Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,598)

Search Parameters:
Keywords = sol–gel materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4053 KB  
Article
Design and Characterization of Gold Nanorod Hyaluronic Acid Hydrogel Nanocomposites for NIR Photothermally Assisted Drug Delivery
by Alessandro Molinelli, Leonardo Bianchi, Elisa Lacroce, Zoe Giorgi, Laura Polito, Ada De Luigi, Francesca Lopriore, Francesco Briatico Vangosa, Paolo Bigini, Paola Saccomandi and Filippo Rossi
Gels 2026, 12(1), 88; https://doi.org/10.3390/gels12010088 - 19 Jan 2026
Viewed by 143
Abstract
The combination of gold nanoparticles (AuNPs) with hydrogels has drawn significant interest in the design of smart materials as advanced platforms for biomedical applications. These systems endow light-responsiveness enabled by the AuNPs localized surface plasmon resonance (LSPR) phenomenon. In this study, we propose [...] Read more.
The combination of gold nanoparticles (AuNPs) with hydrogels has drawn significant interest in the design of smart materials as advanced platforms for biomedical applications. These systems endow light-responsiveness enabled by the AuNPs localized surface plasmon resonance (LSPR) phenomenon. In this study, we propose a nanocomposite hydrogel in which gold nanorods (AuNRs) are included in an agarose–carbomer–hyaluronic acid (AC-HA)-based hydrogel matrix to study the correlation between light irradiation, local temperature increase, and drug release for potential light-assisted drug delivery applications. The gel is obtained through a facile microwave-assisted polycondensation reaction, and its properties are investigated as a function of both the hyaluronic acid molecular weight and ratio. Afterwards, AuNRs are incorporated in the AC-HA formulation, before the sol–gel transition, to impart light-responsiveness and optical properties to the otherwise inert polymeric matrix. Particular attention is given to the evaluation of AuNRs/AC-HA light-induced heat generation and drug delivery performances under near-infrared (NIR) laser irradiation in vitro. Spatiotemporal thermal profiles and high-resolution thermal maps are registered using fiber Bragg grating (FBG) sensor arrays, enabling accurate probing of maximum internal temperature variations within the composite matrix. Lastly, using a high-steric-hindrance protein (BSA) as a drug mimetic, we demonstrate that moderate localized heating under short-time repeated NIR exposure enhances the release from the nanocomposite hydrogel. Full article
(This article belongs to the Special Issue Hydrogels for Tissue Repair: Innovations and Applications)
Show Figures

Graphical abstract

30 pages, 5064 KB  
Article
Antimicrobial Functionalized Mesoporous Silica FDU-12 Loaded with Bacitracin
by Dan Adrian Vasile, Ludmila Motelica, Luiza-Andreea Mîrț, Gabriel Vasilievici, Oana-Maria Memecică, Ovidiu Cristian Oprea, Adrian-Vasile Surdu, Roxana Doina Trușcă, Cristina Chircov, Bogdan Ștefan Vasile, Zeno Dorian Ghizdavet, Denisa Ficai, Ana-Maria Albu, Radu Pericleanu, Andreea Ștefania Dumbravă, Mara-Mădălina Mihai, Irina Gheorghe-Barbu and Anton Ficai
Molecules 2026, 31(2), 340; https://doi.org/10.3390/molecules31020340 - 19 Jan 2026
Viewed by 263
Abstract
The threats leading to the extinction of humanity accelerate the evolution and development of materials that are capable of providing conditions for preserving health and, implicitly, life. In our work, we developed drug delivery systems based on mesoporous silica which can deliver an [...] Read more.
The threats leading to the extinction of humanity accelerate the evolution and development of materials that are capable of providing conditions for preserving health and, implicitly, life. In our work, we developed drug delivery systems based on mesoporous silica which can deliver an antibiotic, bacitracin, in a more controlled manner. The synthesis of the FDU-12 was performed through a sol–gel method and alternatively functionalized with -NH2 groups or with poly(N-acryloylmorpholine) chains. The loading of bacitracin was performed using the vacuum-assisted method we successfully used to load these mesoporous materials preferentially within the pores as proved by the TGA-DSC results. The release was performed in two types of simulated body fluid (SBF) and this process was evaluated with chromatographic method using UV detection. The obtained data were fitted in three mathematical models of kinetic drug release (Weibull model, Korsmeyer–Peppas model, and nonlinear regression). The antimicrobial evaluation demonstrated that bacitracin-loaded FDU-12 formulations exhibited strong activity against both reference and clinical Staphylococcus strains. At sub-inhibitory concentrations, all formulations significantly reduced microbial adherence and biofilm formation, although certain strain-dependent stimulatory effects were observed. Furthermore, exposure to sub-MIC levels modulated the production of soluble virulence factors (hemolysins, lipase, and amylase), in a formulation- and strain-dependent manner, underscoring the ability of surface-functionalized FDU-12 carriers to influence bacterial pathogenicity while enhancing antimicrobial efficacy. Full article
Show Figures

