Biostimulatory Effects of Bacillus subtilis and Pseudomonas corrugata on Phytochemical and Antioxidant Properties of In Vitro-Propagated Plants of Nardostachys jatamansi (D. Don) DC
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Explant Selection
2.2. Induction of Shoot Buds
2.3. Rhizogenesis
2.4. Hardening of Plantlets and Inoculation Using PGPRs
2.5. Data Recording
2.6. Preparation of Sample Extract
2.7. Analysis of Total Phenol, Total Alkaloids, Tannin, and Flavonoids
2.7.1. Antioxidant Activity
2.7.2. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Assay
2.7.3. Ferric Reducing Antioxidant Power (FRAP) Assay
3. Results
3.1. Seed Germination, Shoot Induction, and Multiplication
3.2. Rhizogenesis of In Vitro-Developed Shoots
3.3. Acclimatization with PGPR and Field Establishment
3.4. Effect of PGPR on Growth Parameters
3.5. Effect of PGPR on Total Phenol, Total Alkaloids, Tannin, and Flavonoids
3.6. Antioxidant Activity
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAE | Ascorbic acid equivalent |
AE | Atropine equivalent |
BAP | 6-Benzylaminopurine |
CR | Critically endangered |
DMRT | Duncan’s multiple range test |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
FRAP | Ferric reducing antioxidant power |
GAE | Gallic acid equivalent |
IAA | Indoel-3-acetic acid |
IUCN | International Union for Conservation of Nature |
MS | Murashige and Skoog |
NAA | Naphthalene acetic acid |
PGPR | Plant growth-promoting rhizobacteria |
QE | Quercetin equivalent |
TAE | Tannic acid equivalent |
TDZ | Thidiazuron |
References
- Chauhan, R.S.; Nautiyal, M.C. Commercial viability of cultivation of an endangered medicinal herb Nardostachys jatamansi at three different agroclimatic zones. Curr. Sci. 2005, 89, 1481–1488. [Google Scholar]
- Katara, A.; Pandey, G.; Rastogi, S.; Rawat, A.K. An important Indian traditional drug of Ayurveda jatamansi and its substitute bhootkeshi: Chemical profiling and antioxidant activity. Evid.-Based Complement. Altern. Med. 2013, 2013, 142517. [Google Scholar]
- Chen, K.K.; Mukerji, B. Pharmacology of Oriental Plants: Proceedings of the First International Pharmacological Meeting, Stockholm, Sweden, 22–25 August, 1961; Elsevier: Amsterdam, The Netherlands, 2013; pp. 51–60. [Google Scholar]
- Chaudhary, S.; Chandrashekar, K.S.; Pai, K.S.; Setty, M.M.; Devkar, R.A.; Reddy, N.D.; Shoja, M.H. Evaluation of antioxidant and anticancer activity of extract and fractions of Nardostachys jatamansi DC in breast carcinoma. BMC Complement. Altern. Med. 2015, 15, 50–63. [Google Scholar] [CrossRef]
- Purnima, M.B.; Kothiyal, P. A review article on phytochemistry and pharmacological profiles of Nardostachys jatamansi DC medicinal herb. J. Pharmacogn. Phytochem. 2015, 3, 102–106. [Google Scholar]
