Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,834)

Search Parameters:
Keywords = soil culture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2357 KiB  
Article
Nitrogen Fertilizer Reduction in Rice–Eel Co-Culture System Improves the Soil Microbial Diversity and Its Functional Stability
by Mengqian Ma, Weiguang Lv, Yu Huang, Juanqin Zhang, Shuangxi Li, Naling Bai, Haiyun Zhang, Xianpu Zhu, Chenglong Xu and Hanlin Zhang
Plants 2025, 14(15), 2425; https://doi.org/10.3390/plants14152425 - 5 Aug 2025
Abstract
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began [...] Read more.
The ecological rice–eel co-culture system is not only beneficial for enhancing productivity and sustainability in agriculture but also plays a crucial role in promoting environmental health. In the present study, based on the long-term positioning trial of the rice–eel co-culture system that began in 2016 and was sampled in 2023, the effects of reduced nitrogen fertilizer application on soil physico-chemical properties and the bacterial community were investigated. Treatments included a conventional regular fertilization treatment (RT), rice–eel co-culture system regular fertilization (IT), and nitrogen-reduction 10%, 30%, and 50% fertilization treatments (IT90, IT70, and IT50). Our research demonstrated the following: (1) Compared to RT, IT significantly increased soil water-stable macroaggregates (R0.25), mean weight diameter (MWD), geometric mean diameter (GMD), and available phosphorus content, with the increases of 15.66%, 25.49%, 36.00%, and 18.42%, respectively. Among the nitrogen-reduction fertilization treatments, IT90 showed the most significant effect. Compared to IT, IT90 significantly increased R0.25, MWD, GMD, and available nitrogen content, with increases of 4.4%, 7.81%, 8.82%, and 28.89%, respectively. (2) Compared to RT, at the phylum level, the diversity of Chloroflexi was significantly increased under IT and IT50, and the diversity of Gemmatimonadota was significantly increased under IT90, IT70, and IT50. The diversity of Acidobacteriota was significantly higher in IT90 and IT70 compared to IT. It was shown that the rice–eel co-culture system and nitrogen fertilizer reduction could effectively improve the degradation capacity of organic matter and promote soil nitrogen cycling. In addition, redundancy analysis (RDA) identified total phosphorus, total nitrogen, and available nitrogen (p = 0.007) as the three most important environmental factors driving changes in the bacterial community. (3) The functional prediction analysis of soil microbiota showed that, compared to RT, the diversity of pathways related to biosynthesis (carbohydrate biosynthesis and cell structure biosynthesis) and metabolism (L-glutamate and L-glutamine biosynthesis) was significantly higher under IT70, IT90, IT, and IT50 (in descending order). However, the diversity of pathways associated with degradation/utilization/assimilation (secondary metabolite degradation and amine and polyamine degradation) was significantly lower under all the rice–eel co-culture treatments. In conclusion, the rice–eel co-culture system improved soil physicochemical properties and the soil microbial environment compared with conventional planting, and the best soil improvement was achieved with 10% less N fertilizer application. Full article
(This article belongs to the Special Issue Chemical Properties of Soils and its Impact on Plant Growth)
Show Figures