Graphical abstract

12 pages, 3283 KB  
Article
Amidine-Linked Closo-Dodecaborate–Silica Hybrids: Synthesis and Characterization
by Alexey V. Nelyubin, Nikolay K. Neumolotov, Vsevolod A. Skribitsky, Maria A. Teplonogova, Nikita A. Selivanov, Alexander Yu. Bykov, Victor P. Tarasov, Andrey P. Zhdanov, Konstantin Yu. Zhizhin and Nikolay T. Kuznetsov
Inorganics 2026, 14(1), 27; https://doi.org/10.3390/inorganics14010027 - 14 Jan 2026
Viewed by 172
Abstract
Silica-based sorbents covalently modified with polyhedral boron clusters represent a promising platform for highly selective separation materials, yet robust and synthetically accessible immobilization protocols remain underdeveloped. In this work, novel sorbents based on commercially available silica gels functionalized with closo-dodecaborate anions were [...] Read more.
Silica-based sorbents covalently modified with polyhedral boron clusters represent a promising platform for highly selective separation materials, yet robust and synthetically accessible immobilization protocols remain underdeveloped. In this work, novel sorbents based on commercially available silica gels functionalized with closo-dodecaborate anions were synthesized and systematically characterized. Two immobilization strategies were compared: direct nucleophilic addition of surface aminopropyl groups to the nitrilium derivative (Bu4N)[B12H11NCCH3] and sol–gel condensation of a pre-formed boron-containing APTES-derived silane. Covalent attachment via amidine bond formation was confirmed by solution and MAS 11B NMR spectroscopy, IR spectroscopy, elemental analysis/ICP-OES, and SEM. The direct grafting route afforded a boron loading of 4.5 wt% (≈20% of the theoretical capacity), with the efficiency limited by electrostatic repulsion between anionic amidine fragments on the negatively charged silica surface, whereas the APTES route gave lower absolute loading (0.085 mmol/g) due to the low specific surface area of the coarse silica support. Despite the moderate degree of functionalization, the resulting boron cluster–modified silica gels are attractive candidates for specialized chromatographic applications, where the unique hydrophobic and dihydrogen-bonding properties of closo-dodecaborates may enable selective retention of challenging analytes and motivate further optimization of surface morphology and immobilization conditions. Full article
Show Figures

Figure 1

16 pages, 6661 KB  
Article
Sol–Gel CaCO3/SiO2 Boost Anti-Flashover Silicones
by Ruiling Liao, Yan Liu, Sude Ma and Yue Zhang
Coatings 2026, 16(1), 105; https://doi.org/10.3390/coatings16010105 - 13 Jan 2026
Viewed by 274
Abstract
This study developed high-performance anti-flashover silicone coatings using sol–gel-synthesized CaCO3/SiO2 hierarchical fillers optimized via L16(45) orthogonal design. The optimal filler (Sample 5) was prepared under 70 vol% ethanol, with nTEOS:nCaCO3 = 1:1 and 0.2 mol/L [...] Read more.
This study developed high-performance anti-flashover silicone coatings using sol–gel-synthesized CaCO3/SiO2 hierarchical fillers optimized via L16(45) orthogonal design. The optimal filler (Sample 5) was prepared under 70 vol% ethanol, with nTEOS:nCaCO3 = 1:1 and 0.2 mol/L NH3·H2O, at 45 °C, for 18 h, featuring covalent Si-O-Ca bonding, a dual-scale microstructure (2–4 μm CaCO3 cores + 20–40 nm SiO2 nodules), a 14.44 m2/g specific surface area, and bimodal porosity (8–80 nm). Composite C7 (30 wt% filler, 3 wt% KH-570, 1:2 resin-to-filler ratio) achieved superhydrophobicity (a 153° contact angle via Cassie-Baxter stabilization), ultrahigh electrical insulation (3.20 × 1014 Ω·cm volume resistivity, 1.60 × 1013 Ω surface resistivity), and robust mechanical properties (Shore 3H hardness, 5B adhesion). Standardized IEC 60507:2020 tests showed that C7’s flashover voltages (14.8 kV for KMnO4, 14.3 kV for NaCl/KMnO4, 13 kV for NaCl) exceeded that of neat silicone resin (NSR) and conventional CaCO3-filled composite (SR-CC) by >135%. Additionally, C7 retained superhydrophobicity after 500 h UV aging and maintained a 124° contact angle after 12 months of outdoor exposure. The superior performance stems from synergistic hierarchical topology, tortuous discharge paths, and interfacial passivation. This work establishes a microstructure-driven design paradigm for grid protection materials in harsh environments. Full article
(This article belongs to the Special Issue Advanced Anti-Fouling and Anti-Corrosion Coatings)
Show Figures

