Induced Polarization Imaging: A Geophysical Tool for the Identification of Unmarked Graves
Abstract
1. Introduction
2. Materials and Methods
2.1. Novel Strategy for Forensic Geophysical Investigations Using the Induced Polarization Method
2.2. Collection of Induced Polarization (IP) Data at an Inactive Cemetery
2.3. Subsurface Descretization for the Geophysical Inversion
2.4. Resolving 3D Models of the Subsurface Electrical Properties
3. Results
3.1. Large-Scale Investigation (LI) of Subsurface Conditions Within the Area of Interest
3.2. Detailed Investigation (DI) in the Vicinity of the Documented Grave
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ralph, J.; Smith, C.; Jackson, G.; Pamkal, I.B.; Willika, J.; Rubio Perez, R.; Brown, N.; Rankin, G.; Kanungo, A.K.; Choksi, N.; et al. Recording unmarked graves in a remote Aboriginal community: The challenge of cultural heritage driving sustainable development. Archaeologies 2021, 17, 53–78. [Google Scholar] [CrossRef]
- Reinhartz, D. Unmarked graves: The destruction of the Yugoslav Roma in the Balkan Holocaust, 1941–1945. J. Genocide Res. 1999, 1, 81–89. [Google Scholar] [CrossRef]
- Różycki, S.; Zapłata, R.; Karczewski, J.; Ossowski, A.; Tomczyk, J. Integrated archaeological research: Archival resources, surveys, geophysical prospection and excavation approach at an execution and burial site: The german nazi labour camp in Treblinka. Geosciences 2020, 10, 336. [Google Scholar] [CrossRef]
- Thorne, N.; Moss, M. Unmarked Graves: Yet another Legacy of Canada’s Residential School System: An Interview with Niki Thorne. New Am. Stud. J. Forum 2022, 72. [Google Scholar] [CrossRef]
- Robertshaw, A.S. Killing Them Twice: Ethical Challenges in the Analysis of Human Remains from the Two World Wars. In Ethical Approaches to Human Remains: A Global Challenge in Bioarchaeology and Forensic Anthropology; Squires, K., Errickson, D., Márquez-Grant, N., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 541–556. [Google Scholar] [CrossRef]
- Pringle, J.; Wisniewski, K.; Ruffell, A.; Hobson, L. Geoforensic search on land. Geol. Today 2024, 40, 146–152. [Google Scholar] [CrossRef]
- Vinci, G.; Vanzani, F.; Fontana, A.; Campana, S. LiDAR applications in archaeology: A systematic review. Archaeol. Prospect. 2025, 32, 81–101. [Google Scholar] [CrossRef]
- Adamopoulos, E.; Rinaudo, F. UAS-Based Archaeological Remote Sensing: Review, Meta-Analysis and State-of-the-Art. Drones 2020, 4, 46. [Google Scholar] [CrossRef]
- Martín Molina, C.; Wisniewski, K.D.; Salamanca, A.; Saumett, M.; Rojas, C.; Gómez, H.; Baena, A.; Pringle, J.K. Monitoring of simulated clandestine graves of victims using UAVs, GPR, electrical tomography and conductivity over 4–8 years post-burial to aid forensic search investigators in Colombia, South America. Forensic Sci. Int. 2024, 355, 111919. [Google Scholar] [CrossRef]
- Alawadhi, A.; Eliopoulos, C.; Bezombes, F. The detection of clandestine graves in an arid environment using thermal imaging deployed from an unmanned aerial vehicle. J. Forensic Sci. 2023, 68, 1286–1291. [Google Scholar] [CrossRef]
- Gaffney, C. Detecting trends in the prediction of the buried past: A review of geophysical techniques in archaeology. Archaeometry 2008, 50, 313–336. [Google Scholar] [CrossRef]