Figure 1

16 pages, 20542 KiB  
Article
Establishment of Agrobacterium-Mediated Transient Transformation System in Sunflower
by Fangyuan Chen, Lai Wang, Qixiu Huang, Run Jiang, Wenhui Li, Xianfei Hou, Zihan Tan, Zhonghua Lei, Qiang Li and Youling Zeng
Plants 2025, 14(15), 2412; https://doi.org/10.3390/plants14152412 - 4 Aug 2025
Viewed by 153
Abstract
Sunflower (Helianthus annuus L.) is an important oilseed crop in Northwest China, exhibiting resistance to salt and drought. Mining its excellent tolerance genes can be used for breeding. However, the current platforms for identifying gene function in sunflower is inadequate. The transient [...] Read more.
Sunflower (Helianthus annuus L.) is an important oilseed crop in Northwest China, exhibiting resistance to salt and drought. Mining its excellent tolerance genes can be used for breeding. However, the current platforms for identifying gene function in sunflower is inadequate. The transient transformation system, which can rapidly validate gene function, shows promising prospects in research. In this study, we established an efficient transient expression transformation system for sunflower using three methods: Agrobacterium-mediated infiltration, injection, and ultrasonic-vacuum. The detailed procedures were as follows: Agrobacterium GV3101 carrying a GUS reporter gene on the pBI121 vector with an OD600 of 0.8 as the bacterial suspension and 0.02% Silwet L-77 as the surfactant were utilized in all three approaches. For the infiltration method, seedlings grown hydroponically for 3 days were immersed in a bacterial suspension containing 0.02% Silwet L-77 for 2 h; for the injection method, the same solution was injected into the cotyledons of seedlings grown in soil for 4 to 6 days. Subsequently, the seedlings were cultured in the dark at room temperature for three days; for the ultrasonic-vacuum method, seedlings cultured in Petri dishes for 3 days were first subjected to ultrasonication at 40 kHz for 1 min, followed by vacuum infiltration at 0.05 kPa for 5–10 min. Agrobacterium-mediated transient transformation efficiency achieved by the three methods exceeded 90%, with gene expression being sustained for at least 6 days. Next, we employed the infiltration-based sunflower transient transformation technology with the Arabidopsis stable transformation platform to confirm salt and drought stress tolerance of candidate gene HaNAC76 from sunflower responding to various abiotic stresses. Altogether, this study successfully established an Agrobacterium-mediated transient transformation system for sunflower using these three methods, which can rapidly identify gene function and explore the molecular mechanisms underlying sunflower’s resistance traits. Full article
(This article belongs to the Section Plant Cell Biology)
Show Figures

Figure 1

25 pages, 10097 KiB  
Article
Biocrusts Alter the Pore Structure and Water Infiltration in the Top Layer of Rammed Soils at Weiyuan Section of the Great Wall in China
by Xiaoju Yang, Fasi Wu, Long Li, Ruihua Shang, Dandan Li, Lina Xu, Jing Cui and Xueyong Zhao
Coatings 2025, 15(8), 908; https://doi.org/10.3390/coatings15080908 - 3 Aug 2025
Viewed by 118
Abstract
The surface of the Great Wall harbors a large number of non-vascular plants dominated by cyanobacteria, lichens and mosses as well as microorganisms, and form biocrusts by cementing with the soils and greatly alters the pore structure of the soil and the ecohydrological [...] Read more.
The surface of the Great Wall harbors a large number of non-vascular plants dominated by cyanobacteria, lichens and mosses as well as microorganisms, and form biocrusts by cementing with the soils and greatly alters the pore structure of the soil and the ecohydrological processes associated with the soil pore space, and thus influences the soil resistance to erosion. However, the microscopic role of the biocrusts in influencing the pore structure of the surface of the Great Wall is not clear. This study chose the Warring States Qin Great Wall in Weiyuan, Gansu Province, China, as research site to quantify thepore structure characteristics of the three-dimensional of bare soil, cyanobacterial-lichen crusts, and moss crusts at the depth of 0–50 mm, by using optical microscopy, scanning electron microscopy, and X-ray computed tomography and image analysis, and the precipitation infiltration process. The results showed that the moss crust layer was dominated by large pores with long extension and good connectivity, which provided preferential seepage channels for precipitation infiltration, while the connectivity between the cyanobacterial-lichen crust voids was poor; The porosity of the cyanobacterial-lichen crust and the moss crust was 500% and 903.27% higher than that of the bare soil, respectively. The porosity of the subsurface layer of cyanobacterial-lichen crust and moss crust was significantly lower than that of the biocrusts layer by 92.54% and 97.96%, respectively, and the porosity of the moss crust was significantly higher than that of the cyanobacterial-lichen crust in the same layer; Cyanobacterial-lichen crusts increased the degree of anisotropy, mean tortuosity, moss crust reduced the degree of anisotropy, mean tortuosity. Biocrusts increased the fractal dimension and Euler number of pores. Compared with bare soil, moss crust and cyanobacterial-lichen crust increased the isolated porosity by 2555% and 4085%, respectively; Biocrusts increased the complexity of the pore network models; The initial infiltration rate, stable infiltration rate, average infiltration rate, and the total amount of infiltration of moss crusted soil was 2.26 and 3.12 times, 1.07 and 1.63 times, respectively, higher than that of the cyanobacterial-lichen crusts and the bare soil, by 1.53 and 2.33 times, and 1.13 and 2.08 times, respectively; CT porosity and clay content are significantly positively correlated with initial soil infiltration rate (|r| ≥ 0.85), while soil type and organic matter content are negatively correlated with initial soil infiltration rate. The soil type and bulk density are directly positively and negatively correlated with CT porosity, respectively (|r| ≥ 0.52). There is a significant negative correlation between soil clay content and porosity (|r| = 0.15, p < 0.001). Biocrusts alter the erosion resistance of rammed earth walls by affecting the soil microstructure of the earth’s great wall, altering precipitation infiltration, and promoting vascular plant colonisation, which in turn alters the erosion resistance of the wall. The research results have important reference for the development of disposal plans for biocrusts on the surface of archaeological sites. Full article
Show Figures