Figure 1

29 pages, 2741 KB  
Review
Production Techniques for Antibacterial Fabrics and Their Emerging Applications in Wearable Technology
by Azam Ali, Muhammad Zaman Khan, Sana Rasheed and Rimsha Imtiaz
Micro 2026, 6(1), 5; https://doi.org/10.3390/micro6010005 - 13 Jan 2026
Viewed by 281
Abstract
Integrating antibacterial fabrics into wearable technology represents a transformative advancement in healthcare, fashion, and personal hygiene. Antibacterial fabrics, designed to inhibit microbial growth, are gaining prominence due to their potential to reduce infections, enhance durability, and maintain cleanliness in wearable devices. These fabrics [...] Read more.
Integrating antibacterial fabrics into wearable technology represents a transformative advancement in healthcare, fashion, and personal hygiene. Antibacterial fabrics, designed to inhibit microbial growth, are gaining prominence due to their potential to reduce infections, enhance durability, and maintain cleanliness in wearable devices. These fabrics offer effective antimicrobial properties while retaining comfort and functionality by incorporating nanotechnology and advanced materials, such as silver nanoparticles, zinc oxide, titanium dioxide, and graphene. The production techniques for antibacterial textiles range from chemical and physical surface modifications to biological treatments, each tailored to achieve long-lasting antibacterial performance while preserving fabric comfort and breathability. Advanced methods such as nanoparticle embedding, sol–gel coating, electrospinning, and green synthesis approaches have shown significant promise in enhancing antibacterial efficacy and material compatibility. Wearable technology, including fitness trackers, smart clothing, and medical monitoring devices, relies on prolonged skin contact, making the prevention of bacterial colonization essential for user safety and product longevity. Antibacterial fabrics address these concerns by reducing odor, preventing skin irritation, and minimizing the risk of infection, especially in medical applications such as wound dressings and patient monitoring systems. Despite their potential, integrating antibacterial fabrics into wearable technology presents several challenges. This review provides a comprehensive overview of the key antibacterial agents, the production strategies used to fabricate antibacterial textiles, and their emerging applications in wearable technologies. It also highlights the need for interdisciplinary research to overcome current limitations and promote the development of sustainable, safe, and functional antibacterial fabrics for next-generation wearable. Full article
Show Figures

