Dihydromyricetin/Protein Pickering Emulsions: Interfacial Behavior, Rheology, and In Vitro Bioaccessibility
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of DHM/SPI Complexes
2.3. Characterization of DHM/SPI Complexes
2.3.1. Chromaticity
2.3.2. Contact Angle
2.3.3. Particle Size and Zeta Potential
2.3.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.5. X-Ray Diffraction (XRD)
2.3.6. Thermogravimetric Analysis (TG)
2.3.7. Molecular Docking Modeling of DHM and SPI
2.4. Preparation of Pickering Emulsion Stabilized by DHM/SPI Complexes
2.5. Characterization and Bioactivity Determination of Pickering Emulsions Stabilized by DHM/SPI Complexes
2.5.1. Zeta Potential
2.5.2. Optical Microscopy
2.5.3. Confocal Laser Scanning Microscopy (CLSM)
2.5.4. Creaming Index (CI)
2.5.5. Rheological Behavior
2.5.6. Lipid Peroxidation
2.5.7. In Vitro Simulated Digestion
2.6. Statistical Analysis
3. Results and Discussion
3.1. Chromaticity Analysis of DHM/SPI Complexes
3.2. Contact Angle Analysis of DHM/SPI Complexes
3.3. Particle Size and Zeta Potential Analysis of DHM/SPI Complexes
3.4. XRD Analysis
3.5. FTIR and Secondary Structure Analysis
3.6. Thermogravimetric Analysis
3.7. Molecular Docking Modeling Analysis of DHM and SPI
3.8. Formation of Pickering Emulsions of DHM/SPI Complexes and CI During Storage
3.9. Optical Microscopy of Pickering Emulsion
3.10. Zeta Potential Analysis of Emulsion
3.11. CLSM Observation of Emulsion
3.12. Rheological Behavior Analysis of Emulsion
3.13. Lipid Peroxidation Analysis of Emulsion
3.14. In Vitro Simulated Digestion Analysis of Emulsion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zaragozá, C.; Villaescusa, L.; Monserrat, J.; Zaragozá, F.; Álvarez-Mon, M. Potential Therapeutic Anti-Inflammatory and Immunomodulatory Effects of Dihydroflavones, Flavones, and Flavonols. Molecules 2020, 25, 1017. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, Y.; Zhang, M.; Zhang, Y.; Ji, H.; Shen, L. Recent advances in research on vine tea, a potential and functional herbal tea with dihydromyricetin and myricetin as major bioactive compounds. J. Pharm. Anal. 2021, 11, 555–563. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019, 570, 118642. [Google Scholar] [CrossRef]
- Hei, X.; Li, S.; Liu, Z.; Wu, C.; Ma, X.; Jiao, B.; Hu, H.; Zhu, J.; Adhikari, B.; Wang, Q.; et al. Characteristics of Pickering emulsions stabilized by microgel particles of five different plant proteins and their application. Food Chem. 2024, 449, 139187. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Lu, J.; Du, W.; Wu, Q.; Han, L.; Su, S. Encapsulation of β-carotene in Pickering emulsions stabilized by self-aggregated chitosan nanoparticles: Factors affecting β-carotene stability. Int. J. Biol. Macromol. 2024, 277, 133696. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Murray, B.S.; Yusoff, A.; Morgan, M.R.A.; Povey, M.J.W.; Day, A.J. Particle-Stabilizing Effects of Flavonoids at the Oil−Water Interface. J. Agric. Food Chem. 2011, 59, 2636–2645. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wu, X.; Gao, T.; Geng, M.; Teng, F.; Li, Y. Revealing the interaction mechanism and emulsion properties of carboxymethyl cellulose on soy protein isolate at different pH. Food Hydrocoll. 2024, 150, 109739. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Y.; Ma, C.; Wang, B.; Bian, X.; Zhang, G.; Liu, X.; Song, Z.; Zhang, N. High freeze-thaw stability of Pickering emulsion stabilized by SPI-maltose particles and its effect on frozen dough. Int. J. Biol. Macromol. 2024, 276, 133778. [Google Scholar] [CrossRef]
