Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (140)

Search Parameters:
Keywords = sol-gel spin-coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1889 KiB  
Article
Determination of Phenylurea Herbicides in Water Samples by Magnet-Integrated Fabric Phase Sorptive Extraction Combined with High Performance Liquid Chromatography
by Natalia Manousi, Apostolia Tsiasioti, Abuzar Kabir and Erwin Rosenberg
Molecules 2025, 30(15), 3135; https://doi.org/10.3390/molecules30153135 - 26 Jul 2025
Viewed by 320
Abstract
In this study, a magnet-integrated fabric phase sorptive extraction (MI-FPSE) protocol was developed in combination with high pressure liquid chromatography—diode array detection (HPLC-DAD) for the simultaneous determination of five phenylurea pesticides (i.e., chlorbromuron, diuron, linuron, metoxuron, monuron) in environmental water samples. To produce [...] Read more.
In this study, a magnet-integrated fabric phase sorptive extraction (MI-FPSE) protocol was developed in combination with high pressure liquid chromatography—diode array detection (HPLC-DAD) for the simultaneous determination of five phenylurea pesticides (i.e., chlorbromuron, diuron, linuron, metoxuron, monuron) in environmental water samples. To produce the MI-FPSE device, two individual sol-gel coated carbowax 20 M (CW 20 M) cellulose membranes were fabricated and stitched to each other, while a magnetic rod was inserted between them to give the resulting device the ability to spin and serve as a stand-alone microextraction platform. The adsorption and desorption step of the MI-FPSE protocol was optimized to achieve high extraction efficiency and the MI-FPSE-HPLC-DAD method was validated in terms of linearity, sensitivity, selectivity, accuracy, and precision. The limits of detection (LODs) were found to be 0.3 μg L−1. The relative recoveries were 85.2–110.0% for the intra-day and 87.7–103.2% for the inter-day study. The relative standard deviations were better than 13% in all cases. The green character and the practicality of the developed procedure were assessed using ComplexGAPI and Blue Analytical Grade Index metric tools, showing good method performance. Finally, the developed method was successfully used for the analysis of tap, river, and lake water samples. Full article
Show Figures

Graphical abstract

14 pages, 1884 KiB  
Article
Ag/ZrO2 Hybrid Coating for Tribological and Corrosion Protection of Ti45Nb Alloy in Biomedical Environments
by Mevra Aslan Çakir
Metals 2025, 15(8), 831; https://doi.org/10.3390/met15080831 - 24 Jul 2025
Viewed by 254
Abstract
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The [...] Read more.
In this study, a Ag/ZrO2 hybrid coating prepared by the sol–gel method on a β-type Ti45Nb alloy was applied by the spin coating technique, and the microstructural, mechanical, electrochemical, and tribological properties of the surface were evaluated in a multi-dimensional manner. The hybrid solution was prepared using zirconium propoxide and silver nitrate and stabilized through a low-temperature two-stage annealing protocol. The crystal structure of the coating was determined by XRD, and the presence of dense tetragonal ZrO2 phase and crystalline Ag phases was confirmed. SEM-EDS analyses revealed a compact coating structure of approximately 1.8 µm thickness with homogeneously distributed Ag nanoparticles on the surface. As a result of the electrochemical corrosion tests, it was determined that the open circuit potential shifted to more noble values, the corrosion current density decreased, and the corrosion rate decreased by more than 70% on the surfaces where the Ag/ZrO2 coating was applied. In the tribological tests, a decrease in the coefficient of friction, narrowing of wear marks, and significant reduction in surface damage were observed in dry and physiological (HBSS) environments. The findings revealed that the Ag/ZrO2 hybrid coating significantly improved the surface performance of the Ti45Nb alloy both mechanically and electrochemically and offers high potential for biomedical implant applications. Full article
(This article belongs to the Special Issue Corrosion Behavior and Surface Engineering of Metallic Materials)
Show Figures