Figure 1

26 pages, 7676 KB  
Article
Effects of WO3 Amount and Treatment Temperature on TiO2-ZrO2-WO3 Photocatalysts Used in the Solar Photocatalytic Oxidation of Sildenafil
by Jhatziry Hernández Sierra, Jorge Cortez Elizalde, José Gilberto Torres Torres, Adib Abiu Silahua Pavón, Adrian Cervantes Uribe, Adrian Cordero García, Zenaida Guerra Que, Gerardo Enrique Córdova Pérez, Israel Rangel Vázquez and Juan Carlos Arevalo Perez
Catalysts 2026, 16(1), 82; https://doi.org/10.3390/catal16010082 - 10 Jan 2026
Viewed by 331
Abstract
TiO2 shows improved photocatalytic properties when combined with other oxides, such as ZrO2. Unfortunately, this material does not exhibit a spectral response in the visible range, but this can be improved by adding WO3. Here, the effect of [...] Read more.
TiO2 shows improved photocatalytic properties when combined with other oxides, such as ZrO2. Unfortunately, this material does not exhibit a spectral response in the visible range, but this can be improved by adding WO3. Here, the effect of the amount of WO3 and the treatment temperature on TiO2-ZrO2-WO3 materials applied in the solar photocatalytic oxidation of sildenafil was evaluated. The materials were synthesized using the sol–gel method and were characterized by N2, XRD, UV-Vis RDS, SEM, PL, and XPS. Photocatalytic activity was determined by the degradation and mineralization of sildenafil. The most active photocatalysts were selected for stability testing and to determine the oxidizing species that dominate the reaction mechanism. The optimal amount of WO3 that improves solar photocatalytic activity at both treatment temperatures was found to be 1% with a reaction mechanism based on OH· and h+. WO3 reduces electron–hole pair recombination. At 500 °C, the crystallinity of the anatase phase is improved, while at 800 °C, the transformation to rutile is suppressed at low WO3 concentrations. XPS observed the reduction in Ti4+ to Ti3+ and W6+ to W5+ in TiO2–ZrO2–WO3 materials, which were found to be photoactive under sunlight with potential for use in industrial-scale reaction systems. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation, 2nd Edition)
Show Figures

Figure 1

18 pages, 2666 KB  
Article
ZnO Nanoparticles Synthesized via a Supercritical-CO2-Assisted Method as Photocatalysts for the Degradation of Water Pollutants
by Shuangxue Li and Paolo P. Pescarmona
Catalysts 2026, 16(1), 64; https://doi.org/10.3390/catal16010064 - 5 Jan 2026
Viewed by 384
Abstract
Zinc oxide (ZnO) is a widely studied photocatalyst for the degradation of organic pollutants in water, yet its conventional sol–gel synthesis often suffers from low yield and produces materials with low specific surface area. In this study, we tackled these limitations by synthesizing [...] Read more.
Zinc oxide (ZnO) is a widely studied photocatalyst for the degradation of organic pollutants in water, yet its conventional sol–gel synthesis often suffers from low yield and produces materials with low specific surface area. In this study, we tackled these limitations by synthesizing ZnO nanoparticles using a supercritical-CO2-assisted sol–gel method (ZnO-scCO2). The influence of the calcination temperature, precursor concentration, and solvent type on the synthesis of ZnO was systematically investigated, and the materials were characterized with a combination of techniques (XRD, SEM, N2 physisorption, UV-Vis-DRS spectroscopy). The photocatalytic performance of the ZnO-scCO2 materials was evaluated in the degradation of two probe pollutants (phenol and rhodamine B, 200 ppm), under UV and visible radiation. The scCO2-assisted method in ethanol as the solvent allowed achieving at least a four-fold higher ZnO yield and two-fold higher surface area compared to the materials prepared with a conventional sol–gel route without scCO2. These ZnO-scCO2 nanoparticles consistently showed enhanced photocatalytic activity in the removal of phenol and rhodamine B compared to their counterparts synthesized without scCO2 and compared to commercial ZnO. Among the screened synthetic parameters, the solvent in which ZnO was prepared proved to be the one with the strongest influence in determining the ZnO yield and its photocatalytic activity. The optimum results were obtained using 0.50 M zinc acetate as the precursor in 1-butanol as the solvent, and calcination at 300 °C. Full article
Show Figures