- Horsley, T.J. The use of geophysical survey in archaeology. In Emerging Trends in the Social and Behavioral Sciences: An Interdisciplinary, Searchable, and Linkable Resource; Scott, R.A., Kosslyn, S.M., Eds.; Wiley: Hoboken, NJ, USA, 2015; Volume 1002, p. 18900. [Google Scholar] [CrossRef]
- Bevan, B.W. Geophysical Exploration for Archaeology: An Introduction to Geophysical Exploration; United States Department of the Interior National Park Service Midwest Archeological Center: Lincoln, NE, USA, 1998. [Google Scholar]
- Kvamme, K.L. Magnetometry: Nature’s gift to archaeology. In Remote Sensing in Archaeology: An Explicitly North American Perspective; The University of Alabama Press: Tuscaloosa, AB, USA, 2006; pp. 205–233. [Google Scholar]
- Christiansen, A.V.; Pedersen, J.B.; Auken, E.; Søe, N.E.; Holst, M.K.; Kristiansen, S.M. Improved Geoarchaeological Mapping with Electromagnetic Induction Instruments from Dedicated Processing and Inversion. Remote Sens. 2016, 8, 1022. [Google Scholar] [CrossRef]
- Callegary, J.B.; Ferré, T.P.A.; Groom, R.W. Vertical Spatial Sensitivity and Exploration Depth of Low-Induction-Number Electromagnetic-Induction InstrumentsAny use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. government. Vadose Zone J. 2007, 6, 158–167. [Google Scholar] [CrossRef]
- Barone, P.M.; Di Maggio, R.M. Forensic Geophysics: Ground Penetrating Radar (GPR) Techniques and Missing Persons Investigations. Forensic Sci. Res. 2019, 4, 337–340. [Google Scholar] [CrossRef]
- Bevan, B.W. The search for graves. Geophysics 1991, 56, 1310–1319. [Google Scholar] [CrossRef]
- Billinger, M.S. Utilizing Ground Penetrating Radar for the Location of a Potential Human Burial under Concrete. Can. Soc. Forensic Sci. J. 2009, 42, 200–209. [Google Scholar] [CrossRef]
- Cavalcanti, M.M.; Rocha, M.P.; Blum, M.L.B.; Borges, W.R. The forensic geophysical controlled research site of the University of Brasilia, Brazil: Results from methods GPR and electrical resistivity tomography. Forensic Sci. Int. 2018, 293, 101.e1–101.e21. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Bellantoni, N.F. The search for graves with ground-penetrating radar in Connecticut. J. Archaeol. Sci. 2010, 37, 941–949. [Google Scholar] [CrossRef]
- Fiedler, S.; Illich, B.; Berger, J.; Graw, M. The effectiveness of ground-penetrating radar surveys in the location of unmarked burial sites in modern cemeteries. J. Appl. Geophys. 2009, 68, 380–385. [Google Scholar] [CrossRef]
- Malloch, H.; Shepherd, S.L.; Wolf, L.; Buchanan, M. Ground-penetrating radar (GPR) survey and spatial analysis of the George and Addie Giddens Cemetery, Opelika, Alabama. Southeast. Archaeol. 2024, 43, 1–12. [Google Scholar] [CrossRef]
- Novo, A.; Lorenzo, H.; Rial, F.I.; Solla, M. 3D GPR in forensics: Finding a clandestine grave in a mountainous environment. Forensic Sci. Int. 2011, 204, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Pringle, J.K.; Binley, A.; Wisniewski, K.D.; Davenward, B.; Heaton, V.G.; Handley, G.E. Cold case report: Geoforensic brownfield site search for murder victim based on prison informant lead. Forensic Sci. Int. Rep. 2025, 11, 100404. [Google Scholar] [CrossRef]
- Trinks, I.; Neubauer, W.; Hinterleitner, A. First high-resolution GPR and magnetic archaeological prospection at the Viking Age settlement of Birka in Sweden. Archaeol. Prospect. 2014, 21, 185–199. [Google Scholar] [CrossRef]