- Rekha, K.; Rao, R.R.; Pandey, R.; Prasad, K.R.; Babu, K.S.; Vangala, J.R.; Kalivendi, S.V.; Rao, J.M. Two new sesquiterpenoids from the rhizomes of Nardostachys jatamansi. J. Asian Nat. Prod. Res. 2013, 15, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Mulliken, T.; Crofton, P. Review of the Status, Harvest, Trade and Management of Seven Asian CITES-Listed Medicinal and Aromatic Plant Species; BfN-Skripten, Federal Agency for Nature Conservation: Bonn, Germany, 2008; pp. 41–60. [Google Scholar]
- Nautiyal, B.P.; Chauhan, R.S.; Prakash, V.; Purohit, H.; Nautiyal, M.C. Population studies for the evaluation of germplasm and threat status of the alpine medicinal herb, Nardostachys jatamansi. Plant Genet. Resour. Newsl. 2003, 136, 34–39. [Google Scholar]
- Bose, B.; Kumaria, S.; Choudhury, H.; Tandon, P. Assessment of genetic homogeneity and analysis of phytomedicinal potential in micropropagated plants of Nardostachys jatamansi, a critically endangered, medicinal plant of alpine Himalayas. Plant Cell Tissue Organ Cult. 2016, 124, 331–349. [Google Scholar] [CrossRef]
- Rawat, V.; Ghildiyal, A.; Singh, L.; Jugran, A.K.; Bhatt, I.D.; Nandi, S.K.; Pande, V. Methyl jasmonate induced polyphenols and antioxidant production in callus suspension culture of Nardostachys jatamansi. Plant Biosyst. 2020, 154, 851–859. [Google Scholar] [CrossRef]
- Pant, H.C.; Pant, H.V.; Kumar, A.; Tomar, H.; Sharma, M.D.; Gaurav, N. In Vitro clonal propagation of Nardostachys jatamansi: A traditional Himalayan medicinal plant. J. Mountain Res. 2021, 16, 87–98. [Google Scholar] [CrossRef]
- Dhiman, N.; Devi, K.; Bhattacharya, A. Development of low cost micropropagation protocol for Nardostachys jatamansi: A critically endangered medicinal herb of Himalayas. S. Afr. J. Bot. 2021, 140, 468–477. [Google Scholar] [CrossRef]
- Pant, H.C.; Rautela, I.; Pant, H.V.; Kumar, A.; Kumar, P.; Fatima, K.; Gaurav, N. Comparison of antioxidant properties and flavonoid of natural and in vitro cultivated Nardostachys jatamansi. Agric. Sci. Dig. 2024, 44, 406–413. [Google Scholar] [CrossRef]
- Verma, S.K.; Yucesan, B.; Sahin, G.; Gurel, E. Embryogenesis, plant regeneration and cardiac glycoside determination in Digitalis ferruginea subsp. ferruginea L. Plant Cell Tissue Organ Cult. 2014, 119, 625–634. [Google Scholar] [CrossRef]
- Cassells, A.C.; Mark, G.L.; Periappuram, C. Establishment of arbuscular mycorrhizal fungi in autotrophic strawberry cultures in vitro: Comparison with inoculation of microplants in vivo. Agronomie 1996, 16, 625–632. [Google Scholar] [CrossRef]
- Trivedi, P.; Pandey, A. Biological hardening of micropropagated Picrorhiza kurrooa Royel ex Benth., an endangered species of medical importance. World J. Microbiol. Biotechnol. 2007, 23, 877–878. [Google Scholar] [CrossRef]
- Mathur, A.; Mathur, A.K.; Verma, P.; Yadav, S.; Gupta, M.L.; Darokar, M.P. Biological hardening and genetic fidelity testing of micro-cloned progeny of Chlorophytum borivilianum. Afr. J. Biotechnol. 2008, 7, 1046–1053. [Google Scholar]
- Bagde, U.S.; Prasad, R.; Varma, A. Interaction of mycobiont: Piriformospora indica with medicinal plants and plants of economic importance. Afr. J. Biotechnol. 2010, 9, 9214–9226. [Google Scholar]