Graphical abstract

20 pages, 6531 KB  
Article
Bioceramics Based on Li-Modified Bioactive Glasses for Bone Tissue Regeneration
by Mihai Fotu, Adrian Ionuț Nicoară, Ștefan Manolache, Mihaela Bacalum, Roberta Moisa (Stoica), Roxana Doina Trușcă, Gabriela Olimpia Isopencu and Cristina Busuioc
Materials 2026, 19(1), 153; https://doi.org/10.3390/ma19010153 - 1 Jan 2026
Viewed by 433
Abstract
The development of effective bone substitutes remains a central goal in regenerative medicine. In this study, lithium-modified bioglass-ceramics based on the 47.5S5 silicate oxide system were synthesized using the sol–gel method, followed by calcination and axial pressing to form cylindrical samples. These materials [...] Read more.
The development of effective bone substitutes remains a central goal in regenerative medicine. In this study, lithium-modified bioglass-ceramics based on the 47.5S5 silicate oxide system were synthesized using the sol–gel method, followed by calcination and axial pressing to form cylindrical samples. These materials were sintered at 700 and 800 °C and subsequently examined to evaluate their structural, mechanical, and biological performance. Structural and microstructural analyses confirmed the presence of crystalline phases such as combeite (Na6Ca3Si6O18), NaLiSiO4, Li2SiO3, and calcium silicates, indicating the successful incorporation of lithium within the glass-ceramic network. The bioceramics exhibited improved densification, deformability, and compressive strength with increasing sintering temperature. In vitro degradation in simulated body fluid revealed a consistent increase in mass loss with higher lithium content, suggesting enhanced resorbability linked to lithium oxide. Antibacterial testing indicated moderate antimicrobial activity, with slightly better results observed at higher sintering temperatures. Cell viability assays further supported the materials cytocompatibility. Taken together, these findings suggest that lithium substitution contributes positively to both mechanical robustness and biological behaviour, positioning these ceramics as promising bioresorbable bone substitutes with controlled degradation, suitable for bone tissue engineering where durability, bioactivity, and antimicrobial function are required. Full article
(This article belongs to the Topic Green and Sustainable Chemical Processes)
Show Figures

Graphical abstract

19 pages, 3085 KB  
Article
Bismuth-Based Ceramic Processed at Ultra-Low-Temperature for Dielectric Applications
by Susana Devesa, Sílvia Soreto Teixeira, Manuel Pedro Graça and Luís Cadillon Costa
Nanomaterials 2026, 16(1), 46; https://doi.org/10.3390/nano16010046 - 29 Dec 2025
Viewed by 323
Abstract
High-performance dielectric materials that can be processed at ultra-low temperatures are essential for next-generation LTCC technologies and compact RF–microwave components. In this work, a multicomponent Bi–Fe–Nb oxide system was synthesized using a modified citrate sol–gel method and thermally treated at only 400 °C [...] Read more.
High-performance dielectric materials that can be processed at ultra-low temperatures are essential for next-generation LTCC technologies and compact RF–microwave components. In this work, a multicomponent Bi–Fe–Nb oxide system was synthesized using a modified citrate sol–gel method and thermally treated at only 400 °C to investigate its structural evolution and dielectric behavior. XRD and Raman analysis revealed the coexistence of a well-crystallized BiOCl phase embedded within a partially amorphous Bi–Fe–Nb–O matrix. SEM and EDS mapping confirmed the presence of two distinct microstructural regions, reflecting differences in local composition and crystallization kinetics. Microwave measurements at 2.7 and 5.0 GHz showed low dielectric losses and a stable dielectric response. Impedance spectroscopy in the RF range revealed strong Maxwell–Wagner polarization at low frequencies and thermally activated relaxation evidenced by the temperature shift in the modulus and impedance peaks. Arrhenius analysis of the relaxation frequencies yielded similar activation energies from both modulus and impedance formalisms, indicating a single underlying relaxation mechanism. Equivalent-circuit fitting confirmed non-Debye behavior, with nearly temperature-independent capacitance and decreasing resistance consistent with thermally activated conduction. These results demonstrate that the Bi–Fe–Nb system exhibits promising dielectric stability and functional behavior even when processed at exceptionally low temperatures. Full article
(This article belongs to the Special Issue Advanced Ceramics and Polymer Nanocomposites for Energy Storage)
Show Figures