Figure 1

21 pages, 26631 KiB  
Technical Note
Induced Polarization Imaging: A Geophysical Tool for the Identification of Unmarked Graves
by Matthias Steiner and Adrián Flores Orozco
Remote Sens. 2025, 17(15), 2687; https://doi.org/10.3390/rs17152687 - 3 Aug 2025
Viewed by 207
Abstract
The identification of unmarked graves is important in archaeology, forensics, and cemetery management, but invasive methods are often restricted due to ethical or cultural concerns. This necessitates the use of non-invasive geophysical techniques. Our study demonstrates the potential of induced polarization (IP) imaging [...] Read more.
The identification of unmarked graves is important in archaeology, forensics, and cemetery management, but invasive methods are often restricted due to ethical or cultural concerns. This necessitates the use of non-invasive geophysical techniques. Our study demonstrates the potential of induced polarization (IP) imaging as a non-invasive remote sensing technique specifically suited for detecting and characterizing unmarked graves. IP leverages changes in the electrical properties of soil and pore water, influenced by the accumulation of organic matter from decomposition processes. Measurements were conducted at an inactive cemetery using non-invasive textile electrodes to map a documented grave from the early 1990s, with a survey design optimized for high spatial resolution. The results reveal a distinct polarizable anomaly at a 0.75–1.0 m depth with phase shifts exceeding 12 mrad, attributed to organic carbon from wooden burial boxes, and a plume-shaped conductive anomaly indicating the migration of dissolved organic matter. While electrical conductivity alone yielded diffuse grave boundaries, the polarization response sharply delineated the grave, aligning with photographic documentation. These findings underscore the value of IP imaging as a non-invasive, data-driven approach for the accurate localization and characterization of graves. The methodology presented here offers a promising new tool for archaeological prospection and forensic search operations, expanding the geophysical toolkit available for remote sensing in culturally and legally sensitive contexts. Full article
Show Figures

Figure 1

21 pages, 1538 KiB  
Article
Soil Fungal Activity and Microbial Response to Wildfire in a Dry Tropical Forest of Northern Colombia
by Eliana Martínez Mera, Ana Carolina Torregroza-Espinosa, Ana Cristina De la Parra-Guerra, Marielena Durán-Castiblanco, William Zapata-Herazo, Juan Sebastián Rodríguez-Rebolledo, Fernán Zabala-Sierra and David Alejandro Blanco Alvarez
Diversity 2025, 17(8), 546; https://doi.org/10.3390/d17080546 - 1 Aug 2025
Viewed by 193
Abstract
Wildfires can significantly alter soil physicochemical conditions and microbial communities in forest ecosystems. This study aimed to characterize the culturable soil fungal community and evaluate biological activity in Banco Totumo Bijibana, a protected dry tropical forest in Atlántico, Colombia, affected by a wildfire [...] Read more.
Wildfires can significantly alter soil physicochemical conditions and microbial communities in forest ecosystems. This study aimed to characterize the culturable soil fungal community and evaluate biological activity in Banco Totumo Bijibana, a protected dry tropical forest in Atlántico, Colombia, affected by a wildfire in 2014. Twenty soil samples were collected for microbiological (10 cm depth) and physicochemical (30 cm) analysis. Basal respiration was measured using Stotzky’s method, nitrogen mineralization via Rawls’ method, and fungal diversity through culture-based identification and colony-forming unit (CFU) counts. Diversity was assessed using Simpson, Shannon–Weaver, and ACE indices. The soils presented low organic matter (0.70%) and nitrogen content (0.035%), with reduced biological activity as indicated by basal respiration (0.12 kg C ha−1 d−1) and mineralized nitrogen (5.61 kg ha−1). Four fungal morphotypes, likely from the genus Aspergillus, were identified. Simpson index indicated moderate dominance, while Shannon–Weaver values reflected low diversity. Correlation analysis showed Aspergillus-3 was positively associated with moisture, whereas Aspergillus-4 correlated negatively with pH and sand content. The species accumulation curve reached an asymptote, suggesting an adequate sampling effort. Although no control site was included, the findings provide a baseline characterization of post-fire soil microbial structure and function in a dry tropical ecosystem. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Graphical abstract