- Das, A.; Tripathi, S.; Varma, A. Use of Piriformospora indica as a potential biological hardening agent for endangered micropropagated Picrorhiza kurrooa Royel ex Benth. Proc. Nat. Acad. Sci. India Sect. B Biol. Sci. 2017, 87, 799–805. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Soleymani, A. The roles of plant-growth-promoting rhizobacteria (PGPR)-based biostimulants for agricultural production systems. Plants 2024, 13, 613. [Google Scholar] [CrossRef]
- Igiehon, B.C.; Babaloloa, O.O.; Hassen, A.I. Rhizosphere competence and applications of plant growth-promoting rhizobacteria in food production—A review. Sci. Afr. 2024, 23, e02081. [Google Scholar] [CrossRef]
- Gharib, F.A.E.L.; Osama, K.; El-Sattar, A.M.A.; Ahmed, E.Z. Impact of Chlorella vulgaris, Nannochloropsis salina, and Arthrospira platensis as bio-stimulants on common bean plant growth, yield, and antioxidant capacity. Sci. Rep. 2024, 14, 1398. [Google Scholar] [CrossRef]
- Hao, G.; Du, X.; Zhao, F.; Ji, H. Fungal endophytes-induced abscisic acid is required for flavonoid accumulation in suspension cells of Ginkgo biloba. Biotechnol. Lett. 2010, 32, 305–314. [Google Scholar] [CrossRef]
- Vafadara, F.; Amooaghaiea, R.; Otroshyb, M. Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. J. Plant Interact. 2014, 9, 128–136. [Google Scholar] [CrossRef]
- Sureshbabu, K.; Amaresan, N.; Kumar, K. Amazing multiple function properties of plant growth-promoting rhizobacteria in the rhizosphere soil. Int. J. Curr. Microbiol. App. Sci. 2016, 5, 661–683. [Google Scholar] [CrossRef]
- Swamy, M.K.; Akhtar, M.S.; Sinniah, U.R. Response of PGPR and AM fungi toward growth and secondary metabolite production in medicinal and aromatic plants. In Plant, Soil and Microbes: Mechanisms and Molecular Interactions; Springer: Cham, Switzerland, 2016; Volume 2, pp. 145–168. [Google Scholar]
- Yilmaz, A.; Karik, Ü. AMF and PGPR enhance yield and secondary metabolite profile of basil (Ocimum basilicum L.). Ind. Crops Prod. 2022, 176, 114327. [Google Scholar] [CrossRef]
- Tiwari, S.; Lata, C.; Chauhan, P.S.; Nautiyal, C.S. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol. Biochem. 2016, 99, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Vimal, S.R.; Singh, J.S.; Arora, N.K.; Singh, D.P. PGPR: An effective bio-agent in stress agricultural management. In Microbial Empowerment in Agriculture: A Key to Sustainability and Crop Productivity; Sarma, B.K., Jain, A., Eds.; Biotech Books: New Delhi, India, 2016; pp. 81–108. [Google Scholar]
- Vimal, S.R.; Singh, J.S.; Arora, N.K.; Singh, S. Soil-plant-microbe interactions in stressed agriculture management: A review. Pedosphere 2017, 27, 177–192. [Google Scholar] [CrossRef]
- Tiwari, P.; Singh, J.S. A plant growth promoting rhizospheric Pseudomonas aeruginosa strain inhibits seed germination in Triticum aestivum (L) and Zea mays (L). Microbiol. Res. 2017, 8, 7233. [Google Scholar] [CrossRef]