Figure 1

20 pages, 5344 KB  
Article
Photoluminescence and Scintillation Properties of Ce3+-Doped GdBO3 Nanoscintillator Sensors: Effect of Some Synthesis Parameters
by Lakhdar Guerbous, Mourad Seraiche, Ahmed Rafik Touil, Zohra Akhrib and Rachid Mahiou
Micromachines 2026, 17(1), 34; https://doi.org/10.3390/mi17010034 - 28 Dec 2025
Viewed by 202
Abstract
Cerium (Ce3+)-doped gadolinium orthoborate (GdBO3) phosphor powders were synthesized via an aqueous sol–gel route, with systematic variation in solution pH (2, 5, and 8) and annealing temperature (600–1200 °C, in 100 °C increments) to investigate their influence on structural, [...] Read more.
Cerium (Ce3+)-doped gadolinium orthoborate (GdBO3) phosphor powders were synthesized via an aqueous sol–gel route, with systematic variation in solution pH (2, 5, and 8) and annealing temperature (600–1200 °C, in 100 °C increments) to investigate their influence on structural, optical, and scintillation properties. The materials were comprehensively characterized using thermogravimetric and differential thermal analysis (TG–DTA) to assess thermal behavior, X-ray diffraction (XRD) for crystal structure determination, Fourier-transform infrared spectroscopy (FTIR) for vibrational analysis, and both photoluminescence (PL) and radioluminescence (RL) spectroscopies to evaluate optical and scintillation performance. All samples crystallized in the hexagonal GdBO3 vaterite phase (space group P63/mcm). The PL and RL emission spectra were consistent with the Ce3+ 5d–4f transitions, and scintillation yields under X-ray excitation were quantified relative to a standard Gadox phosphor. A decrease in photoluminescence quantum yield (PLQY) was observed at annealing temperatures above 800 °C, which is attributed to the incorporation of Ce3+ into the host lattice. Scintillation decay profiles were recorded, enabling extraction of timing kinetics parameters. Overall, the results reveal clear correlations between synthesis conditions, structural evolution, and luminescence behavior, providing a rational basis for the optimization of Ce3+-doped GdBO3 phosphors for scintillation applications. Full article
Show Figures

Figure 1

18 pages, 920 KB  
Review
Application of Amorphous Nanomaterials in Dentistry: A Comprehensive Review
by Iris Xiaoxue Yin, John Yun Niu, Veena Wenqing Xu, Ollie Yiru Yu, Irene Shuping Zhao and Chun Hung Chu
J. Funct. Biomater. 2026, 17(1), 11; https://doi.org/10.3390/jfb17010011 - 23 Dec 2025
Viewed by 391
Abstract
Conventional dental materials with organised crystal structures exhibit limitations in corrosion resistance, bioactivity, and drug delivery capability. In contrast, amorphous nanomaterials offer potential advantages in overcoming these limitations due to their unique structural properties. They are characterised by a non-crystalline, disordered atomic structure [...] Read more.
Conventional dental materials with organised crystal structures exhibit limitations in corrosion resistance, bioactivity, and drug delivery capability. In contrast, amorphous nanomaterials offer potential advantages in overcoming these limitations due to their unique structural properties. They are characterised by a non-crystalline, disordered atomic structure and are similar to a solidified liquid at the nanoscale. Among the amorphous nanomaterials used in dentistry, there are five major categories: calcium-, silicon-, magnesium-, zirconia-, and polymer-based systems. This study reviewed these amorphous nanomaterials by investigating their synthesis, properties, applications, limitations, and future directions in dentistry. These amorphous nanomaterials are synthesised primarily through low-temperature methods, including sol–gel processes, rapid precipitation, and electrochemical etching, which prevent atomic arrangements into crystalline structures. The resulting disordered atomic configuration confers exceptional properties, including enhanced solubility, superior drug-loading capacity, high surface reactivity, and controlled biodegradability. These characteristics enable diverse dental applications. Calcium-based amorphous nanomaterials, particularly amorphous calcium phosphate, demonstrate the ability to remineralise tooth enamel. Silicon-based amorphous nanomaterials function as carriers that can release antibacterial agents in response to stimuli. Magnesium-based amorphous nanomaterials are antibacterial and support natural bone regeneration. Zirconia-based amorphous nanomaterials strengthen the mechanical properties of restorative materials. Polymer-based amorphous nanomaterials enable controlled release of medications over extended periods. Despite the advances in these amorphous nanomaterials, there are limitations regarding material stability over time, precise control of degradation rates in the oral environment, and the development of reliable large-scale manufacturing processes. Researchers are creating smart materials that respond to specific oral conditions and developing hybrid systems that combine the strengths of different nanomaterials. In summary, amorphous nanomaterials hold great promise for advancing dental treatments through their unique properties and versatile applications. Clinically, these materials could improve the durability, bioactivity, and targeted drug delivery in dental restorations and therapies, leading to better patient outcomes. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