15 pages, 1019 KiB  
Article
Biostimulatory Effects of Bacillus subtilis and Pseudomonas corrugata on Phytochemical and Antioxidant Properties of In Vitro-Propagated Plants of Nardostachys jatamansi (D. Don) DC
by Janhvi Mishra Rawat, Mrinalini Agarwal, Shivani Negi, Jigisha Anand, Prabhakar Semwal, Balwant Rawat, Rajneesh Bhardwaj and Debasis Mitra
Bacteria 2025, 4(3), 38; https://doi.org/10.3390/bacteria4030038 - 1 Aug 2025
Viewed by 127
Abstract
Plant growth-promoting rhizobacteria (PGPRs) are well known for their capacity to enhance the growth and survival of in vitro-grown plants. However, their effect on Nardostachys jatamansi (D. Don) DC., a critically endangered medicinal plant in the Indian Himalayan Region, is still unknown. In [...] Read more.
Plant growth-promoting rhizobacteria (PGPRs) are well known for their capacity to enhance the growth and survival of in vitro-grown plants. However, their effect on Nardostachys jatamansi (D. Don) DC., a critically endangered medicinal plant in the Indian Himalayan Region, is still unknown. In this study, a simple, reproducible protocol for in vitro propagation of N. jatamansi was established using shoot tip explants, cultured on Murashige and Skoog (MS) medium supplemented with different plant growth regulators, including N6-benzylaminopurine, thidiazuron (TDZ), and naphthalene acetic acid (NAA). MS media supplemented with 2.0 μM TDZ and 0.5 µM NAA created a significant shoot induction with an average of 6.2 shoots per explant. These aseptically excised individual shoots produced roots on MS medium supplemented with Indole Butyric Acid or NAA within 14 days of the transfer. The PGPR, viz., Bacillus subtilis and Pseudomonas corrugata, inoculation resulted in improved growth, higher chlorophyll content, and survival of in vitro-rooted plants (94.6%) after transfer to the soil. Moreover, the PGPRs depicted a two-fold higher total phenolics (45.87 mg GAE/g DW) in plants. These results clearly demonstrate the beneficial effects of P. corrugata and B. subtilis on the growth, survival, and phytochemical content of N. jatamansi. Full article
(This article belongs to the Special Issue Harnessing of Soil Microbiome for Sustainable Agriculture)
Show Figures

Figure 1

12 pages, 4171 KiB  
Article
Effects of Paramisgurnus dabryanus Density on the Growth Performance of Pelophylax nigromaculatus and the Soil Microbial Communities Within a Rice–Frog–Loach Integrated Aquaculture System
by Chuanqi Yu, Yaping Li, Qiubai Zhou, Wenshuo Liu, Yuhong Liao, Jie Pan, Qi Chen, Haohua He and Zirui Wang
Microorganisms 2025, 13(8), 1794; https://doi.org/10.3390/microorganisms13081794 - 31 Jul 2025
Viewed by 174
Abstract
This investigation examines the influence of P. dabryanus density on the growth performance of P. nigromaculatus and the structural and functional dynamics of paddy soil microbial communities within a rice–frog–loach integrated aquaculture system. Field experiments were conducted with five density gradients of [...] Read more.
This investigation examines the influence of P. dabryanus density on the growth performance of P. nigromaculatus and the structural and functional dynamics of paddy soil microbial communities within a rice–frog–loach integrated aquaculture system. Field experiments were conducted with five density gradients of P. dabryanus (0.5, 1.0, 1.5, 2.0, and 2.5 × 104 individuals/667 m2), designated as RFLS0.5, RFLS1.0, RFLS1.5, RFLS2.0, and RFLS2.5, respectively. Control treatments included rice monoculture (RM) and rice–frog co-culture (RFS). These findings demonstrated that as the density of loach increased, the weight gain ratio of P. nigromaculatus showed a unimodal pattern, reaching its peak in RFLS1. Metagenomic analysis on paddy soil revealed that the RFLS1 facilitated the enrichment of nitrogen-fixing bacteria (Proteobacteria), while concurrently suppressing proliferation of the potential pathogen Pseudomonas aeruginosa and microbial markers in metal-contaminated environments of Usitatibacter rugosus. Further, functional profiling indicated that RFLS1 group reached a peak activity in amino acid metabolism (14.52 ± 0.09%) and carbohydrate metabolism (14.44 ± 0.06%) and showed a higher proportion of glycosyltransferase (GT) abundance (41.93 ± 0.02%) than other groups. In summary, the optimal stocking density of P. dabryanus in rice–frog–loach integrated systems was determined to be 1.0 × 104 individuals/667 m2. This density not only promotes the growth of P. nigromaculatus but also improves the structure of paddy soil microbial communities. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