- Trinks, I.; Hinterleitner, A.; Neubauer, W.; Nau, E.; Löcker, K.; Wallner, M.; Gabler, M.; Filzwieser, R.; Wilding, J.; Schiel, H.; et al. Large-area high-resolution ground-penetrating radar measurements for archaeological prospection. Archaeol. Prospect. 2018, 25, 171–195. [Google Scholar] [CrossRef]
- Everett, M.E. Near-Surface Applied Geophysics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Moser, C.; Binley, A.; Orozco, A.F. 3D electrode configurations for spectral induced polarization surveys of landfills. Waste Manag. 2023, 169, 208–222. [Google Scholar] [CrossRef]
- Funk, B.; Flores-Orozco, A.; Steiner, M. Possibilities and limitations of cave detection with ERT. Geomorphology 2024, 462, 109332. [Google Scholar] [CrossRef]
- Ellwood, B.B. Electrical resistivity surveys in two historical cemeteries in northeast Texas: A method for delineating unidentified burial shafts. Hist. Archaeol. 1990, 24, 91–98. [Google Scholar] [CrossRef]
- Matias, M.S.; da Silva, M.M.; Goncalves, L.; Peralta, C.; Grangeia, C.; Martinho, E. An investigation into the use of geophysical methods in the study of aquifer contamination by graveyards. Surf. Geophys. 2004, 2, 131–136. [Google Scholar] [CrossRef]
- Berezowski, V.; Mallett, X.; Simyrdanis, K.; Kowlessar, J.; Bailey, M.; Moffat, I. Ground penetrating radar and electrical resistivity tomography surveys with a subsequent intrusive investigation in search for the missing Beaumont children in Adelaide, South Australia. Forensic Sci. Int. 2024, 357, 111996. [Google Scholar] [CrossRef]
- Pringle, J.K.; Jervis, J.R. Electrical resistivity survey to search for a recent clandestine burial of a homicide victim, UK. Forensic Sci. Int. 2010, 202, e1–e7. [Google Scholar] [CrossRef] [PubMed]
- Martín Molina, C.; Wisniewski, K.; Heaton, V.; Pringle, J.K.; Avila, E.F.; Herrera, L.A.; Guerrero, J.; Saumett, M.; Echeverry, R.; Duarte, M.; et al. Monitoring of simulated clandestine graves of dismembered victims using UAVs, electrical tomography, and GPR over one year to aid investigations of human rights violations in Colombia, South America. J. Forensic Sci. 2022, 67, 1060–1071. [Google Scholar] [CrossRef]
- McClymont, A.F.; Bauman, P.D.; Freund, R.A.; Seligman, J.; Jol, H.M.; Reeder, P.; Bensimon, K.; Vengalis, R. Preserving Holocaust history: Geophysical investigations at the Ponary (Paneriai) extermination site. Geophysics 2022, 87, WA15–WA25. [Google Scholar] [CrossRef]
- Reeder, P.; Jol, H.; Freund, R.; McClymont, A.; Bauman, P.; Šmigelskas, R. Investigations at the Heereskraftfahrpark (HKP) 562 Forced-Labor Camp in Vilnius, Lithuania. Heritage 2023, 6, 466–482. [Google Scholar] [CrossRef]
- Rubio-Melendi, D.; Gonzalez-Quirós, A.; Roberts, D.; del Carmen García García, M.; Caunedo Domínguez, A.; Pringle, J.K.; Fernández-Álvarez, J.P. GPR and ERT detection and characterization of a mass burial, Spanish Civil War, Northern Spain. Forensic Sci. Int. 2018, 287, e1–e9. [Google Scholar] [CrossRef]
- Cristino, K.; Doro, K.O.; Armstrong, A.; Forbes, S.; Ribéreau-Gayon, A.; Bank, C.G. Electrical resistivity tomography of simulated graves with buried human and pig remains. Forensic Sci. Int. 2024, 364, 112248. [Google Scholar] [CrossRef]
- Doro, K.O.; Kolapkar, A.M.; Bank, C.G.; Wescott, D.J.; Mickleburgh, H.L. Geophysical imaging of buried human remains in simulated mass and single graves: Experiment design and results from pre-burial to six months after burial. Forensic Sci. Int. 2022, 335, 111289. [Google Scholar] [CrossRef] [PubMed]