30 pages, 5119 KB  
Review
Thermo-Responsive Smart Hydrogels: Molecular Engineering, Dynamic Cross-Linking Strategies, and Therapeutics Applications
by Jiten Yadav, Surjeet Chahal, Prashant Kumar and Chandra Kumar
Gels 2026, 12(1), 12; https://doi.org/10.3390/gels12010012 - 23 Dec 2025
Viewed by 637
Abstract
Temperature-responsive hydrogels are sophisticated stimuli-responsive biomaterials that undergo rapid, reversible sol–gel phase transitions in response to subtle thermal stimuli, most notably around physiological temperature. This inherent thermosensitivity enables non-invasive, precise spatiotemporal control of material properties and bioactive payload release, rendering them highly promising [...] Read more.
Temperature-responsive hydrogels are sophisticated stimuli-responsive biomaterials that undergo rapid, reversible sol–gel phase transitions in response to subtle thermal stimuli, most notably around physiological temperature. This inherent thermosensitivity enables non-invasive, precise spatiotemporal control of material properties and bioactive payload release, rendering them highly promising for advanced biomedical applications. This review critically surveys recent advances in the design, synthesis, and translational potential of thermo-responsive hydrogels, emphasizing nanoscale and hybrid architectures optimized for superior tunability and biological performance. Foundational systems remain dominated by poly(N-isopropylacrylamide) (PNIPAAm), which exhibits a sharp lower critical solution temperature near 32 °C, alongside Pluronic/Poloxamer triblock copolymers and thermosensitive cellulose derivatives. Contemporary developments increasingly exploit biohybrid and nanocomposite strategies that incorporate natural polymers such as chitosan, gelatin, or hyaluronic acid with synthetic thermo-responsive segments, yielding materials with markedly enhanced mechanical robustness, biocompatibility, and physiologically relevant transition behavior. Cross-linking methodologies—encompassing covalent chemical approaches, dynamic physical interactions, and radiation-induced polymerization are rigorously assessed for their effects on network topology, swelling/deswelling kinetics, pore structure, and degradation characteristics. Prominent applications include on-demand drug and gene delivery, injectable in situ gelling systems, three-dimensional matrices for cell encapsulation and organoid culture, tissue engineering scaffolds, self-healing wound dressings, and responsive biosensing platforms. The integration of multi-stimuli orthogonality, nanotechnology, and artificial intelligence-guided materials discovery is anticipated to deliver fully programmable, patient-specific hydrogels, establishing them as pivotal enabling technologies in precision and regenerative medicine. Full article
(This article belongs to the Special Issue Characterization Techniques for Hydrogels and Their Applications)
Show Figures

Graphical abstract

20 pages, 4219 KB  
Article
Antibacterial, Redox, Cytotoxic, and Ecotoxic Properties of New Sol–Gel Silica-Copper-Based Materials
by Iliana Ivanova, Lilia Yordanova, Lora Simeonova, Miroslav Metodiev, Elena Nenova, Deyan Monov, Yoanna Kostova, Albena Bachvarova-Nedelcheva, Iva Kirova and Elitsa Pavlova
Pharmaceuticals 2026, 19(1), 35; https://doi.org/10.3390/ph19010035 - 23 Dec 2025
Viewed by 324
Abstract
Objective: The objective of our study was to synthesize and characterize silica–copper nanomaterials and to evaluate their biological properties (antibacterial, redox, cytotoxic, and ecotoxic) for potential applications. Methods and Results: Si/Cu-based materials were prepared by a sol–gel method. They were characterized by XRD, [...] Read more.
Objective: The objective of our study was to synthesize and characterize silica–copper nanomaterials and to evaluate their biological properties (antibacterial, redox, cytotoxic, and ecotoxic) for potential applications. Methods and Results: Si/Cu-based materials were prepared by a sol–gel method. They were characterized by XRD, UV-Vis, and SEM-EDS. The antibacterial activity of the materials was evaluated against Gram-positive bacteria (Staphylococcus aureus, Bacillus cereus), Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium), and yeasts (Candida albicans, Saccharomyces cerevisiae). The nanomaterial that was calcined at 500 °C exhibited greater antibacterial efficacy compared to the gel form. S. typhimurium demonstrated the highest susceptibility, whereas S. aureus and P. aeruginosa were the most resistant of the tested bacteria. Both yeasts exhibited comparable sensitivity (MBC = 1.0 mg/mL). The redox activity of both nanomaterials was tested at pH 7.4 (physiological) and 8.5 (optimal) by the activated chemiluminescent method. The nanocomposites significantly inhibited the free-radical and ROS generation. This presents them as redox regulators in living systems. The cytotoxic effects in normal BEAS-2B and tumor A549 human cell lines were assessed microscopically and by the cell viability neutral red uptake assay, CC50 being evaluated. The observed effects suggest moderate, similar cytotoxicity in both cell lines. The ecotoxicity study using Daphnia magna showed an LC50 of ~7–8 mg/L about Si/Cu/500. The LC50 for Si/Cu (gel) was lower than 0.25 mg/L, indicating an increase in toxicity with increased exposure time. Conclusions: Possible applications of the newly synthesized nanomaterials include antimicrobial coatings, drug delivery systems, antioxidant additives in various formulations, and water purification. Full article
Show Figures