- Singh, P.; Kumar, R.; Sabapathy, S.N.; Bawa, A.S. Functional and Edible Uses of Soy Protein Products. Compr. Rev. Food Sci. Food Saf. 2008, 7, 14–28. [Google Scholar] [CrossRef]
- Dickinson, E. Strategies to control and inhibit the flocculation of protein-stabilized oil-in-water emulsions. Food Hydrocoll. 2019, 96, 209–223. [Google Scholar] [CrossRef]
- Hui, Y.; Zhang, L.; Zhang, J.; Wang, K.; You, S.; Su, R.; Qi, W. Pickering emulsions stabilized by soy protein/proanthocyanidins nanocomplexes: Physicochemical properties and in vitro release properties. Colloids Surf. A Physicochem. Eng. Asp. 2024, 699, 134711. [Google Scholar] [CrossRef]
- Zhang, R.; Wei, Y.; Zou, B.; Zheng, X.; Ren, C.; Na, X.; Xu, X.; Du, M.; Zhu, B.; Wu, C. Soy protein particles as stabilizers of heat-stable O/W emulsions with 20% protein content. Food Chem. 2024, 457, 140157. [Google Scholar] [CrossRef] [PubMed]
- Benetti, J.V.M.; do Prado Silva, J.T.; Nicoletti, V.R. SPI microgels applied to Pickering stabilization of O/W emulsions by ultrasound and high-pressure homogenization: Rheology and spray drying. Food Res. Int. 2019, 122, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, Z.; Zhang, T.; Zhang, Y.; Jiang, L.; Sui, X. Heteroprotein complex coacervates of soy protein isolate and type-A gelatin: Formation mechanism, structure and rheological properties. Food Hydrocoll. 2025, 158, 110533. [Google Scholar] [CrossRef]
- Santos, M.A.S.; Okuro, P.K.; Fonseca, L.R.; Cunha, R.L. Protein-based colloidal structures tailoring techno- and bio-functionality of emulsions. Food Hydrocoll. 2022, 125, 107384. [Google Scholar] [CrossRef]
- Kim, W.; Wang, Y.; Selomulya, C. Dairy and plant proteins as natural food emulsifiers. Trends Food Sci. Technol. 2020, 105, 261–272. [Google Scholar] [CrossRef]
- Ye, Y.; Jia, G.; Chen, F.; Gou, X.; Shui, Q.; Wang, Y.; Liu, Y. Pickering emulsions stabilized with SPI-Cur conjugates: Effects on storage, gastrointestinal viability of Lactobacillus plantarum. LWT 2025, 217, 117379. [Google Scholar] [CrossRef]
- Najari, Z.; Dokouhaki, M.; Juliano, P.; Adhikari, B. Advances in the application of protein-polysaccharide-polyphenol ternary complexes for creating and stabilizing Pickering emulsions. Future Foods 2024, 9, 100299. [Google Scholar] [CrossRef]
- Cen, S.; Li, S.; Meng, Z. Advances of protein-based emulsion gels as fat analogues: Systematic classification, formation mechanism, and food application. Food Res. Int. 2024, 191, 114703. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, Y.; Liu, H.; Chen, Q.; Liu, Q.; Kong, B. Soy protein isolate-sodium alginate colloidal particles for improving the stability of high internal phase Pickering emulsions: Effects of mass ratios. Food Chem. X 2024, 21, 101094. [Google Scholar] [CrossRef]