Figure 1

13 pages, 1995 KiB  
Article
Tuning Electrical and Optical Properties of SnO2 Thin Films by Dual-Doping Al and Sb
by Yuxin Wang, Hongyu Zhang, Xinyi Zhang, Zhengkai Zhou and Lu Wang
Coatings 2025, 15(6), 669; https://doi.org/10.3390/coatings15060669 - 30 May 2025
Viewed by 589
Abstract
The Al-Sb co-doped SnO2 composite thin films were prepared by the sol–gel spin-coating method. The structure, morphology, optical and electrical properties of the samples were investigated using XRD, XPS, SEM, UV-Vis spectroscopy, and Hall effect tester, respectively. It was found that when [...] Read more.
The Al-Sb co-doped SnO2 composite thin films were prepared by the sol–gel spin-coating method. The structure, morphology, optical and electrical properties of the samples were investigated using XRD, XPS, SEM, UV-Vis spectroscopy, and Hall effect tester, respectively. It was found that when the aluminum doping amount was 15 at%, the resistivity of the sample was the lowest, and the overall optoelectronic performance was the best. Moreover, the Al-SnO2 composite thin film transformed from an n-type semiconductor to a p-type semiconductor. When Al and Sb were co-doped, the carrier concentration increased significantly from 4.234 × 1019 to 6.455 × 1020. Finally, the conduction type of the Al-Sb-SnO2 composite thin film changed from p-type to n-type. In terms of optical performance, the transmittance of the Al-Sb co-doped SnO2 composite thin films in the visible light region was significantly improved, reaching up to 80% on average, which is favorable for applications in transparent optoelectronic devices. Additionally, the absorption edge of the thin films exhibited a blue-shift after co-doping, indicating an increase in the bandgap energy, which can be exploited to tune the light-absorption properties of the thin films for specific photonic applications. Full article
Show Figures

Figure 1

35 pages, 30622 KiB  
Review
Nanotopographical Features of Polymeric Nanocomposite Scaffolds for Tissue Engineering and Regenerative Medicine: A Review
by Kannan Badri Narayanan
Biomimetics 2025, 10(5), 317; https://doi.org/10.3390/biomimetics10050317 - 15 May 2025
Viewed by 1112
Abstract
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development [...] Read more.
Nanotopography refers to the intricate surface characteristics of materials at the sub-micron (<1000 nm) and nanometer (<100 nm) scales. These topographical surface features significantly influence the physical, chemical, and biological properties of biomaterials, affecting their interactions with cells and surrounding tissues. The development of nanostructured surfaces of polymeric nanocomposites has garnered increasing attention in the fields of tissue engineering and regenerative medicine due to their ability to modulate cellular responses and enhance tissue regeneration. Various top-down and bottom-up techniques, including nanolithography, etching, deposition, laser ablation, template-assisted synthesis, and nanografting techniques, are employed to create structured surfaces on biomaterials. Additionally, nanotopographies can be fabricated using polymeric nanocomposites, with or without the integration of organic and inorganic nanomaterials, through advanced methods such as using electrospinning, layer-by-layer (LbL) assembly, sol–gel processing, in situ polymerization, 3D printing, template-assisted methods, and spin coating. The surface topography of polymeric nanocomposite scaffolds can be tailored through the incorporation of organic nanomaterials (e.g., chitosan, dextran, alginate, collagen, polydopamine, cellulose, polypyrrole) and inorganic nanomaterials (e.g., silver, gold, titania, silica, zirconia, iron oxide). The choice of fabrication technique depends on the desired surface features, material properties, and specific biomedical applications. Nanotopographical modifications on biomaterials’ surface play a crucial role in regulating cell behavior, including adhesion, proliferation, differentiation, and migration, which are critical for tissue engineering and repair. For effective tissue regeneration, it is imperative that scaffolds closely mimic the native extracellular matrix (ECM), providing a mechanical framework and topographical cues that replicate matrix elasticity and nanoscale surface features. This ECM biomimicry is vital for responding to biochemical signaling cues, orchestrating cellular functions, metabolic processes, and subsequent tissue organization. The integration of nanotopography within scaffold matrices has emerged as a pivotal regulator in the development of next-generation biomaterials designed to regulate cellular responses for enhanced tissue repair and organization. Additionally, these scaffolds with specific surface topographies, such as grooves (linear channels that guide cell alignment), pillars (protrusions), holes/pits/dots (depressions), fibrous structures (mimicking ECM fibers), and tubular arrays (array of tubular structures), are crucial for regulating cell behavior and promoting tissue repair. This review presents recent advances in the fabrication methodologies used to engineer nanotopographical microenvironments in polymeric nanocomposite tissue scaffolds through the incorporation of nanomaterials and biomolecular functionalization. Furthermore, it discusses how these modifications influence cellular interactions and tissue regeneration. Finally, the review highlights the challenges and future perspectives in nanomaterial-mediated fabrication of nanotopographical polymeric scaffolds for tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Advances in Biomaterials, Biocomposites and Biopolymers 2025)
Show Figures