Graphical abstract

15 pages, 2709 KB  
Article
Titania-Based Oxide Catalysts for Removing Nitrogen Oxides
by Anna Białas, Natalia Kowalska, Małgorzata Zimowska, Grzegorz Mordarski and Jacek Gurgul
Materials 2026, 19(1), 20; https://doi.org/10.3390/ma19010020 - 20 Dec 2025
Viewed by 291
Abstract
Titania catalysts containing cerium, copper, or iron were obtained using the sol–gel method and tested in the selective reduction of nitrogen oxide. Samples with cerium and iron showed high activity at temperatures ranging from 200 to 400 °C, without the formation of N [...] Read more.
Titania catalysts containing cerium, copper, or iron were obtained using the sol–gel method and tested in the selective reduction of nitrogen oxide. Samples with cerium and iron showed high activity at temperatures ranging from 200 to 400 °C, without the formation of N2O. The materials crystallized in anatase structure, and only a small amount of ceria was detected by XRD. Their crystallites were nanometric in size. The solids were mesoporous, with a specific surface area between 74 and 160 m2/g, determined based on nitrogen sorption at low temperature. The optimum Ce/Ti and Fe/Ti atomic ratio was 0.1 to 0.9, and such catalysts were composed of small anatase crystallites, although the presence of ceria also resulted in high catalytic activity. This activity was due to the presence of Fe3+ or Ce3+ ions on the surface of the material. Full article
(This article belongs to the Special Issue Advanced Nanoporous and Mesoporous Materials)
Show Figures

Figure 1

14 pages, 3206 KB  
Article
Microstructured Coatings and Surface Functionalization of Poly(caprolactone-co-lactide) Using Gas-Permeable Mold
by Mano Ando, Naoto Sugino, Yoshiyuki Yokoyama, Nur Aliana Hidayah Mohamed and Satoshi Takei
Coatings 2026, 16(1), 10; https://doi.org/10.3390/coatings16010010 - 20 Dec 2025
Viewed by 330
Abstract
Low-melting bioabsorbable polymers, such as poly(caprolactone-co-lactide) (PCLA), hold significant promise for biomedical applications. However, achieving high-precision micro- and nanotopographical functionalization remains a formidable challenge due to the material’s susceptibility to thermal deformation during conventional thermal molding processes. In this study, functional microstructured PCLA [...] Read more.
Low-melting bioabsorbable polymers, such as poly(caprolactone-co-lactide) (PCLA), hold significant promise for biomedical applications. However, achieving high-precision micro- and nanotopographical functionalization remains a formidable challenge due to the material’s susceptibility to thermal deformation during conventional thermal molding processes. In this study, functional microstructured PCLA coatings were engineered via low-temperature nanoimprint lithography utilizing a TiO2–SiO2 gas-permeable mold. These molds were synthesized via a sol–gel method utilizing titanium dioxide and silicon precursors. The gas-permeable nature of the mold facilitated the efficient evacuation of trapped air and volatiles during the imprinting process, enabling the high-fidelity replication of microstructures (1.3 μm height, 3 μm pitch) and nanostructured PCLA coatings featuring linewidths as narrow as 600 nm. The resultant microstructured PCLA coatings demonstrated modulated surface wettability, evidenced by an increase in water contact angles from 70.1° to 91.4°, and exhibited enhanced FD4 elution kinetics. These results confirm morphology-driven functionalities, specifically hydrophobicity and controlled release capabilities. Collectively, these findings underscore the efficacy of this microfabrication approach for polycaprolactone-based materials and highlight its potential to catalyze the development of high-value-added biomaterials for advanced medical and life science applications. This study establishes a foundational framework for the practical deployment of next-generation bioabsorbable materials and is anticipated to drive innovation in precision medical manufacturing. Full article
(This article belongs to the Section Functional Polymer Coatings and Films)
Show Figures

Figure 1

Back to TopTop