- Ding, J.; Qiu, X.; Li, Y.; Wang, Y.; Mao, Y.; Yang, C.; Sun, Y. Preparation and characterization of protein-antioxidant complex pickering particles for high internal phase emulsions. Food Hydrocoll. 2024, 151, 109861. [Google Scholar] [CrossRef]
- Li, Z.; Yu, D. Formulation and characterization of pH-responsive pickering emulsions stabilized by soy protein isolate/nicotinamide mononucleotide complexes for controlled drug release. Ind. Crops Prod. 2023, 203, 117158. [Google Scholar] [CrossRef]
- Wang, H.; Wei, Y.-L.; Liang, X.-Y.; Xu, M.-Z.; Chen, Q.-H.; Zeng, Q.-Z.; Yuan, Y. Novel bilayer pickering emulsions stabilized by in situ modification of zein via selenium nanoparticles: Optimization, physicochemical properties and permeation. Food Hydrocoll. 2024, 156, 110323. [Google Scholar] [CrossRef]
- Yang, D.; Wang, X.-Y.; Lee, J.H. Effects of flavonoids on physical and oxidative stability of soybean oil O/W emulsions. Food Sci. Biotechnol. 2015, 24, 851–858. [Google Scholar] [CrossRef]
- Geng, S.; Jiang, Z.; Ma, H.; Pu, P.; Liu, B.; Liang, G. Fabrication and characterization of novel edible Pickering emulsion gels stabilized by dihydromyricetin. Food Chem. 2021, 343, 128486. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Liu, X.; Ma, H.; Liu, B.; Liang, G. Multi-scale stabilization mechanism of pickering emulsion gels based on dihydromyricetin/high-amylose corn starch composite particles. Food Chem. 2021, 355, 129660. [Google Scholar] [CrossRef]
- Fang, F.; Tian, Z.; Huang, L.; Cai, Y.; Van der Meeren, P.; Wang, J. A novel Pickering emulsion gels stabilized by cellulose nanofiber/dihydromyricetin composite particles: Microstructure, rheological behavior and oxidative stability. Int. J. Biol. Macromol. 2024, 278, 135281. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, Y.; Xu, S.; Fang, X.; Yang, F.; Li, Y. High internal phase emulsion stabilized by soy protein isolate-Rutin complex: Rheological properties, bioaccessibility and in vitro release kinetics. Int. J. Biol. Macromol. 2024, 280, 135748. [Google Scholar] [CrossRef]
- Hu, J.-N.; Zheng, H.; Chen, X.-X.; Li, X.; Xu, Y.; Xu, M.-F. Synergetic effects of whey protein isolate and naringin on physical and oxidative stability of oil-in-water emulsions. Food Hydrocoll. 2020, 101, 105517. [Google Scholar] [CrossRef]
- Zhang, M.; Zhou, L.; Yang, F.; Yao, J.; Ma, Y.; Liu, J. Construction of high internal phase Pickering emulsions stabilized by bamboo fungus protein gels with the effect of pH. Food Chem. 2022, 369, 130954. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Z.; Hei, X.; Li, S.; Jiao, B.; Ma, X.; Hu, H.; Zhu, J.; Binks, B.P.; Jia, Z.; et al. 3D printing of pickering emulsion gels of protein particles prepared by high pressure homogenization and heating. LWT 2024, 206, 116568. [Google Scholar] [CrossRef]
- Cai, Q.; Zhong, Y.; Xu, M.; Huang, Q.; Lu, X. 3D printed high oil custard cream: Effects of whey protein isolate, hydroxypropylated starch and carrageenan on physicochemical properties and printing performance. LWT 2022, 156, 113039. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Chen, H.; Deng, Y.; Wei, Z.; Zhang, Y.; Tang, X.; Li, P.; Zhao, Z.; Zhou, P.; et al. Rice bran-modified wheat gluten nanoparticles effectively stabilized pickering emulsion: An interfacial antioxidant inhibiting lipid oxidation. Food Chem. 2022, 387, 132874. [Google Scholar] [CrossRef] [PubMed]