Figure 1

18 pages, 4535 KiB  
Article
Fabrication of ZnO Thin Films Doped with Na at Different Percentages for Sensing CO2 in Small Quantities at Room Temperature
by Marina Stramarkou, Achilleas Bardakas, Magdalini Krokida and Christos Tsamis
Sensors 2025, 25(9), 2705; https://doi.org/10.3390/s25092705 - 24 Apr 2025
Cited by 1 | Viewed by 537
Abstract
The objective of this study is the fabrication of sensors which can detect modifications in CO2 concentrations at room temperature, thus indicating the quality or microbial spoilage of food products when incorporated into food packaging. ZnO nanostructures are known for their ability [...] Read more.
The objective of this study is the fabrication of sensors which can detect modifications in CO2 concentrations at room temperature, thus indicating the quality or microbial spoilage of food products when incorporated into food packaging. ZnO nanostructures are known for their ability to detect organic gases; however, their effectiveness is limited to high temperatures (greater than 200 °C). To overcome this limitation, sodium (Na) doping is investigated as a way to enhance the sensing properties of ZnO films and lower the working temperature. In this study, undoped and Na-doped ZnO thin films were developed via the sol-gel method with different Na percentages (2.5, 5 and 7.5%) and were deposited via spin coating. The crystal structure, the morphology, and the surface topography of the developed films were characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM), respectively. Furthermore, the response to CO2 was measured by varying its concentration up to 500 ppm at room temperature. All the developed films presented the characteristic diffraction peaks of the ZnO wurtzite hexagonal crystal structure. SEM revealed that the films consisted of densely packed grains, with an average particle size of 58 nm. Na doping increased the film thickness but reduced the surface roughness. Finally, the developed sensors demonstrated very good CO2 sensing properties, with the 2.5% Na-doped sensor having an enhanced sensing performance concerning sensitivity, response, and recovery times. This leads to the conclusion that Na-doped ZnO sensors could be used for the detection of microbial spoilage in food products at room temperature, making them suitable for smart food packaging applications. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

19 pages, 1659 KiB  
Article
Enhancement of Sol–Gel Coatings for Photoprotection of Rosé Wines
by Jennifer Moriones, Javier Osés, Pablo Amézqueta, José F. Palacio, Jonathan Fernández De Ara and Eluxka Almandoz
Ceramics 2025, 8(1), 17; https://doi.org/10.3390/ceramics8010017 - 19 Feb 2025
Viewed by 811
Abstract
Exposure to short-wavelength light, including UV-A and blue light, can degrade high-value products like rosé wine, which are usually packaged in colourless bottles. This study investigates the optimisation of sol–gel coatings enhanced with UV-absorbing additives (Tinuvin 479 and semaSORB 20109) to provide photoprotection [...] Read more.
Exposure to short-wavelength light, including UV-A and blue light, can degrade high-value products like rosé wine, which are usually packaged in colourless bottles. This study investigates the optimisation of sol–gel coatings enhanced with UV-absorbing additives (Tinuvin 479 and semaSORB 20109) to provide photoprotection for rosé wines. Coatings with varying additive concentrations (0.5%, 0.75%, 1%, and 1.5%) were applied to glass substrates via spin coating and cured with UV light. Then, optical and mechanical characterisation was performed. The 1.5% concentration semaSORB 20109 bilayer coating demonstrated improved photoprotective properties without compromising colour properties, leading to successful application on glass bottles by spray coating. Accelerated degradation tests confirmed that the optimised coating effectively protected against photodegradation, as indicated by the stability of polyphenol levels and colour parameters in rosé wines. The results suggest that these coatings could be a suitable option for commercial-scale applications, enhancing the light resistance of colourless-bottled products. Full article
(This article belongs to the Special Issue Transparent Ceramics—a Theme Issue in Honor of Dr. Adrian Goldstein)
Show Figures