- Juerges, A.; Pringle, J.K.; Jervis, J.R.; Masters, P. Comparisons of magnetic and electrical resistivity surveys over simulated clandestine graves in contrasting burial environments. Surf. Geophys. 2010, 8, 529–539. [Google Scholar] [CrossRef]
- Pringle, J.K.; Jervis, J.; Cassella, J.P.; Cassidy, N.J. Time-lapse geophysical investigations over a simulated urban clandestine grave. J. Forensic Sci. 2008, 53, 1405–1416. [Google Scholar] [CrossRef] [PubMed]
- Jervis, J.R.; Pringle, J.K.; Cassella, J.P.; Tuckwell, G. Using Soil and Groundwater Data to Understand Resistivity Surveys over a Simulated Clandestine Grave. In Criminal and Environmental Soil Forensics; Ritz, K., Dawson, L., Miller, D., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 271–284. [Google Scholar] [CrossRef]
- Pringle, J.K.; Jervis, J.R.; Hansen, J.D.; Jones, G.M.; Cassidy, N.J.; Cassella, J.P. Geophysical monitoring of simulated clandestine graves using electrical and ground-penetrating radar methods: 0–3 years after burial. J. Forensic Sci. 2012, 57, 1467–1486. [Google Scholar] [CrossRef]
- Pringle, J.K.; Jervis, J.R.; Roberts, D.; Dick, H.C.; Wisniewski, K.D.; Cassidy, N.J.; Cassella, J.P. Long-term geophysical monitoring of simulated clandestine graves using electrical and ground penetrating radar methods: 4–6 years after burial. J. Forensic Sci. 2016, 61, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Pringle, J.K.; Stimpson, I.G.; Wisniewski, K.D.; Heaton, V.; Davenward, B.; Mirosch, N.; Spencer, F.; Jervis, J.R. Geophysical monitoring of simulated homicide burials for forensic investigations. Sci. Rep. 2020, 10, 7544. [Google Scholar] [CrossRef]
- Pringle, J.K.; Cassella, J.P.; Jervis, J.R. Preliminary soilwater conductivity analysis to date clandestine burials of homicide victims. Forensic Sci. Int. 2010, 198, 126–133. [Google Scholar] [CrossRef]
- Pringle, J.K.; Cassella, J.P.; Jervis, J.R.; Williams, A.; Cross, P.; Cassidy, N.J. Soilwater conductivity analysis to date and locate clandestine graves of homicide victims. J. Forensic Sci. 2015, 60, 1052–1060. [Google Scholar] [CrossRef] [PubMed]
- Barone, P.M.; Matsentidi, D.; Mollard, A.; Kulengowska, N.; Mistry, M. Mapping Decomposition: A Preliminary Study of Non-Destructive Detection of Simulated body Fluids in the Shallow Subsurface. Forensic Sci. 2022, 2, 620–634. [Google Scholar] [CrossRef]
- Pringle, J.; Ruffell, A.; Jervis, J.; Donnelly, L.; McKinley, J.; Hansen, J.; Morgan, R.; Pirrie, D.; Harrison, M. The use of geoscience methods for terrestrial forensic searches. Earth-Sci. Rev. 2012, 114, 108–123. [Google Scholar] [CrossRef]
- Flores Orozco, A.; Steiner, M.; Katona, T.; Roser, N.; Moser, C.; Stumvoll, M.J.; Glade, T. Application of induced polarization imaging across different scales to understand surface and groundwater flow at the Hofermuehle landslide. CATENA 2022, 219, 106612. [Google Scholar] [CrossRef]
- Binley, A.; Slater, L. Resistivity and Induced Polarization: Theory and Applications to the Near-Surface Earth; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar] [CrossRef]
- Lesmes, D.P.; Friedman, S.P. Relationships between the electrical and hydrogeological properties of rocks and soils. In Hydrogeophysics; Springer: Berlin/Heidelberg, Germany, 2005; pp. 87–128. [Google Scholar] [CrossRef]