- Yi, F.; Wu, K.; Yu, G.; Su, C. Preparation of Pickering emulsion based on soy protein isolate-gallic acid with outstanding antioxidation and antimicrobial. Colloids Surf. B Biointerfaces 2021, 206, 111954. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Xie, Y.; Li, Z.; Bai, C.; Zou, L.; Liu, W. Novel seamless shell-core microbead for probiotics encapsulation: Influence of gel structure on storage stability and gastrointestinal activity. Food Hydrocoll. 2024, 152, 109908. [Google Scholar] [CrossRef]
- Huang, L.; Li, D.; Ma, Y.; Liu, Y.; Liu, G.; Wang, Y.; Tan, B. Dietary fatty acid-mediated protein encapsulation simultaneously improving the water-solubility, storage stability, and oral absorption of astaxanthin. Food Hydrocoll. 2022, 123, 107152. [Google Scholar] [CrossRef]
- Chen, K.; Chen, X.; Liang, L.; Xu, X. Gallic Acid-Aided Cross-Linking of Myofibrillar Protein Fabricated Soluble Aggregates for Enhanced Thermal Stability and a Tunable Colloidal State. J. Agric. Food Chem. 2020, 68, 11535–11544. [Google Scholar] [CrossRef]
- Jongberg, S.; Gislason, N.E.; Lund, M.N.; Skibsted, L.H.; Waterhouse, A.L. Thiol–Quinone Adduct Formation in Myofibrillar Proteins Detected by LC-MS. J. Agric. Food Chem. 2011, 59, 6900–6905. [Google Scholar] [CrossRef]
- Pan, Y.; Zhu, C.; Yue, X.; Liu, C.; Guo, R.; Guo, Y. High internal phase Pickering emulsions stabilized by Pleurotus eryngii protein-polysaccharide conjugates. Int. J. Biol. Macromol. 2025, 296, 139531. [Google Scholar] [CrossRef]
- Yi, X.; Chen, Y.; Ding, B.; Ma, K.; Li, Z.; Luo, Y. High internal phase Pickering emulsions prepared by globular protein-tannic acid complexes: A hydrogen bond-based interfacial crosslinking strategy. J. Mol. Liq. 2023, 370, 121025. [Google Scholar] [CrossRef]
- Wang, S.; Liu, L.; Bi, S.; Zhou, Y.; Liu, Y.; Wan, J.; Zeng, L.; Zhu, Q.; Pang, J.; Huang, X. Studies on stabilized mechanism of high internal phase Pickering emulsions from the collaboration of low dose konjac glucomannan and myofibrillar protein. Food Hydrocoll. 2023, 143, 108862. [Google Scholar] [CrossRef]
- Tian, M.; Wang, J.; Hayat, K.; Lu, H.; Cong, L.; Huang, M. Fabrication of pea protein–naringin Pickering emulsion to mask the bitterness of naringin. Int. J. Food Sci. Technol. 2023, 58, 3838–3849. [Google Scholar] [CrossRef]
- Fang, F.; Tian, Z.; Cai, Y.; Huang, L.; Van der Meeren, P.; Wang, J. The structural, antioxidant and emulsifying properties of cellulose nanofiber-dihydromyricetin mixtures: Effects of composite ratio. Food Chem. 2024, 454, 139803. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Bai, X.; Zeng, J.; Zhang, J.; Liu, X.; Wang, S.; Chen, X.; Wu, J. Fabrication and characterization of potato short amylose, zein, and pectin ternary composite particles stabilized pickering emulsions and their application on nuciferine delivery. Food Res. Int. 2024, 197, 115187. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shi, C.; Zhou, X.; Lin, T.; Gong, Y.; Yin, M.; Fan, L.; Wang, W.; Fang, J. Preparation of a nanoscale dihydromyricetin-phospholipid complex to improve the bioavailability: In vitro and in vivo evaluations. Eur. J. Pharm. Sci. 2019, 138, 104994. [Google Scholar] [CrossRef]