- Tiwari, S.; Prasad, V.; Lata, C. Bacillus: Plant Growth Promoting Bacteria for Sustainable Agriculture and Environment. In New and Future Developments in Microbial Biotechnology and Bioengineering; Singh, J.S., Singh, D.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 43–55. [Google Scholar]
- Pataczek, L.; Armas, J.C.B.; Petsch, T.; Hilger, T.; Ahmad, M.; Schafleitner, R.; Zahir, Z.A.; Cadisch, G. Single-Strain Inoculation of Bacillus subtilis and Rhizobium phaseoli Affects Nitrogen Acquisition of an Improved Mungbean Cultivar. J. Soil. Sci. Plant Nutr. 2024, 24, 6746–6759. [Google Scholar] [CrossRef]
- Kumar, B.; Trivedi, P.; Pandey, A. Pseudomonas corrugata: A suitable bacterial inoculant for maize grown under rainfed conditions of Himalayan region. Soil Biol. Biochem. 2007, 39, 3093–3100. [Google Scholar] [CrossRef]
- Trivedi, P.; Pandey, A.; Palni, L.M.S. In vitro evaluation of antagonistic properties of Pseudomonas corrugata. Microbiol. Res. 2008, 163, 329–336. [Google Scholar] [CrossRef]
- Rodríguez, H.; Fraga, R. Phosphate-solubilising bacteria and their role in plant growth promotion. Biotechnol. Adv. 1999, 17, 319–339. [Google Scholar] [CrossRef]
- Timofeeva, A.M.; Galyamova, M.R.; Sedykh, S.E. How Do Plant Growth-Promoting Bacteria Use Plant Hormones to Regulate Stress Reactions? Plants 2024, 13, 2371. [Google Scholar] [CrossRef]
- Zaidi, A.; Ahmad, E.; Khan, M.S.; Saif, S.; Rizvi, A. Role of plant growth promoting rhizobacteria in sustainable production of vegetables: Current perspective. Sci. Hortic. 2015, 193, 231–239. [Google Scholar] [CrossRef]
- Idris, E.E.S.; Iglesias, D.J.; Talon, M.; Borriss, R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 2007, 20, 619–626. [Google Scholar] [CrossRef]
- Mercado-Blanco, J.; van der Drift, K.M.G.M.; Olsson, P.A.; Thomas-Oates, J.E.; van Loon, L.C.; Bakker, P.A.H.M. Analysis of the pqqC gene for phosphate solubilization and ACC deaminase activity in Pseudomonas spp. Soil Biol. Biochem. 2004, 36, 255–265. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Sun, B.; Gu, L.; Bao, L.; Zhang, S.; Wei, Y.; Bai, Z.; Zhuang, G.; Zhuang, X. Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil. Soil. Biol. Biochem. 2020, 148, 107911. [Google Scholar] [CrossRef]
- Patel, M.; Islam, S.; Husain, F.M.; Yadav, V.K.; Park, H.-K.; Yadav, K.K.; Bagatharia, S.; Joshi, M.; Jeon, B.-H.; Patel, A. Bacillus subtilis ER-08, a multifunctional plant growth-promoting rhizobacterium, promotes the growth of fenugreek (Trigonella foenum-graecum L.) plants under salt and drought stress. Front. Microbiol. 2023, 14, 1208743. [Google Scholar] [CrossRef]
- Ikeuchi, T.; Ishida, A.; Tajifi, M.; Nagata, S. Induction of salt tolerance in Bacillus subtilis IFO 3025. J. Biosci. Bioeng. 2003, 96, 184–186. [Google Scholar] [CrossRef]
- Yadav, A.N. Plant Microbiomes for Sustainable Agriculture: Current Research and Future Challenges. In Plant Microbiomes for Sustainable Agriculture. Sustainable Development and Biodiversity; Yadav, A., Singh, J., Rastegari, A., Yadav, N., Eds.; Springer: Cham, Switzerland, 2020; Volume 25. [Google Scholar] [CrossRef]