- Slater, L.; Glaser, D. Controls on induced polarization in sandy unconsolidated sediments and application to aquifer characterization. Geophysics 2003, 68, 1547–1558. [Google Scholar] [CrossRef]
- Flores Orozco, A.; Gallistl, J.; Steiner, M.; Brandstätter, C.; Fellner, J. Mapping biogeochemically active zones in landfills with induced polarization imaging: The Heferlbach landfill. Waste Manag. 2020, 107, 121–132. [Google Scholar] [CrossRef]
- Katona, T.; Gilfedder, B.S.; Frei, S.; Bücker, M.; Flores Orozco, A. High-resolution induced polarization imaging of biogeochemical carbon-turnover hot spots in a peatland. Biogeosci. Discuss. 2021, 18, 4039–4058. [Google Scholar] [CrossRef]
- Elis, V.R.; Almeida, E.R.; Porsani, J.L.; Stangari, M.C. Ground-penetrating radar, resistivity, and induced polarization applied in forensic research in tropical soils. In Proceedings of the 18th International Conference on Ground Penetrating Radar, Golden, CO, USA, 14–19 June 2020; Society of Exploration Geophysicists: Houston, TX, USA, 2020; pp. 224–227. [Google Scholar] [CrossRef]
- Buckel, J.; Mudler, J.; Gardeweg, R.; Hauck, C.; Hilbich, C.; Frauenfelder, R.; Kneisel, C.; Buchelt, S.; Blöthe, J.H.; Hördt, A.; et al. Identifying mountain permafrost degradation by repeating historical electrical resistivity tomography (ERT) measurements. Cryosphere 2023, 17, 2919–2940. [Google Scholar] [CrossRef]
- Buckel, J.; Matthias, B.; Hördt, A.; Mudler, J. Elektrode mit leitfähigem Textilmaterial zur Elektrischen Widerstandsmessung des. Untergrundes. Patent DE102021110721, 6 June 2025. [Google Scholar]
- Bast, A.; Pavoni, M.; Lichtenegger, M.; Buckel, J.; Boaga, J. The Use of Textile Electrodes for Electrical Resistivity Tomography in Periglacial, Coarse Blocky Terrain: A Comparison With Conventional Steel Electrodes. Permafr. Periglac. Process. 2025, 36, 110–122. [Google Scholar] [CrossRef]
- Flores Orozco, A.; Aigner, L.; Gallistl, J. Investigation of cable effects in spectral induced polarization imaging at the field scale using multicore and coaxial cables. Geophysics 2021, 86, E59–E75. [Google Scholar] [CrossRef]
- Flores Orozco, A.; Gallistl, J.; Bücker, M.; Williams, K.H. Decay curve analysis for data error quantification in time-domain induced polarization imaging. Geophysics 2018, 83, E75–E86. [Google Scholar] [CrossRef]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Martin, T.; Günther, T.; Orozco, A.F.; Dahlin, T. Evaluation of spectral induced polarization field measurements in time and frequency domain. J. Appl. Geophys. 2020, 180, 104141. [Google Scholar] [CrossRef]
- Flores Orozco, A.; Kemna, A.; Zimmermann, E. Data error quantification in spectral induced polarization imaging. Geophysics 2012, 77, E227–E237. [Google Scholar] [CrossRef]
- Günther, T.; Rücker, C.; Spitzer, K. Three-dimensional modelling and inversion of DC resistivity data incorporating topography–II. Inversion. Geophys. J. Int. 2006, 166, 506–517. [Google Scholar] [CrossRef]
- LaBrecque, D.J.; Miletto, M.; Daily, W.; Ramirez, A.; Owen, E. The effects of noise on Occam’s inversion of resistivity tomography data. Geophysics 1996, 61, 538–548. [Google Scholar] [CrossRef]
- Günther, T.; Rücker, C. Boundless Electrical Resistivity Tomography BERT 2—The User Tutorial. 2015. Available online: http://www.resistivity.net/download/bert-tutorial.pdf (accessed on 30 July 2025).