- Ye, G.; Wu, T.; Li, Z.; Teng, M.; Ma, L.; Qin, M.; Zhao, P.; Fu, Q. Preparation and characterization of novel composite nanoparticles using zein and hyaluronic acid for efficient delivery of naringenin. Food Chem. 2023, 417, 135890. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, N.; Ding, Z.; Song, J.; Zhang, Y.; Li, C.; Huang, X.; Feng, Z. Preparation, structural changes and functional properties of the covalent complexes of almond protein and phloretin. Int. J. Biol. Macromol. 2025, 293, 139322. [Google Scholar] [CrossRef]
- Ge, G.; Guo, W.; Zheng, J.; Zhao, M.; Sun, W. Effect of interaction between tea polyphenols with soymilk protein on inactivation of soybean trypsin inhibitor. Food Hydrocoll. 2021, 111, 106177. [Google Scholar] [CrossRef]
- Yang, C.; Wang, B.; Wang, J.; Xia, S.; Wu, Y. Effect of pyrogallic acid (1,2,3-benzenetriol) polyphenol-protein covalent conjugation reaction degree on structure and antioxidant properties of pumpkin (Cucurbita sp.) seed protein isolate. LWT 2019, 109, 443–449. [Google Scholar] [CrossRef]
- Wang, C.; Xiong, W.; Reddy Perumalla, S.; Fang, J.; Calvin Sun, C. Solid-state characterization of optically pure (+)Dihydromyricetin extracted from Ampelopsis grossedentata leaves. Int. J. Pharm. 2016, 511, 245–252. [Google Scholar] [CrossRef]
- Chen, H.; Liu, X.; Liu, J.; Fan, H.; Ren, J.; Liu, H.; Liu, T. Study on the structure and adsorption characteristics of the complex of modified Lentinus edodes stalks dietary fiber and tea polyphenol. Food Chem. 2025, 468, 142321. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, M.; Wang, M.; Wang, S.; Wang, S.; Wang, P.; Li, J.; Liu, H. Development and characterization of adhesives constructed by soy protein isolate and tea polyphenols for enhanced tensile strength in plant-protein meat applications. Food Chem. 2024, 453, 139643. [Google Scholar] [CrossRef]
- Shi, T.; Liu, H.; Song, T.; Xiong, Z.; Yuan, L.; McClements, D.J.; Jin, W.; Sun, Q.; Gao, R. Use of l-arginine-assisted ultrasonic treatment to change the molecular and interfacial characteristics of fish myosin and enhance the physical stability of the emulsion. Food Chem. 2021, 342, 128314. [Google Scholar] [CrossRef]
- Cai, D.; Yan, X.; Zhou, S.; Meng, Y.; Chen, X.; Wang, G.; Ding, W. Cellulose nanocrystals from rice bran as excellent emulsifiers for independently stabilizing Pickering emulsions. Ind. Crops Prod. 2024, 222, 120098. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Z.; Hei, X.; Li, S.; Jiao, B.; Ma, X.; Hu, H.; McClements, D.J.; Wang, Q.; Shi, A. Effect of oil and particles content on microstructure, rheology, and thermosensitive 3D printability of particles -stabilized high internal phase Pickering emulsions. Food Hydrocoll. 2025, 160, 110833. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, C.; Xing, S.; Chen, Y.; Su, W.; Wang, H.; Tan, M. Sea bass protein-polyphenol complex stabilized high internal phase of algal oil Pickering emulsions to stabilize astaxanthin for 3D food printing. Food Chem. 2023, 417, 135824. [Google Scholar] [CrossRef] [PubMed]