Figure 1

15 pages, 4184 KiB  
Article
Photocatalysis of Methyl Orange (MO), Orange G (OG), Rhodamine B (RhB), Violet and Methylene Blue (MB) Under Natural Sunlight by Ba-Doped BiFeO3 Thin Films
by Abderrahmane Boughelout, Abdelmadjid Khiat and Roberto Macaluso
Materials 2025, 18(4), 887; https://doi.org/10.3390/ma18040887 - 18 Feb 2025
Viewed by 753
Abstract
We present structural, morphological, optical and photocatalytic properties of multiferroic Bi0.98Ba0.02FeO3 (BBFO2) perovskite thin films prepared by a combined sol–gel and spin-coating method. X-ray diffraction (XRD) analysis revealed that all the perovskite films consisted of the stable polycrystalline [...] Read more.
We present structural, morphological, optical and photocatalytic properties of multiferroic Bi0.98Ba0.02FeO3 (BBFO2) perovskite thin films prepared by a combined sol–gel and spin-coating method. X-ray diffraction (XRD) analysis revealed that all the perovskite films consisted of the stable polycrystalline rhombohedral phase structure (space group R3c) with a tolerance factor of 0.892. By using Rietveld refinement of diffractogram XRD data, crystallographic parameters, such as bond angle, bond length, atom position, unit cell parameters, and electron density measurements were computed. Scanning electron microscopy (SEM) allowed us to assess the homogeneous and smooth surface morphology of the films with a small degree of porosity, while chemical surface composition characterization by X-ray photoelectron spectroscopy (XPS) showed the presence of Bi, Fe, O and the doping element Ba. Absorption measurements allowed us to determine the energy band gap of the films, while photoluminescence measurements have shown the presence of oxygen vacancies, which are responsible for the enhanced photocatalytic activity of the material. Photocatalytic degradation experiments of Methylene Blue (MB), Methyl orange (MO), orange G (OG), Violet and Rhodamine B (RhB) performed on top of BBFO2 thin films under solar light showed the degradation of all pollutants in varying discoloration efficiencies, ranging from 81% (RhB) to 54% (OG), 53% (Violet), 47% (MO) and 43% (MB). Full article
(This article belongs to the Special Issue Halide Perovskite Crystal Materials and Optoelectronic Devices)
Show Figures

Figure 1

11 pages, 2887 KiB  
Article
β-Ga2O3 Thin Films via an Inorganic Sol–Gel Spin Coating: Preparation and Characterization
by Hai Zhang, Dingyuan Niu, Junbiao Yang, Xiaoyang Zhang, Jun Zhu and Wencai Li
Nanomaterials 2025, 15(4), 277; https://doi.org/10.3390/nano15040277 - 12 Feb 2025
Viewed by 1323
Abstract
β-Ga2O3 holds significant promise for use in ultraviolet (UV) detectors and high-power devices due to its ultra-wide bandgap. However, the cost-effective preparation of large-area thin films remains challenging. In this study, β-Ga2O3 thin films are prepared using [...] Read more.
β-Ga2O3 holds significant promise for use in ultraviolet (UV) detectors and high-power devices due to its ultra-wide bandgap. However, the cost-effective preparation of large-area thin films remains challenging. In this study, β-Ga2O3 thin films are prepared using an inorganic solution reaction spin-coating method followed by post-annealing. The structures, surface morphologies, and optical properties of the films are then characterized using X-ray diffraction, scanning electron microscopy, and ultraviolet–visible spectrophotometry. A low-cost Ga metal was used to produce NH4Ga(SO4)2, which was then converted into a precursor solution and spin-coated onto sapphire and quartz substrates. Ten cycles of spin coating produced smoother films, although higher annealing temperatures induced more cracks. The films on the (0001) sapphire subjected to spin-coating and preheating processes that were repeated for ten cycles, followed by annealing at 800 °C, had a preferred orientation in the [–201] direction. All the films showed high transmittances of 85% in ultraviolet–visible light with wavelengths above 400 nm. The films on the (0001) sapphire substrate that were annealed at 800 °C and 1000 °C exhibited bandgaps of 4.8 and 4.98 eV, respectively. The sapphire substrates demonstrated a superior compatibility for high-quality Ga2O3 film fabrication compared to quartz. This method offers a cost-effective and efficient approach for producing high-quality β-Ga2O3 films on high-temperature-resistant substrates with promising potential for optoelectronic applications. Full article
(This article belongs to the Special Issue Synthesis and Properties of Metal Oxide Thin Films)
Show Figures