13 pages, 1294 KiB  
Article
Soil Phosphorus Availability Modulates Host Selectivity of Pedicularis kansuensis Between Legumes and Grasses
by Xiaolin Sui, Ruijuan Xue and Airong Li
Plants 2025, 14(15), 2356; https://doi.org/10.3390/plants14152356 - 31 Jul 2025
Viewed by 203
Abstract
Host selectivity or preference plays a critical role in enabling parasitic plants to identify suitable hosts and influence plant community dynamics. Phosphorus (P) is known to affect the growth of root hemiparasitic plants and their interaction with single host species, but its role [...] Read more.
Host selectivity or preference plays a critical role in enabling parasitic plants to identify suitable hosts and influence plant community dynamics. Phosphorus (P) is known to affect the growth of root hemiparasitic plants and their interaction with single host species, but its role in shaping host selectivity across multiple hosts is unclear. In a pot experiment, we used a grass–legume co-culture design and evaluated whether the root hemiparasitic plant Pedicularis kansuensis exhibits selective parasitism on legumes (Medicago sativa) versus grasses (Elymus nutans) and assessed the impact of soil P availability on this preference. The results showed that P. kansuensis inhibited the growth of both host species, but the magnitude of suppression varied with P availability. Under low P conditions, P. kansuensis preferentially parasitized the tender M. sativa, causing a greater biomass reduction in the legume. In contrast, at high P levels, P. kansuensis decreased its foraging on legumes, shifting its parasitism towards the dominant E. nutans, which potentially led to stronger suppression of grass growth. Our findings demonstrate that soil P availability modulates host selectivity in P. kansuensis, emphasizing the influence of soil nutrient conditions on parasite–host dynamics. This research provides insights into managing the impacts of parasitic plants on plant community structure through nutrient interventions. Full article
(This article belongs to the Special Issue Phosphorus and pH Management in Soil–Plant Systems)
Show Figures

Figure 1

24 pages, 2373 KiB  
Review
Assessment of Soil Erosion Risk in Cultural Heritage Sites: A Bibliometric Analysis
by Nikoletta Papageorgiou, Diofantos Hadjimitsis, Chris Danezis and Rosa Lasaponara
Heritage 2025, 8(8), 307; https://doi.org/10.3390/heritage8080307 - 30 Jul 2025
Viewed by 353
Abstract
Different monitoring approaches and techniques have been adopted to estimate and prevent soil erosion and its corresponding phenomena at cultural heritage sites. Remote sensing plays a crucial role in detecting and monitoring soil erosion events by providing a wealth of geospatial data and [...] Read more.
Different monitoring approaches and techniques have been adopted to estimate and prevent soil erosion and its corresponding phenomena at cultural heritage sites. Remote sensing plays a crucial role in detecting and monitoring soil erosion events by providing a wealth of geospatial data and information that helps to better understand and respond to the mechanisms of soil erosion and mitigate or reduce its impacts. The main aims of this review are to (1) provide an overview of remote sensing methods, applications, and sensor types, (2) discuss the role of remote sensing in the estimation of soil erosion at cultural heritage sites, and (3) present a bibliometric analysis of soil erosion studies at cultural heritage sites covering the period from 1994 to 2025. The results of this study provide insights into the yearly scientific production, methods employed, topics, and trends in this field. This research offers valuable information for future research and the development and promotion of policies and strategies for the effective and sustainable management of cultural heritage sites. Full article
(This article belongs to the Special Issue Geological Hazards and Heritage Safeguard)
Show Figures

