Effects of Paramisgurnus dabryanus Density on the Growth Performance of Pelophylax nigromaculatus and the Soil Microbial Communities Within a Rice–Frog–Loach Integrated Aquaculture System
Abstract
1. Introduction
2. Materials and Methods
2.1. Polyculture and Sampling
2.2. Soil Metagenomic Sequencing
2.3. Statistical Analysis
3. Results
3.1. Effects of Loach Density on Growth Performance of Frog
3.2. Impact of Loach Density on Paddy Soil Microbial Composition
3.3. Impact of Loach Density on Paddy Soil Microbial Functions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chang, S.; Benjamin, E.O.; Sauer, J. Factors influencing the adoption of sustainable agricultural practices for rice cultivation in southeast asia: A review. Agron. Sustain. Dev. 2024, 44, 27. [Google Scholar] [CrossRef]
- Ge, L.; Sun, Y.; Li, Y.; Wang, L.; Guo, G.; Song, L.; Wang, C.; Wu, G.; Zang, X.; Cai, X. Ecosystem sustainability of rice and aquatic animal co-culture systems and a synthesis of its underlying mechanisms. Sci. Total Environ. 2023, 880, 163314. [Google Scholar] [CrossRef]
- Bhagat, R.; Walia, S.S.; Sharma, K.; Singh, R.; Singh, G.; Hossain, A. The integrated farming system is an environmentally friendly and cost-effective approach to the sustainability of agri-food systems in the modern era of the changing climate: A comprehensive review. Food Energy Secur. 2024, 13, e534. [Google Scholar] [CrossRef]
- Nayak, P.K.; Nayak, A.K.; Kumar, A.; Kumar, U.; Panda, B.B.; Satapathy, B.S.; Poonam, A.; Mohapatra, S.D.; Tripathi, R.; Shahid, M. Rice Based Integrated Farming Systems in Eastern India: A Viable Technology for Productivity and Ecological Security; NRRI Research Bulletin No. 24; ICAR-National Rice Research Institute: Cuttack, India, 2020; p. 44. [Google Scholar]
- Lai, S.; Fan, C.; Yang, P.; Fang, Y.; Zhang, L.; Jian, M.; Dai, G.; Liu, J.; Yang, H.; Shen, L. Effects of different microplastics on the physicochemical properties and microbial diversity of rice rhizosphere soil. Front. Microbiol. 2025, 15, 1513890. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, U.B.; Sahu, P.K.; Paul, S.; Kumar, A.; Malviya, D.; Singh, S.; Kuppusamy, P.; Singh, P.; Paul, D. Linking soil microbial diversity to modern agriculture practices: A review. Int. J. Environ. Res. Public Health 2022, 19, 3141. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Luo, J.; Xu, Y.; Zhai, J.; Cao, Z.; Ma, J.; Qi, T.; Shen, M.; Gu, X.; Duan, H. Coordinated dynamics of aquaculture ponds and water eutrophication owing to policy: A case of jiangsu province, China. Sci. Total Environ. 2024, 927, 172194. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.; Chen, J.; Jin, H.; Wang, T.; Zhu, W.; Li, L. Underestimated nutrient from aquaculture ponds to lake eutrophication: A case study on taihu lake basin. J. Hydrol. 2024, 630, 130749. [Google Scholar] [CrossRef]
- Li, X.; Dong, X.; Yue, F.; Lang, Y.; Ding, H.; Li, X.; Li, S.; Liu, X. Nitrous oxide emissions at aquaculture ponds in the coastal zone of the bohai rim region of china: Impacts of eutrophication and feeding practice. Environ. Pollut. 2025, 371, 125959. [Google Scholar] [CrossRef]
- Feng, J.; Pan, R.; Hu, H.; Huang, Q.; Zheng, J.; Tan, W.; Liu, Y.; Delgado-Baquerizo, M. Effects of integrated rice-crayfish farming on soil biodiversity and functions. Sci. Bull. 2023, 68, 2311–2315. [Google Scholar] [CrossRef]
- Hou, Y.; Yu, Z.; Jia, R.; Li, B.; Zhu, J. Integrated rice-yellow catfish farming resulting in variations in the agricultural environment, rice growth performance, and soil bacterial communities. Environ. Sci. Pollut. Res. 2024, 31, 28967–28981. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.; Araya, H.; Aruna, G.; Balamatti, A.; Banerjee, S.; Baskaran, P.; Barah, B.C.; Behera, D.; Berhe, T.; Boruah, P. System of crop intensification for more productive, resource-conserving, climate-resilient, and sustainable agriculture: Experience with diverse crops in varying agroecologies. Int. J. Agric. Sustain. 2018, 16, 1–28. [Google Scholar] [CrossRef]