Figure 1

17 pages, 4446 KiB  
Article
TiO2/SWCNts: Linear and Nonlinear Optical Studies for Environmental Applications
by Saloua Helali
C 2025, 11(1), 11; https://doi.org/10.3390/c11010011 - 26 Jan 2025
Viewed by 847
Abstract
A series of single-walled carbon nanotube/titanium dioxide (SWCNTs/TiO2) composites were prepared by the incorporation of various concentrations (0, 5, 10, 20 V.%) of SWCNTs in TiO2. The prepared solutions were successfully formed on silicon and quartz substrates using the [...] Read more.
A series of single-walled carbon nanotube/titanium dioxide (SWCNTs/TiO2) composites were prepared by the incorporation of various concentrations (0, 5, 10, 20 V.%) of SWCNTs in TiO2. The prepared solutions were successfully formed on silicon and quartz substrates using the sol–gel spin-coating approach at 600 °C in ambient air. The X-ray diffraction method was used to investigate the structure of the samples. The absorbance and transmittance data of the samples were measured using a UV–vis spectrophotometer. Through the analysis of these data, both the linear and nonlinear optical properties of the samples were examined. Wemple–DiDomenico’s single-oscillator model was used to calculate the single-oscillator energy and dispersion energy. Finally, all samples’ photocatalytic performance was studied by the photodegradation of methylene blue (MB) in an aqueous solution under UV irradiation. It is found that the photocatalytic efficiency increases when increasing the SWCNT content. This research offers a new perspective for the creation of new photocatalysts for environmental applications. Full article
(This article belongs to the Special Issue Carbon Functionalization: From Synthesis to Applications)
Show Figures

Graphical abstract

18 pages, 5386 KiB  
Article
Photocatalytic Oxidation of Pesticides with TiO2-CeO2 Thin Films Using Sunlight
by Tania Arelly Tinoco Pérez, Evaristo Salaya Gerónimo, José Gilberto Torres Torres, Gloria Alicia del Angel Montes, Israel Rangel Vázquez, Adrian Cordero García, Adrian Cervantes Uribe, Adib Abiu Silahua Pavon and Juan Carlos Arevalo Pérez
Catalysts 2025, 15(1), 46; https://doi.org/10.3390/catal15010046 - 6 Jan 2025
Viewed by 1088
Abstract
TiO2 thin film coatings significantly improve catalyst separation in photocatalytic processes. They can be applied in heterogeneous photocatalysis under sunlight by mixing TiO2 with other oxides, such as CeO2, for the removal of pollutants in water. Here, TiO2 [...] Read more.
TiO2 thin film coatings significantly improve catalyst separation in photocatalytic processes. They can be applied in heterogeneous photocatalysis under sunlight by mixing TiO2 with other oxides, such as CeO2, for the removal of pollutants in water. Here, TiO2-CeO2 thin films deposited on borosilicate slides were analyzed and applied in solar heterogeneous photocatalysis for the oxidation of pesticides. The films were synthesized by the sol-gel method with spin coating. The waste solutions from the synthesis were used to prepare TiO2 and TiO2-CeO2 powders. These were analyzed by XRD and XPS to explain the behavior of the films. The thin films were characterized by UV-Vis spectroscopy with transmittance, UV-Vis spectroscopy with RDS, profilometry, AFM and SEM. The addition of CeO2 to TiO2 caused a decrease in the average crystal size and an increase in the strain index. The addition of a second layer made the TiO2-CeO2 thin films thinner. The CeO2 created surface and electronic defects in the titania films, which enhanced their photocatalytic properties under sunlight in the mineralization of diuron and methyl parathion. The TiO2-CeO2-5.0% single-layer thin film samples were the most active in this study and will undoubtedly be applied in larger-scale reaction systems. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation)
Show Figures