Figure 1

15 pages, 4581 KiB  
Article
Co-Culture with Two Soil Fungal Strains Enhances Growth and Secondary Metabolite Biosynthesis in Cordyceps takaomontana
by Junyi Chen, Minghao Ding, Donglan He, Dengxian Zhang, Ming Wang, Yulan Xiang and Tianya Liu
J. Fungi 2025, 11(8), 559; https://doi.org/10.3390/jof11080559 - 29 Jul 2025
Viewed by 369
Abstract
Cordyceps takaomontana is a medicinal fungus with significant pharmacological value, but how soil microbes promote its growth remains unclear. We established a solid-state co-culture system involving C. takaomontana synnemata and its native soil fungi of Fusarium paeoniae and Bjerkandera minispora. Both F. [...] Read more.
Cordyceps takaomontana is a medicinal fungus with significant pharmacological value, but how soil microbes promote its growth remains unclear. We established a solid-state co-culture system involving C. takaomontana synnemata and its native soil fungi of Fusarium paeoniae and Bjerkandera minispora. Both F. paeoniae and B. minispora significantly promoted synnematal growth and enhanced antioxidant enzyme activities. Total triterpenoid content increased substantially. F. paeoniae markedly elevated levels of ergosterol peroxide, whereas B. minispora boosted accumulation of L-arabinose, ergotamine, and euphol. Metabolomics revealed that both fungi activated key metabolic pathways (including ABC transporters, mineral absorption, and protein digestion/absorption). F. paeoniae uniquely upregulated phenylalanine metabolism. This work elucidates the metabolic mechanisms underlying growth promotion of C. takaomontana mediated by F. paeoniae and B. minispora as well as deciphers potential pharmacologically active metabolites. These findings provide a foundation for strategically improving artificial cultivation and developing functional microbial inoculants. Full article
Show Figures

Figure 1

21 pages, 5917 KiB  
Article
Cyanobacterial Assemblages Inhabiting the Apatity Thermal Power Plant Fly Ash Dumps in the Russian Arctic
by Denis Davydov and Anna Vilnet
Microorganisms 2025, 13(8), 1762; https://doi.org/10.3390/microorganisms13081762 - 28 Jul 2025
Viewed by 217
Abstract
In the process of the work of a coal power station is formed ash and slag, which, along with process water, are deposited in the dumps. Coal ash waste dumps significantly degrade the surrounding environment due to their unprotected surfaces, which are highly [...] Read more.
In the process of the work of a coal power station is formed ash and slag, which, along with process water, are deposited in the dumps. Coal ash waste dumps significantly degrade the surrounding environment due to their unprotected surfaces, which are highly susceptible to wind and water erosion. This results in the dispersion of contaminants into adjacent ecosystems. Pollutants migrate into terrestrial and aquatic systems, compromising soil quality and water resources, and posing documented risks to the environment and human health. Primary succession on the coal ash dumps of the Apatity thermal power plant (Murmansk Region, NW Russia) was initiated by cyanobacterial colonization. We studied cyanobacterial communities inhabiting three spoil sites that varied in time since decommissioning. These sites are characterized by exceptionally high concentrations of calcium and magnesium oxides—levels approximately double those found in the region’s natural soils. A total of 18 cyanobacterial taxa were identified in disposal sites. Morphological analysis of visible surface crusts revealed 16 distinct species. Furthermore, 24 cyanobacterial strains representing 11 species were successfully isolated into unialgal culture and tested with a molecular genetic approach to confirm their identification from 16S rRNA. Three species were determined with molecular evidence. Cyanobacterial colonization of coal fly ash disposal sites begins immediately after deposition. Primary communities initially exhibit low species diversity (four taxa) and do not form a continuous ground cover in the early years. However, as succession progresses—illustrated by observations from a 30-year-old deposit—spontaneous surface revegetation occurs, accompanied by a marked increase in cyanobacterial diversity, reaching 12 species. Full article
(This article belongs to the Special Issue Microbial Diversity Research in Different Environments)
Show Figures