- Lin, K.; Wu, J. Effect of introducing frogs and fish on soil phosphorus availability dynamics and their relationship with rice yield in paddy fields. Sci. Rep. 2020, 10, 21. [Google Scholar] [CrossRef]
- Fang, K.; Dai, W.; Chen, H.; Wang, J.; Gao, H.; Sha, Z.; Cao, L. The effect of integrated rice–frog ecosystem on rice morphological traits and methane emission from paddy fields. Sci. Total Environ. 2021, 783, 147123. [Google Scholar] [CrossRef] [PubMed]
- Sha, Z.; Chu, Q.; Zhao, Z.; Yue, Y.; Lu, L.; Yuan, J.; Cao, L. Variations in nutrient and trace element composition of rice in an organic rice-frog coculture system. Sci. Rep. 2017, 7, 15706. [Google Scholar] [CrossRef]
- Fang, K.; Gao, H.; Sha, Z.; Dai, W.; Yi, X.; Chen, H.; Cao, L. Mitigating global warming potential with increase net ecosystem economic budget by integrated rice-frog farming in eastern China. Agric. Ecosyst. Environ. 2021, 308, 107235. [Google Scholar] [CrossRef]
- Kandel, P. Morphometric Variations and Factors Affecting Abundance of Indian Bullfrog (Hoplobatrachus tigerinus) in Madhesh Province, Nepal. Ph.D. Thesis, Tribhuvan University, Kathmandu, Nepal, 2024. [Google Scholar]
- Sellami, M.H.; Lavini, A. Advancements in soil and sustainable agriculture. Soil Syst. 2023, 7, 98. [Google Scholar] [CrossRef]
- Chen, H.; Sha, Z.; Wu, F.; Fang, K.; Xu, C.; Yang, X.; Zhu, Y.; Cao, L. Effect of rice-frog cultivation on ammonia volatilization in rice-chinese milk vetch rotation system. Chin. J. Eco-Agric. 2021, 29, 792–801. [Google Scholar]
- Fang, K.; Yi, X.; Dai, W.; Gao, H.; Cao, L. Effects of integrated rice-frog farming on paddy field greenhouse gas emissions. Int. J. Environ. Res. Public Health 2019, 16, 1930. [Google Scholar] [CrossRef]
- Yi, X.; Yi, K.; Fang, K.; Gao, H.; Dai, W.; Cao, L. Microbial community structures and important associations between soil nutrients and the responses of specific taxa to rice-frog cultivation. Front. Microbiol. 2019, 10, 1752. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, S.; Xu, Y.; Sun, Y.; Song, L.; Tian, B.; Liu, T. Effects of stocking density on the growth performance, physiological response and intestinal microbiota of juvenile echiura worms (Urechis unicinctus). Aquac. Res. 2020, 51, 3983–3992. [Google Scholar] [CrossRef]
- Diao, W.; Jia, R.; Hou, Y.; Gong, J.; Zhang, L.; Li, B.; Zhu, J. Effects of different stocking densities on the growth, antioxidant status, and intestinal bacterial communities of carp in the rice–fish co-culture system. Fishes 2024, 9, 244. [Google Scholar] [CrossRef]
- He, J.; Feng, P.; Lv, C.; Lv, M.; Ruan, Z.; Yang, H.; Ma, H.; Wang, R. Effect of a fish–rice co-culture system on the growth performance and muscle quality of tilapia (Oreochromis niloticus). Aquacult. Rep. 2020, 17, 100367. [Google Scholar] [CrossRef]
- Jiang, Y.; Qi, M.; Zhang, J.; Wen, Y.; Sun, J.; Liu, Q. Metabolomic profiling analysis of physiological responses to acute hypoxia and reoxygenation in juvenile qingtian paddy field carp Cyprinus carpio var qingtianensis. Front. Physiol. 2022, 13, 853850. [Google Scholar] [CrossRef]
- Liang, X.; Yu, Y.; Mei, J.; Feng, J.; Li, P.; Bai, Y.; Ma, M.; Liu, F.; Qu, Y.; Lang, Y. Effects of feed protein levels on Chinese mitten crabs (eriocheir sinensis) under the rice-crab co-culture model: Performance, nutrient composition, antioxidant capacity and immunity. Aquacult. Rep. 2024, 35, 101963. [Google Scholar] [CrossRef]
- Hou, Y.; Jia, R.; Sun, W.; Li, B.; Zhu, J. Influences of the integrated rice-crayfish farming system with different stocking densities on the paddy soil microbiomes. Int. J. Mol. Sci. 2024, 25, 3786. [Google Scholar] [CrossRef]