Figure 1

14 pages, 9057 KiB  
Article
Solution Casting Effect of PMMA-Based Polymer Electrolyte on the Performances of Solid-State Electrochromic Devices
by Abdelrahman Hamed Ebrahem Abdelhamed, Gregory Soon How Thien, Chu-Liang Lee, Benedict Wen-Cheun Au, Kar Ban Tan, H. C. Ananda Murthy and Kah-Yoong Chan
Polymers 2025, 17(1), 99; https://doi.org/10.3390/polym17010099 - 2 Jan 2025
Cited by 1 | Viewed by 1865
Abstract
Electrochromic devices (ECDs) are devices that change their optical properties in response to a low applied voltage. These devices typically consist of an electrochromic layer, a transparent conducting substrate, and an electrolyte. The advancement in solid-state ECDs has been driven by the need [...] Read more.
Electrochromic devices (ECDs) are devices that change their optical properties in response to a low applied voltage. These devices typically consist of an electrochromic layer, a transparent conducting substrate, and an electrolyte. The advancement in solid-state ECDs has been driven by the need for improved durability, optical performance, and energy efficiency. In this study, we investigate varying the temperature to the casting solution for polymethylmethacrylate (PMMA)-based electrolytes for solid-state ECDs with a structure of glass/ITO/WO3/PMMA electrolyte/ITO/glass. The electrochromic layer, composed of WO3, was deposited using the sol-gel method, while the electrolyte, comprising lithium perchlorate (LiClO4) in propylene carbonate (PC) with PMMA, was prepared via solution casting. Various electrolyte samples were heated at different temperatures of 25, 40, 60, 80, and 100 °C to analyze the impact on the devices’ performance. Our findings indicate that the devices with electrolytes at 25 °C exhibited superior anodic and cathodic diffusion. An increase in heating temperature corresponded with an increase in switching time. Notably, the sample heated at higher temperatures (60, 80, and 100 °C) demonstrated exceptional cycle stability. Nevertheless, samples with higher temperatures displayed a decrease in optical modulation. Additionally, the 100 °C sample exhibited the highest coloration efficiency compared to other samples at lower temperatures. This research highlights the potential of varying the temperature of solution casting on PMMA-based electrolytes in optimizing the performance of solid-state ECDs, particularly regarding coloration efficiency and durability. Full article
Show Figures

Figure 1

12 pages, 4885 KiB  
Communication
Preparation and the Photoelectric Properties of ZnO-SiO2 Films with a Sol–Gel Method Combined with Spin-Coating
by Ziyang Zhou, Weiye Yang, Hongyan Peng and Shihua Zhao
Sensors 2024, 24(23), 7751; https://doi.org/10.3390/s24237751 - 4 Dec 2024
Cited by 1 | Viewed by 1272
Abstract
This study explores the fabrication of ZnO-SiO2 composite films on silicon substrates via a sol–gel method combined with spin-coating, followed by annealing at various temperatures. The research aims to enhance the UV emission and photoelectric properties of the films. XRD showed that [...] Read more.
This study explores the fabrication of ZnO-SiO2 composite films on silicon substrates via a sol–gel method combined with spin-coating, followed by annealing at various temperatures. The research aims to enhance the UV emission and photoelectric properties of the films. XRD showed that the prepared ZnO sample has a hexagonal structure. SEM images revealed the formation of ZnO nanorods within a dense SiO2 substrate, ranging from 10 μm to 30 μm in length. Photoluminescent analysis showed that the film exhibited strong UV emission centered at 360 nm. The response time measurements indicated that the optimal photoresponse time was approximately 2.9 s. These results suggest the potential of ZnO-SiO2 films as efficient UV-emitting materials with high photoconductivity and a stably reproducible response under visible light, thereby laying the foundation for their application in advanced optoelectronic devices. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

22 pages, 7801 KiB  
Article
Crystallization and Optical Behaviour of Nanocomposite Sol-Gel TiO2:Ag Films
by Tatyana Ivanova, Antoaneta Harizanova, Tatyana Koutzarova and Raphael Closset
Molecules 2024, 29(21), 5156; https://doi.org/10.3390/molecules29215156 - 31 Oct 2024
Cited by 5 | Viewed by 1986
Abstract
Sol-gel spin coating method was employed for depositing TiO2 and Ag-doped TiO2 films. The effects of Ag doping and the annealing temperatures (300–600 °C) were studied with respect to their structural, morphological, vibrational, and optical properties. Field Emission Scanning Electron microscopy [...] Read more.
Sol-gel spin coating method was employed for depositing TiO2 and Ag-doped TiO2 films. The effects of Ag doping and the annealing temperatures (300–600 °C) were studied with respect to their structural, morphological, vibrational, and optical properties. Field Emission Scanning Electron microscopy (FESEM) investigation exhibited the grained, compact structures of TiO2-based films. Ag incorporation resulted in a rougher film surface. X-ray diffraction (XRD) results confirmed the formation of Ag nanoparticles and AgO phase, along with anatase and rutile TiO2, strongly depending on Ag concentration and technological conditions. AgO fraction diminished after high temperature annealing above 500 °C. The vibrational properties were characterized by Fourier Transform Infrared (FTIR) spectroscopy. It was found that silver presence induced changes in IR bands of TiO2 films. UV–VIS spectroscopy revealed that the embedment of Ag NPs in titania matrix resulted in higher absorbance across the visible spectral range due to local surface plasmon resonance (LSPR). Ag doping reduced the optical band gap of sol-gel TiO2 films. The optical and plasmonic modifications of TiO2:Ag thin films by the number of layers and different technological conditions (thermal and UV treatment) are discussed. Full article
(This article belongs to the Special Issue Physicochemical Research on Material Surfaces)
Show Figures