- Djuardi, A.U.P.; Yuliana, N.D.; Ogawa, M.; Akazawa, T.; Suhartono, M.T. Emulsifying properties and antioxidant activity of soy protein isolate conjugated with tea polyphenol extracts. J. Food Sci. Technol. 2020, 57, 3591–3600. [Google Scholar] [CrossRef]
- Gong, T.; Tian, D.; Hu, C.Y.; Guo, Y.R.; Meng, Y.H. Improving antioxidant ability of functional emulsifiers by conjugating polyphenols to sodium caseinate. LWT 2022, 154, 112668. [Google Scholar] [CrossRef]
- Song, Z.C.; Zhang, H.; Niu, P.F.; Shi, L.S.; Yang, X.Y.; Meng, Y.H.; Wang, X.Y.; Gong, T.; Guo, Y.R. Fabrication of a novel antioxidant emulsifier through tuning the molecular interaction between soy protein isolates and young apple polyphenols. Food Chem. 2023, 420, 136110. [Google Scholar] [CrossRef]
- Zhang, F.; Cai, X.; Ding, L.; Wang, S. Effect of pH, ionic strength, chitosan deacetylation on the stability and rheological properties of O/W emulsions formulated with chitosan/casein complexes. Food Hydrocoll. 2021, 111, 106211. [Google Scholar] [CrossRef]
- Song, Y.; Hou, Y.; Ren, S.; Qu, C.; Li, M.; Tu, Y.; Wang, R. Pickering emulsion stabilized using modified gluten protein. J. Food Eng. 2024, 371, 111985. [Google Scholar] [CrossRef]
- Tao, X.; Chen, C.; Li, Y.; Qin, X.; Zhang, H.; Hu, Y.; Liu, Z.; Guo, X.; Liu, G. Improving the physicochemical stability of Pickering emulsion stabilized by glycosylated whey protein isolate/cyanidin-3-glucoside to deliver curcumin. Int. J. Biol. Macromol. 2023, 229, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Gu, R.; Li, C.; Shi, X.; Xiao, H. Naturally occurring protein/polysaccharide hybrid nanoparticles for stabilizing oil-in-water Pickering emulsions and the formation mechanism. Food Chem. 2022, 395, 133641. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Li, Y.; Huang, Q. Recent advances on food-grade particles stabilized Pickering emulsions: Fabrication, characterization and research trends. Trends Food Sci. Technol. 2016, 55, 48–60. [Google Scholar] [CrossRef]
- Wang, J.; Feng, H.; Liu, R.; Lyu, Q.; Zhu, L.; Chen, L.; Chang, X.; Liu, G.; Ding, W. Free-radical-induced grafting of rice starch with gallic acid and evaluation of the reaction products’ ability to stabilize Pickering emulsions. Int. J. Biol. Macromol. 2024, 281, 136294. [Google Scholar] [CrossRef]
- Feng, T.; Wang, X.; Wang, X.; Xia, S.; Huang, Q. Plant protein-based antioxidant Pickering emulsions and high internal phase Pickering emulsions against broad pH range and high ionic strength: Effects of interfacial rheology and microstructure. LWT 2021, 150, 111953. [Google Scholar] [CrossRef]
- Huang, X.; Xia, B.; Liu, Y.; Wang, C. Non-covalent interactions between rice protein and three polyphenols and potential application in emulsions. Food Chem. X 2024, 22, 101459. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, C.-G.; Wang, W.-Q.; Shi, C.-Y.; Xiong, W.; Wang, M.-D.; Fang, J.-G. Gastrointestinal stability of dihydromyricetin, myricetin, and myricitrin: An in vitro investigation. Int. J. Food Sci. Nutr. 2017, 68, 704–711. [Google Scholar] [CrossRef]
- Molaveisi, M.; Li, L.; Yu, J.; Zhao, Y.; Shi, Q. Nanocochleates as novel delivery vehicles for enhancement of water solubility, stability and controlled release of dihydromyricetin in gastrointestinal tract. Food Res. Int. 2024, 197, 115174. [Google Scholar] [CrossRef]