- Catara, V. Pseudomonas corrugata: Plant pathogen and/or biological resource? Mol. Plant Pathol. 2007, 8, 233–244. [Google Scholar] [CrossRef]
- Papin, M.; Philippot, L.; Breuil, M.C.; Bru, D.; Dreux-Zigha, A.; Mounier, A.; Roux, X.L.; Rouard, N.; Spor, A. Survival of a microbial inoculant in soil after recurrent inoculations. Sci. Rep. 2024, 14, 4177. [Google Scholar] [CrossRef]
- StatSoft Inc. STATISTICA for Windows (Computer Program Manual); StatSoft Inc.: Tulsa, OK, USA, 1995. [Google Scholar]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica L.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Sreevidya, N.; Mehrotra, S. Spectrophotometric method for estimation of alkaloids precipitable with Dragendorff’s reagent in plant materials. J. AOAC Int. 2003, 86, 1124–1127. [Google Scholar] [CrossRef]
- Kim, D.O.; Chun, O.K.; Kim, Y.J.; Moon, H.Y.; Lee, C.Y. Quantification of polyphenolics and their antioxidant capacity in fresh plums. J. Agric. Food Chem. 2003, 51, 6509–6515. [Google Scholar] [CrossRef] [PubMed]
- Rawat, J.M.; Pandey, S.; Rawat, B.; Purohit, S.; Anand, J.; Negi, A.S.; Thakur, A.; Mahmoud, M.H.; El-Gazzar, A.M.; El-Saber Batiha, G. In vitro production of steroidal saponin, total phenols, and antioxidant activity in callus suspension culture of Paris polyphylla Smith: An important Himalayan medicinal plant. Front. Plant Sci. 2023, 14, 1225612. [Google Scholar] [CrossRef]
- Rawat, J.M.; Bhandari, A.; Rajneesh; Karki, K.; Raturi, M.; Rawat, B.; Dhakad, A.K.; Thakur, A.; Chandra, A. RAPD based genetic fidelity analysis of invitro regenerated plants of Nardostachys jatamansi. Int. J. Biol. Sci. 2017, 8, 141–147. [Google Scholar]
- Rawat, J.M.; Rawat, B.; Agnihotri, R.K.; Chandra, A.; Nautiyal, S. In vitro propagation, genetic and secondary metabolite analysis of Aconitum violaceum Jacq.—A threatened medicinal herb. Acta Physiol. Plant. 2013, 35, 2589–2599. [Google Scholar] [CrossRef]
- Sharma, E.; Gaur, K.; Punetha, H.; Gaur, A.K. In vitro regeneration of Aconitum balforii Stapf: A rare medicinal herb from Himalayan alpine through root explant. Res. J. Med. Plant 2012, 6, 318–325. [Google Scholar]
- Singh, R.; Soni, S.K.; Kalra, A. Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 2012, 23, 35–44. [Google Scholar] [CrossRef]
- Aseri, G.K.; Jain, N.; Panwar, J.; Rao, A.V.; Meghwal, P.R. Biofertilizers improve plant growth, fruit yield, nutrition, metabolism, and rhizosphere enzyme activities of pomegranate (Punica granatum L.) in Indian Thar desert. Scientia Hortic. 2008, 117, 130–135. [Google Scholar] [CrossRef]
- Salehnia Sammak, A.; Anvari, M.; Matinizadeh, M.; Mirza, M. Evaluation of inoculation Pseudomonas fluorescens and arbuscular mycorrhizal fungus on growth, morphological characteristics, and essential oil percentage of Thymus kotschyanus. J. Med. Plants By-Prod. 2022, 11, 181–189. [Google Scholar]