Figure 1

20 pages, 2984 KiB  
Article
Influence of Rice–Crayfish Co-Culture Systems on Soil Properties and Microbial Communities in Paddy Fields
by Dingyu Duan, Dingxuan He, Liangjie Zhao, Chenxi Tan, Donghui Yang, Wende Yan, Guangjun Wang and Xiaoyong Chen
Plants 2025, 14(15), 2320; https://doi.org/10.3390/plants14152320 - 27 Jul 2025
Viewed by 388
Abstract
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects [...] Read more.
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects of the RC systems on soil physicochemical characteristics and microbial dynamics in paddy fields of southern Henan Province, China, over the 2023 growing season and subsequent fallow period. Using a randomized complete design, rice monoculture (RM, as the control) and RC treatments were compared across replicated plots. Soil and water samples were collected post-harvest and pre-transplanting to assess soil properties, extracellular enzyme activity, and microbial community structure. Results showed that RC significantly enhanced soil moisture by up to 30.2%, increased soil porosity by 9.6%, and nearly tripled soil organic carbon compared to RM. The RC system consistently elevated nitrogen (N), phosphorus (P), and potassium (K) throughout both the rice growth and fallow stages, indicating improved nutrient availability and retention. Elevated extracellular enzyme activities linked to carbon, N, and P cycling were observed under RC, with enzymatic stoichiometry revealing increased microbial nutrient limitation intensity and a shift toward P limitation. Microbial community composition was significantly altered under RC, showing increased biomass, a higher fungi-to-bacteria ratio, and greater relative abundance of Gram-positive bacteria, reflecting enhanced soil biodiversity and ecosystem resilience. Further analyses using the Mantel test and Random Forest identified extracellular enzyme activities, PLFAs, soil moisture, and bulk density as major factors shaping microbial communities. Redundancy analysis (RDA) confirmed that total potassium (TK), vector length (VL), soil pH, and total nitrogen (TN) were the strongest environmental predictors of microbial variation, jointly explaining 74.57% of the total variation. Our findings indicated that RC improves soil physicochemical conditions and microbial function, thereby supporting sustainable nutrient cycling and offering a promising, environmentally sound strategy for enhancing productivity and soil health in rice-based agro-ecosystems. Full article
Show Figures

Figure 1

20 pages, 2181 KiB  
Article
Metabarcoding Analysis Reveals Microbial Diversity and Potential Soilborne Pathogens Associated with Almond Dieback and Decline
by André Albuquerque, Mariana Patanita, Joana Amaro Ribeiro, Maria Doroteia Campos, Filipa Santos, Tomás Monteiro, Margarida Basaloco and Maria do Rosário Félix
Plants 2025, 14(15), 2309; https://doi.org/10.3390/plants14152309 - 26 Jul 2025
Viewed by 410
Abstract
Almond decline and dieback have become significant challenges in newly established orchards, with symptoms including internal necrosis, canker, and external gummosis. This work aims to explore the potential fungal and bacterial causative agents through metabarcoding and traditional culture plate isolation across six almond [...] Read more.
Almond decline and dieback have become significant challenges in newly established orchards, with symptoms including internal necrosis, canker, and external gummosis. This work aims to explore the potential fungal and bacterial causative agents through metabarcoding and traditional culture plate isolation across six almond cultivars. Our results emphasize the multifactorial nature of almond decline and dieback, with possible co-infections by opportunistic fungi and bacteria playing a central role. Classical isolation identified 47 fungal species or genera, including Diaporthe amygdali, Diplodia corticola, Phytophthora sp., and several Fusarium species. Almond metabarcoding revealed a more diverse microbial community, highlighting the prevalence of soilborne pathogens such as Neocosmospora rubicola, Dactylonectria estremocensis, and Plectosphaerella niemeijerarum. Soil metabarcoding suggested that these pathogens likely originate from nursery substrates or soils shared with other crops, such as olives and vineyards, that serve as a source of inoculum. ‘Soleta’ generally presented lower richness when compared to the other tested cultivars, suggesting a higher degree of biotic stress and decreased plant resilience. This study highlights the value of integrating NGS approaches to comprehensively study complex diseases and the need for further research on pathogen interactions and cultivar susceptibility for the future development of new sustainable, targeted management strategies in almond orchards. Full article
Show Figures