- Rücker, C.; Günther, T.; Wagner, F.M. pyGIMLi: An open-source library for modelling and inversion in geophysics. Comput. Geosci. 2017, 109, 106–123. [Google Scholar] [CrossRef]
- Oldenburg, D.W.; Li, Y. Inversion of induced polarization data. Geophysics 1994, 59, 1327–1341. [Google Scholar] [CrossRef]
- Strobel, C.; Dörrich, M.; Stieff, E.H.; Huisman, J.A.; Cirpka, O.A.; Mellage, A. Organic matter matters—The imaginary conductivity of sediments rich in solid organic carbon. Geophys. Res. Lett. 2023, 50, e2023GL104630. [Google Scholar] [CrossRef]
- McLachlan, P.; Karloukovski, V.; Binley, A. Field-based estimation of cation exchange capacity using induced polarization methods. Earth Surf. Process. Landforms 2024, 49, 4928–4944. [Google Scholar] [CrossRef]
- Steiner, M.; Katona, T.; Fellner, J.; Flores Orozco, A. Quantitative water content estimation in landfills through joint inversion of seismic refraction and electrical resistivity data considering surface conduction. Waste Manag. 2022, 149, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Mendieta, A.; Jougnot, D.; Leroy, P.; Maineult, A. Spectral Induced Polarization Characterization of Non-Consolidated Clays for Varying Salinities—An Experimental Study. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021125. [Google Scholar] [CrossRef]
- Zibulski, E.; Klitzsch, N. Influence of Inner Surface Roughness on the Spectral Induced Polarization Response—A Numerical Study. J. Geophys. Res. Solid Earth 2023, 128, e2022JB025548. [Google Scholar] [CrossRef]
- Steiner, M.; Flores Orozco, A. 3D Complex Resistivity Survey of a Known Burial Site at an Inactive Cemetery, 2025. Zenodo, 2025; in press. [Google Scholar] [CrossRef]
Parameter | Unit | LI | DI | |
---|---|---|---|---|
Regularization | - | 200 | 50 | |
- | 0.1 | 0.1 | ||
Error model | % | |||
rad | ||||
Convergence | - | 2.56 | 4.18 | |
- | 2.27 | 0.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steiner, M.; Flores Orozco, A. Induced Polarization Imaging: A Geophysical Tool for the Identification of Unmarked Graves. Remote Sens. 2025, 17, 2687. https://doi.org/10.3390/rs17152687
Steiner M, Flores Orozco A. Induced Polarization Imaging: A Geophysical Tool for the Identification of Unmarked Graves. Remote Sensing. 2025; 17(15):2687. https://doi.org/10.3390/rs17152687
Chicago/Turabian StyleSteiner, Matthias, and Adrián Flores Orozco. 2025. "Induced Polarization Imaging: A Geophysical Tool for the Identification of Unmarked Graves" Remote Sensing 17, no. 15: 2687. https://doi.org/10.3390/rs17152687
APA StyleSteiner, M., & Flores Orozco, A. (2025). Induced Polarization Imaging: A Geophysical Tool for the Identification of Unmarked Graves. Remote Sensing, 17(15), 2687. https://doi.org/10.3390/rs17152687