- Zhang, M.; Hua, M.; Guo, D.; Xue, Y.; Chen, X.; Rui, L.; Zhou, N. Effects of plant growth-promoting rhizobacteria on growth indicators and physiological characteristics of Peucedanum praeruptorum Dunn leaves. Plant Signal. Behav. 2023, 18, 2203571. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Hatami, M.; Khavazi, K. Role of plant growth promoting rhizobacteria on antioxidant enzyme activities and tropane alkaloid production of Hyoscyamus niger under water deficit stress. Turk. J. Biol. 2013, 37, 350–360. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Khavazi, K.; Ghafarzadegan, R.; Hatami, M. Two main tropane alkaloids variations of black henbane (Hyoscyamus niger) under PGPRs inoculation and water deficit stress induction at flowering stage. J. Med. Plants 2013, 45, 29–42. [Google Scholar]
- Chen, C.; Belanger, R.; Benhamou, N.; Paulitz, T.C. Defense enzymes induced in cucumber roots by treatment with plant growth promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol. Mol. Plant Pathol. 2000, 56, 13–23. [Google Scholar] [CrossRef]
- Dinesh, R.; Srinivasan, V.; Praveena, R.; Subila, K.P.; George, P.; Das, A.; Shajina, O.; Anees, K.; Leela, N.K.; Haritha, P. Exploring the potential of P-solubilizing rhizobacteria for enhanced yield and quality in turmeric (Curcuma longa L.). Ind. Crops Prod. 2022, 189, 115826. [Google Scholar] [CrossRef]
- Jagtap, R.R.; Mali, G.V.; Waghmare, S.R.; Nadaf, N.H.; Nimbalkar, M.S.; Sonawane, K.D. Impact of plant growth promoting rhizobacteria Serratia nematodiphila RGK and Pseudomonas plecoglossicida RGK on secondary metabolites of turmeric rhizome. Biocatal. Agric. Biotechnol. 2023, 47, 102622. [Google Scholar] [CrossRef]
- Palermo, J.S.; Palermo, T.B.; Cappellari, L.D.R.; Balcke, G.U.; Tissier, A.; Giordano, W.; Banchio, E. Influence of plant growth-promoting rhizobacteria (PGPR) inoculation on phenolic content and key biosynthesis-related processes in Ocimum basilicum under Spodoptera frugiperda herbivory. Plants 2025, 14, 857. [Google Scholar] [CrossRef]
- Zapata-Sifuentes, G.; Fortis-Hernández, M.; Sáenz-Mata, J.; Silva-Martínez, C.; Lara-Capistran, L.; Preciado-Rangel, P.; Hernández-Montiel, L.G. Effect of plant growth promoting rhizobacteria on the development and biochemical composition of cucumber under different substrate moisture levels. Microbiol. Res. 2024, 15, 1505–1515. [Google Scholar] [CrossRef]
- Ghorbanpour, M.; Hatami, M.; Kariman, K.; Khavazi, K. Enhanced efficiency of medicinal and aromatic plants by PGPRs. In Plant Growth Promoting Rhizobacteria (PGPR) and Medicinal Plants; Egamberdieva, D., Shrivastava, S., Varma, A., Eds.; Springer: Cham, Switzerland, 2015; Volume 42, pp. 43–70. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Pietta, P.G. Flavonoids as antioxidants. J. Nat. Prod. 2000, 63, 1035–1042. [Google Scholar] [CrossRef] [PubMed]