Figure 1

23 pages, 964 KiB  
Article
Cultural Ecosystem Services of Grassland Communities: A Case Study of Lubelskie Province
by Teresa Wyłupek, Halina Lipińska, Agnieszka Kępkowicz, Kamila Adamczyk-Mucha, Wojciech Lipiński, Stanisław Franczak and Agnieszka Duniewicz
Sustainability 2025, 17(15), 6697; https://doi.org/10.3390/su17156697 - 23 Jul 2025
Viewed by 310
Abstract
Grassland communities consist primarily of perennial herbaceous species, with grasses forming a dominant or significant component. These ecosystems have been utilised for economic purposes since the earliest periods of human history. In the natural environment, they fulfil numerous critical functions that, despite increasing [...] Read more.
Grassland communities consist primarily of perennial herbaceous species, with grasses forming a dominant or significant component. These ecosystems have been utilised for economic purposes since the earliest periods of human history. In the natural environment, they fulfil numerous critical functions that, despite increasing awareness of climate change, often remain undervalued. Grasslands contribute directly to climate regulation, air purification, soil conservation, flood mitigation, and public health—all of which positively affect the well-being of nearby populations. Moreover, they satisfy higher-order human needs known as “cultural” services, providing aesthetic enjoyment and recreational opportunities. These services, in tangible terms, support the development of rural tourism. The objective of this study was to examine the perception of cultural ecosystem services provided by different types of grassland communities—meadows, pastures, and lawns. The study employed a structured questionnaire to evaluate the perceived significance and functions of these communities. Respondents assessed their aesthetic and recreational value based on land-use type. To quantify these dimensions, the study applies the Recreational and Leisure Attractiveness Index (RLAI), the Aesthetic Attractiveness Index (AAI), ranking methods, and contingent valuation techniques. Based on the respondents’ declared WTP (willingness to pay) and WTA (willingness to accept) values, statistically significant differences in the perceived value of land-use types were identified. Lawns were rated highest in terms of recreational attractiveness, meadows in terms of aesthetics, while pastures achieved the highest economic values. Significant differences were also observed depending on respondents’ place of residence and academic background. The results indicate that the valuation of cultural services encompasses both functional and psychological aspects and should be integrated into local land-use and landscape planning policies. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

17 pages, 2237 KiB  
Article
Bioaccumulation of the Heavy Metal Cadmium and Its Tolerance Mechanisms in Experimental Plant Suaeda salsa
by Qingchao Ge, Tianqian Zhang, Liming Jin, Dazuo Yang, Yang Cui, Huan Zhao and Jie He
Int. J. Mol. Sci. 2025, 26(14), 6988; https://doi.org/10.3390/ijms26146988 - 21 Jul 2025
Viewed by 277
Abstract
Suaeda salsa is relatively tolerant to cadmium (Cd) contamination. In order to investigate the bioaccumulation and stress responses of S. salsa under chronic exposure, we explored the growth, accumulation, and changes in antioxidant enzymes and glutathione (GSH) under different Cd concentrations over a [...] Read more.
Suaeda salsa is relatively tolerant to cadmium (Cd) contamination. In order to investigate the bioaccumulation and stress responses of S. salsa under chronic exposure, we explored the growth, accumulation, and changes in antioxidant enzymes and glutathione (GSH) under different Cd concentrations over a 30-day soil culture experiment. Seedling height and weight in the 13.16 mg/kg Cd group were 13.26 cm and 0.21 g, significantly higher than the control group. Growth was significantly inhibited under high Cd concentration exposure, with a seedling and root length of 9.65 cm and 3.77 cm. The Cd concentration in all tissues was positively related to Cd treatment concentration, with the Cd contents in the roots being higher than in the other tissues. At a subcellular level, Cd was mainly concentrated in the cell walls, organelles, and soluble components within the range of 0.05–8.29, 0.02–2.40 and 0.08–1.35 μg/g, respectively. The accumulation of Cd in the roots tracked its proportion in the cell walls. The malondialdehyde (MDA) content of the plant tissues increased with increasing Cd concentration, indicating that Cd stress caused oxidative damage. The GSH content increased with increasing Cd concentration, with maximum values of 0.515 μmol/g in the stem in the 66.07 mg/kg Cd group. The catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) activity showed different change trends under Cd exposure. The results in this study could provide useful information on the tolerance mechanism of Cd in S. salsa, which provides information for exploiting S. salsa as a candidate for phytoremediation of Cd contamination. Full article
Show Figures

Figure 1

Back to TopTop