- Lyu, Q.; Chen, L.; Lin, S.; Cao, H.; Teng, H. A designed self-microemulsion delivery system for dihydromyricetin and its dietary intervention effect on high-fat-diet fed mice. Food Chem. 2022, 390, 132954. [Google Scholar] [CrossRef]
Sample Group | DHM Content in Complexes (c/%) | Concentration of Complex (w/%) | Oil Phase Fraction (φ/%) | Ionic Strength (i/mM) |
---|---|---|---|---|
Group A (A1–A5) | 0–20% | 2% | 70% | 0 mM |
Group B (B1–B5) | 5% | 2% | 40–80% | 0 mM |
Group C (C1-C5) | 5% | 0.5–4% | 70% | 0 mM |
Group D (D1–D5) | 5% | 2% | 70% | 0–400 mM |
Type | L* | a* | b* | ∆E | WI |
---|---|---|---|---|---|
0% DHM/SPI | 79.63 ± 1.01 a | 0.07 ± 0.06 e | 10.75 ± 0.18 d | 80.35 ± 0.98 a | 76.97 ± 0.98 a |
5% DHM/SPI | 60.26 ± 0.36 b | 1.84 ± 0.15 d | 17.99 ± 0.81 a | 62.92 ± 0.11 b | 56.33 ± 0.67 b |
10% DHM/SPI | 57.58 ± 0.62 c | 3.70 ± 0.26 c | 12.68 ± 0.31 c | 59.07 ± 0.65 c | 55.56 ± 0.53 c |
15% DHM/SPI | 56.43 ± 0.66 cd | 5.38 ± 0.34 a | 10.33 ± 0.44 d | 57.62 ± 0.56 d | 54.90 ± 0.75 d |
20% DHM/SPI | 55.32 ± 0.45 d | 4.52 ± 0.23 b | 14.87 ± 0.42 b | 57.47 ± 0.42 d | 52.70 ± 0.48 e |
Group | Name | CI % | ||||
---|---|---|---|---|---|---|
Day 0 | Day 1 | Day 5 | Day 10 | Day 15 | ||
A | A1 | 0 | 0 | 0 | 0 | 0 |
A2 | 0 | 0 | 0 | 0 | 0 | |
A3 | 0 | 0 | 0 | 0 | 0 | |
A4 | 0 | 0 | 0 | 0 | 0 | |
A5 | 0 | 0 | 0 | 0 | 0 | |
B | B1 | 0 | 39.43 ± 0.42 | 42.10 ± 0.35 | 48.18 ± 0.36 | 48.55 ± 0.46 |
B2 | 0 | 22.44 ± 0.82 | 28.75 ± 0.46 | 34.04 ± 0.39 | 35.26 ± 0.11 | |
B3 | 0 | 10.98 ± 0.63 | 14.26 ± 0.48 | 19.22 ± 0.59 | 22.42 ± 0.46 | |
B4 | 0 | 0 | 0 | 0 | 0 | |
B5 | 0 | 0 | 0 | 0 | 0 | |
C | C1 | 0 | 13.02 ± 0.57 | 17.79 ± 0.45 | 19.02 ± 0.73 | 20.28 ± 0.60 |
C2 | 0 | 6.28 ±0.29 | 10.79 ± 0.33 | 14.55 ± 0.72 | 16.22 ± 0.71 | |
C3 | 0 | 0 | 0 | 0 | 0 | |
C4 | 0 | 0 | 0 | 0 | 0 | |
C5 | 0 | 0 | 0 | 0 | 0 | |
D | D1 | 0 | 0 | 0 | 0 | 0 |
D2 | 0 | 0 | 0 | 0 | 0 | |
D3 | 0 | 0 | 0 | 0 | 0 | |
D4 | 0 | 0 | 0 | 0 | 0 | |
D5 | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, S.; Dou, L.; Cheng, K.; Hou, G.; Zhang, C.; An, J.; Tao, Y.; Deng, L.; Shang, L. Dihydromyricetin/Protein Pickering Emulsions: Interfacial Behavior, Rheology, and In Vitro Bioaccessibility. Foods 2025, 14, 2520. https://doi.org/10.3390/foods14142520
Mei S, Dou L, Cheng K, Hou G, Zhang C, An J, Tao Y, Deng L, Shang L. Dihydromyricetin/Protein Pickering Emulsions: Interfacial Behavior, Rheology, and In Vitro Bioaccessibility. Foods. 2025; 14(14):2520. https://doi.org/10.3390/foods14142520
Chicago/Turabian StyleMei, Shengqi, Lei Dou, Kaixuan Cheng, Guangqian Hou, Chi Zhang, Jianhui An, Yexing Tao, Lingli Deng, and Longchen Shang. 2025. "Dihydromyricetin/Protein Pickering Emulsions: Interfacial Behavior, Rheology, and In Vitro Bioaccessibility" Foods 14, no. 14: 2520. https://doi.org/10.3390/foods14142520
APA StyleMei, S., Dou, L., Cheng, K., Hou, G., Zhang, C., An, J., Tao, Y., Deng, L., & Shang, L. (2025). Dihydromyricetin/Protein Pickering Emulsions: Interfacial Behavior, Rheology, and In Vitro Bioaccessibility. Foods, 14(14), 2520. https://doi.org/10.3390/foods14142520