- Giri, L.; Dhyani, P.; Rawat, S.; Bhatta, I.D.; Nandi, S.K.; Rawal, R.S.; Pande, V. In vitro production of phenolic compounds and antioxidant activity in callus suspension cultures of Habenaria edgeworthii: A rare Himalayan medicinal orchid. Ind. Crop. Prod. 2012, 39, 1–6. [Google Scholar] [CrossRef]
- Singh, R.P.; Dhanalakshmi, S.; Agarwal, R. Phytochemicals as cell cycle modulators: A less toxic approach in halting human cancers. Cell Cycle 2002, 1, 155–160. [Google Scholar] [CrossRef]
- Alothman, M.; Bhat, R.; Karim, A.A. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009, 115, 785–788. [Google Scholar] [CrossRef]
- Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary polyphenols as potential nutraceuticals in management of diabetes: A review. J. Diabetes Metab. Disord. 2013, 12, 43–52. [Google Scholar] [CrossRef]
- Rice-Evans, C.; Miller, N.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Halliwell, B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch. Biochem. Biophys. 2008, 476, 107–112. [Google Scholar] [CrossRef]
Plant Growth Regulators (µM) | No. of Shoots | Shoot Length (cm) | No. of Leaves | ||
---|---|---|---|---|---|
BAP | TDZ | NAA | |||
0.0 | 0.0 | 0.0 | 1.6 ± 0.2 j | 2.8 ± 0.1 f | 1.6 ± 0.2 i |
1.0 | 0.0 | 0.1 | 2.1 ± 0.2 i | 3.3 ± 0.2 e | 1.8 ± 0.3 h |
2.5 | 0.0 | 0.1 | 2.3 ± 0.2 h | 3.6 ± 0.2 d | 2.4 ± 0.2 g |
5.0 | 0.0 | 0.1 | 2.1 ± 0.2 i | 2.7 ± 0.3 g | 2.3 ± 0.4 g |
1.0 | 0.0 | 0.5 | 1.2 ± 0.6 k | 4.1 ± 0.6 ab | 3.2 ± 0.3 e |
2.5 | 0.0 | 0.5 | 3.3 ± 0.3 f | 3.7 ± 0.5 c | 3.2 ± 0.7 e |
5.0 | 0.0 | 0.5 | 3.8 ± 0.2 e | 2.9 ± 0.2 f | 2.8 ± 0.4 f |
0.0 | 1.0 | 0.1 | 2.8 ± 0.4 g | 4.0 ± 0.7 ab | 3.3 ± 0.3 e |
0.0 | 2.0 | 0.1 | 4.5 ± 0.3 c | 3.8 ± 0.6 bc | 3.8 ± 0.5 d |
0.0 | 4.0 | 0.1 | 5.8 ± 0.4 b | 4.1 ± 0.4 ab | 4.4 ± 0.4 a |
0.0 | 1.0 | 0.5 | 4.2 ± 0.2 d | 4.1 ± 0.5 ab | 4.2 ± 0.6 b |
0.0 | 2.0 | 0.5 | 6.2 ± 0.3 a | 4.2 ± 0.4 a | 4.1 ± 0.5 bc |
0.0 | 4.0 | 0.5 | 4.2 ± 0.2 d | 3.9 ± 0.4 b | 4.1 ± 0.4 bc |
Growth Regulator + 1/2 MS | Shoot Forming Roots (%) | Number of Days to Root | Number of Roots/Shoots | Root Length (cm) | |
---|---|---|---|---|---|
IAA (µM) | NAA (µM) | ||||
0.0 | 0.0 | 21.3 ± 0.8 j | 14–21 | 1.1 ± 0.2 i | 2.8 ± 0.4 e |
0.1 | 0.0 | 53.6 ± 0.8 f | 15–20 | 2.3 ± 0.3 g | 2.9 ± 0.3 d |
0.5 | 0.0 | 89.6 ± 1.2 a | 15–20 | 3.6 ± 0.7 a | 3.4 ± 0.4 b |
0.0 | 0.1 | 51.2 ± 0.7 g | 10–21 | 2.1 ± 0.4 h | 3.6 ± 0.5 a |
0.1 | 0.1 | 66.6 ± 1.0 d | 10–21 | 2.2 ± 0.6 gh | 2.8 ± 0.4 e |
0.5 | 0.1 | 64.6 ± 1.3 e | 18–24 | 3.4 ± 0.4 b | 2.6 ± 0.6 f |
0.0 | 0.5 | 73.4 ± 0.7 c | 10–21 | 2.1 ± 0.2 h | 3.1 ± 0.4 cd |
0.1 | 0.5 | 42.3 ± 1.1 i | 12–18 | 3.1 ± 0.6 cd | 3.4 ± 0.6 b |
0.5 | 0.5 | 66.6 ± 1.1 d | 12–18 | 2.9 ± 0.2 e | 3.2 ± 0.6 c |
0.0 | 1.0 | 73.7 ± 1.4 c | 14–21 | 3.2 ± 0.8 c | 3.6 ± 0.5 a |
0.1 | 1.0 | 48.3 ± 0.7 h | 10–21 | 3.4 ± 0.6 b | 3.4 ± 0.9 b |
0.5 | 1.0 | 78.2 ± 0.9 b | 12–18 | 2.6 ± 0.6 f | 3.2 ± 0.8 c |
Plant Sample | Growth Parameters | Survival % | Chlorophyll Content | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Root Length | Root | Shoot | Leaf Area | No. of Leaves | Plant Height | |||||