Figure 1

13 pages, 3206 KiB  
Article
Electro-Spun P(VDF-HFP)/Silica Composite Gel Electrolytes for High-Performance Lithium-Ion Batteries
by Wen Huang, Caiyuan Liu, Xin Fang, Hui Peng, Yonggang Yang and Yi Li
Materials 2024, 17(20), 5083; https://doi.org/10.3390/ma17205083 - 18 Oct 2024
Cited by 2 | Viewed by 1100
Abstract
This work presents a facile way to fabricate a polymer/ceramics composite gel electrolyte to improve the overall properties of lithium-ion batteries. Lithium salt-grafted silica was synthesized and mixed with P(VDF-HFP) to produce a nanofiber film by the electrostatic spinning method. After coating a [...] Read more.
This work presents a facile way to fabricate a polymer/ceramics composite gel electrolyte to improve the overall properties of lithium-ion batteries. Lithium salt-grafted silica was synthesized and mixed with P(VDF-HFP) to produce a nanofiber film by the electrostatic spinning method. After coating a layer of SiO2 onto the surface of nanofibers through a sol-gel method, a composite nanofiber film was obtained. It was then immersed in plasticizer until saturation to make a composite gel electrolyte film. Electrochemical test results showed that the obtained gel electrolyte film shows high thermal stability (~450 °C), high ionic conductivity of 1.3 × 10−3 S cm−1 at 25 °C and a lithium-ion transference number of 0.58, and superior cycling stability, providing a new direction for manufacturing secondary batteries with higher safety and performance. Full article
(This article belongs to the Special Issue Advanced Polymers and Composites for Multifunctional Applications)
Show Figures

Graphical abstract

21 pages, 11794 KiB  
Article
Degradation of Organic Dye Congo Red by Heterogeneous Solar Photocatalysis with Bi2S3, Bi2S3/TiO2, and Bi2S3/ZnO Thin Films
by Eli Palma Soto, Claudia A. Rodriguez Gonzalez, Priscy Alfredo Luque Morales, Hortensia Reyes Blas and Amanda Carrillo Castillo
Catalysts 2024, 14(9), 589; https://doi.org/10.3390/catal14090589 - 2 Sep 2024
Cited by 8 | Viewed by 2568
Abstract
In this work, bismuth sulfide (Bi2S3) thin films were deposited by a chemical bath deposition (CBD) technique (called soft chemistry), while titanium dioxide (TiO2) nanoparticles were synthesized by sol–gel and zinc oxide (ZnO) nanoparticles were extracted from [...] Read more.
In this work, bismuth sulfide (Bi2S3) thin films were deposited by a chemical bath deposition (CBD) technique (called soft chemistry), while titanium dioxide (TiO2) nanoparticles were synthesized by sol–gel and zinc oxide (ZnO) nanoparticles were extracted from alkaline batteries. The resulting nanoparticles were then deposited on the Bi2S3 thin films by spin coating at 1000 rpm for 60 s each layer to create heterojunctions of Bi2S3/ZnO and Bi2S3/TiO2. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The optical and contact angle analyses were undertaken by UV–Vis spectroscopy and a contact microscopy angle meter, respectively. The calculated band gap values were found to be between 1.9 eV and 2.45 eV. The Bi2S3 presented an orthorhombic structure, the TiO2 nanoparticles presented an anatase structure, and the ZnO nanoparticles presented a wurtzite hexagonal crystal structure. Furthermore, heterogeneous solar photocatalysis was performed using the Bi2S3, Bi2S3/ZnO, and Bi2S3/TiO2 thin film combinations, which resulted in the degradation of Congo red increasing from 8.89% to 30.80% after a 30 min exposure to sunlight. Full article
(This article belongs to the Special Issue Recent Developments in Photocatalytic Water Treatment Technology)
Show Figures

Graphical abstract

Back to TopTop