remarkable reduction in surface hydrophobicity. FTIR analysis further revealed that, compared to control SPI, the amide I, II, and III bands of SPI incubated with TA and tyrosinase exhibited varying degrees of red-shift or blue-shift. These observations suggested a substantial alteration in the secondary structure of SPI after incubation with TA and tyrosinase. The apparent viscosity, G′, and G″ of the modified SPI increased with higher TA concentrations, indicating that the modification of SPI by TA in the presence of tyrosinase resulted in enhanced covalent crosslinking. Microstructural observations confirmed that higher TA levels promoted the formation of denser and more uniform gel-like networks. The findings demonstrated that tyrosinase-mediated crosslinking improved the functionality of SPI, making it a promising approach for food applications. Full article
(This article belongs to the Section Gel Analysis and Characterization)
Show Figures

Figure 1

18 pages, 7253 KiB  
Article
Effects of Polysaccharide Supplementation on Lactic Acid Bacteria-Fermented Soy Protein Gel: Structural Characteristics, Allergenicity, and Epitope Analysis
by Xinran Guo, Yun Luo, Xia Fan, Benjamin K. Simpson, Wei Li and Xin Rui
Foods 2025, 14(4), 701; https://doi.org/10.3390/foods14040701 - 18 Feb 2025
Viewed by 1387
Abstract
Background: Soy allergy is an important nutritional and health issue that needs to be addressed. Lactic acid bacteria (LAB) fermentation is an effective approach to reduce soy protein allergy. Polysaccharides are commonly used in LAB-fermented products to enhance their textural properties. This study [...] Read more.
Background: Soy allergy is an important nutritional and health issue that needs to be addressed. Lactic acid bacteria (LAB) fermentation is an effective approach to reduce soy protein allergy. Polysaccharides are commonly used in LAB-fermented products to enhance their textural properties. This study proposes a new strategy for developing hypoallergenic soy protein products. Methods: We prepared a soy protein isolate (SPI) through fermentation with LAB (FSPI) and with five types of polysaccharides supplementation, namely polydextrose (PDX), inulin (IN), long-chain inulin (LCIN), soluble soy polysaccharides (SSPS), and β-glucan (BG). The texture and microstructure of different samples were analyzed. Antigenicity and IgE-binding capacity were determined using ELISA. Finally, peptide sequencing was used to identify the degradation degree and frequency of allergenic epitopes. Results: Samples with added PDX (F-PDX) and IN (F-IN) exhibited lower hardness; smaller, irregular pores; and a honeycomb structure, whereas samples with SSPS (F-SSPS) and BG (F-BG) had higher hardness; large, regular pores; and strong sheet structures. The antigenicity and IgE-binding capacity of F-PDX and F-IN were lower both before and after 120 min of in vitro dynamic gastrointestinal digestion. The peptidomics results indicated that F-PDX and F-IN primarily facilitated the degradation of the glycinin G1 and G2 subunits, β-conglycinin α, and the β subunit. Moreover, it increased the frequency of destruction of allergenic epitopes, and further promoted the degradation of epitopes in the external α-helix structures of glycinin and β-conglycinin compared to FSPI. Conclusions: The addition of polysaccharides had a significant impact on the structure and allergenicity of the soy protein gel, especially PDX and IN. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

26 pages, 6284 KiB  
Article
Proteomic Analysis of Plants with Binding Immunoglobulin Protein Overexpression Reveals Mechanisms Related to Defense Against Moniliophthora perniciosa
by Grazielle da Mota Alcântara, Gláucia Carvalho Barbosa Silva, Irma Yuliana Mora Ocampo, Amanda Araújo Kroger, Rafaelle Souza de Oliveira, Karina Peres Gramacho, Carlos Priminho Pirovani and Fátima Cerqueira Alvim
Plants 2025, 14(4), 503; https://doi.org/10.3390/plants14040503 - 7 Feb 2025
Viewed by 1034
Abstract
Moniliophthora perniciosa is one of the main pathogens affecting cocoa, and controlling it generally involves planting resistant genotypes followed by phytosanitary pruning. The identification of plant genes related to defense mechanisms is crucial to unravel the molecular basis of plant–pathogen interactions. Among the [...] Read more.
Moniliophthora perniciosa is one of the main pathogens affecting cocoa, and controlling it generally involves planting resistant genotypes followed by phytosanitary pruning. The identification of plant genes related to defense mechanisms is crucial to unravel the molecular basis of plant–pathogen interactions. Among the candidate genes, BiP stands out as a molecular chaperone located in the endoplasmic reticulum that facilitates protein folding and is induced under stress conditions, such as pathogen attacks. In this study, the SoyBiPD gene was expressed in Solanum lycopersicum plants and the plants were challenged with M. perniciosa. The control plants exhibited severe symptoms of witches’ broom disease, whereas the transgenic lines showed no or mild symptoms. Gel-free proteomics revealed significant changes in the protein profile associated with BiP overexpression. Inoculated transgenic plants had a higher abundance of resistance-related proteins, such as PR2, PR3, and PR10, along with increased activity of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase, and fungal cell wall-degrading enzymes (glucanases). Additionally, transgenic plants accumulated less H2O2, indicating more efficient control of reactive oxygen species (ROS). The interaction network analysis highlighted the activation of defense-associated signaling and metabolic pathways, conferring a state of defensive readiness even in the absence of pathogens. These results demonstrate that BiP overexpression increases the abundance of defense proteins, enhances antioxidant capacity, and confers greater tolerance to biotic stress. This study demonstrates the biotechnological potential of the BiP gene for genetic engineering crops with increased resistance to economically important diseases, such as witches’ broom in cocoa. Full article
Show Figures

Figure 1

Back to TopTop