FW | DW | FW | DW | |||||||
Control (seed germinated) | 3.5 ± 0.2 c | 0.83 ± 0.02 d | 0.11 ± 0.01 d | 1.62 ± 0.2 c | 0.43 ± 0.1 d | 2.42 ± 0.1 d | 2.3 ± 0.2 d | 4.4 ± 0.6 d | 18.4 ± 1.2 d | 0.66 ± 0.1 c |
Tissue culture-raised | 3.6 ± 0.5 c | 1.02 ± 0.2 c | 0.23 ± 0.01 c | 2.42 ± 0.4 b | 0.84 ± 0.1 c | 3.65 ± 0.2 c | 3.2 ± 0.6 c | 5.8 ± 0.6 c | 66.3 ± 2.2 c | 0.70 ± 0.2 c |
Inoculated with B. subtilis | 3.9 ± 0.6 b | 1.15 ± 0.4 b | 0.31 ± 0.01 b | 2.64 ± 0.3 b | 0.96 ± 0.1 b | 4.45 ± 0.7 b | 3.8 ± 0.8 b | 6.4 ± 0.8 b | 85.3 ± 3.6 b | 0.94 ± 0.7 b |
Inoculated with P.corrugata | 4.8 ± 0.4 a | 1.43 ± 0.3 a | 0.36 ± 0.01 a | 3.22 ± 0.7 a | 1.16 ± 0.2 a | 4.83 ± 0.7 a | 4.6 ± 0.6 a | 7.2 ± 0.8 a | 94.6 ± 4.3 a | 1.12 ± 0.6 a |
Plant Sample | Total Phenol (mg GAE/g DW) | Alkaloids (mg AE/g DW) | Tannin (mg TAE/g DW) | Flavonoids (mg QE/g DW) | Antioxidant Activity (mM AAE/g DW) | |
---|---|---|---|---|---|---|
DPPH | FRAP | |||||
Control (seed germinated) | 23.87 ± 2.18 d | 21.87 ± 3.12 c | 11.71 ± 1.13 d | 24.12 ± 2.63 d | 43.13 ± 4.8 d | 2.11 ± 0.3 d |
Tissue culture-raised | 29.87 ± 2.18 c | 25.81 ± 3.88 b | 16.33 ± 2.23 c | 29.33 ± 3.13 c | 55.88 ± 5.1 c | 3.88 ± 0.9 c |
Inoculated with B. subtilis | 31.36 ± 2.45 b | 33.37 ± 3.44 a | 21.76 ± 2.66 b | 32.66 ± 3.42 b | 63.46 ± 5.3 b | 5.44 ± 0.9 b |
Inoculated with P.corrugata | 45.87 ± 3.18 a | 33.89 ± 3.98 a | 28.39 ± 3.12 a | 39.67 ± 3.54 a | 67.89 ± 5.3 a | 6.76 ± 1.0 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawat, J.M.; Agarwal, M.; Negi, S.; Anand, J.; Semwal, P.; Rawat, B.; Bhardwaj, R.; Mitra, D. Biostimulatory Effects of Bacillus subtilis and Pseudomonas corrugata on Phytochemical and Antioxidant Properties of In Vitro-Propagated Plants of Nardostachys jatamansi (D. Don) DC. Bacteria 2025, 4, 38. https://doi.org/10.3390/bacteria4030038
Rawat JM, Agarwal M, Negi S, Anand J, Semwal P, Rawat B, Bhardwaj R, Mitra D. Biostimulatory Effects of Bacillus subtilis and Pseudomonas corrugata on Phytochemical and Antioxidant Properties of In Vitro-Propagated Plants of Nardostachys jatamansi (D. Don) DC. Bacteria. 2025; 4(3):38. https://doi.org/10.3390/bacteria4030038
Chicago/Turabian StyleRawat, Janhvi Mishra, Mrinalini Agarwal, Shivani Negi, Jigisha Anand, Prabhakar Semwal, Balwant Rawat, Rajneesh Bhardwaj, and Debasis Mitra. 2025. "Biostimulatory Effects of Bacillus subtilis and Pseudomonas corrugata on Phytochemical and Antioxidant Properties of In Vitro-Propagated Plants of Nardostachys jatamansi (D. Don) DC" Bacteria 4, no. 3: 38. https://doi.org/10.3390/bacteria4030038
APA StyleRawat, J. M., Agarwal, M., Negi, S., Anand, J., Semwal, P., Rawat, B., Bhardwaj, R., & Mitra, D. (2025). Biostimulatory Effects of Bacillus subtilis and Pseudomonas corrugata on Phytochemical and Antioxidant Properties of In Vitro-Propagated Plants of Nardostachys jatamansi (D. Don) DC. Bacteria, 4(3), 38. https://doi.org/10.3390/bacteria4030038