- Arunrat, N.; Sansupa, C.; Kongsurakan, P.; Sereenonchai, S.; Hatano, R. Soil microbial diversity and community composition in rice–fish co-culture and rice monoculture farming system. Biology. 2022, 11, 1242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Tang, D.; Zhang, J.; Zhang, X.; Xu, C.; Yuan, Y.; Dai, C. Enhancing biomass and ecological sustainability in rice–fish cocropping systems through the induction of functional microbiota with compound biogenic bait. Soil Ecol. Lett. 2024, 6, 240252. [Google Scholar] [CrossRef]
- Diao, W.; Yuan, J.; Jia, R.; Hou, Y.; Zhang, L.; Li, B.; Zhu, J. Integrated rice–fish culture alters the bacterioplankton community and its assembly processes. Fishes 2024, 9, 254. [Google Scholar] [CrossRef]
- Zhou, Z.; Tran, P.Q.; Kieft, K.; Anantharaman, K. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. ISME J. 2020, 14, 2060–2077. [Google Scholar] [CrossRef]
- Ren, L.; Liu, P.; Xu, F.; Gong, Y.; Zhai, X.; Zhou, M.; Wang, J.; Wang, Z. Rice–fish coculture system enhances paddy soil fertility, bacterial network stability and keystone taxa diversity. Agric. Ecosyst. Environ. 2023, 348, 108399. [Google Scholar] [CrossRef]
- Ma, Y.; Yu, A.; Zhang, L.; Zheng, R. Effects of rice–frog co-cropping on the soil microbial community structure in reclaimed paddy fields. Biology 2024, 13, 396. [Google Scholar] [CrossRef]
- Galand, P.E.; Lucas, S.; Fagervold, S.K.; Peru, E.; Pruski, A.M.; Vétion, G.; Dupuy, C.; Guizien, K. Disturbance increases microbial community diversity and production in marine sediments. Front. Microbiol. 2016, 7, 1950. [Google Scholar] [CrossRef]
- Fernández-López, M.G.; Sánchez-Reyes, A.; Rosas-Ramírez, M.E.; Balcázar-López, E. Microbiodiversity landscape present in the mine-tailings of the “Sierra de Huautla” biosphere reserve, Mexico. Water Air Soil Pollut. 2024, 235, 538. [Google Scholar] [CrossRef]
- Licea-Herrera, J.I.; Guerrero, A.; Mireles-Martínez, M.; Rodríguez-González, Y.; Aguilera-Arreola, G.; Contreras-Rodríguez, A.; Fernandez-Davila, S.; Requena-Castro, R.; Rivera, G.; Bocanegra-García, V.; et al. Agricultural soil as a reservoir of Pseudomonas aeruginosa with potential risk to public health. Microorganisms 2024, 12, 2181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xu, M.; Lu, J.; Ren, T.; Cong, R.; Lu, Z.; Li, X. Integrated rice-aquatic animals culture systems promote the sustainable development of agriculture by improving soil fertility and reducing greenhouse gas emissions. Field Crops Res. 2023, 299, 108970. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, X.; Guo, X.; Wang, D.; Chu, H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol. Biochem. 2015, 88, 9–18. [Google Scholar] [CrossRef]
- Xue, Y.; Tian, J.; Quine, T.A.; Powlson, D.; Xing, K.; Yang, L.; Kuzyakov, Y.; Dungait, J.A. The persistence of bacterial diversity and ecosystem multifunctionality along a disturbance intensity gradient in karst soil. Sci. Total Environ. 2020, 748, 142381. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, Y.; Jia, R.; Li, B.; Zhu, J.; Ge, X. Alterations in soil bacterial community and its assembly process within paddy field induced by integrated rice–giant river prawn (Macrobrachium rosenbergii) farming. Agronomy 2024, 14, 1600. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, P.; Xiong, G.; Wei, H.; Zhang, L.; Wang, Z.; Ning, K. Microbial biogeochemical cycling reveals the sustainability of the rice-crayfish co-culture model. iScience 2023, 26, 106769. [Google Scholar] [CrossRef]
- Jiang, X.; Ma, H.; Zhao, Q.; Yang, J.; Xin, C.; Chen, B. Bacterial communities in paddy soil and ditch sediment under rice-crab co-culture system. AMB Express 2021, 11, 163. [Google Scholar] [CrossRef]
- Khanal, A.; Lee, J. Functional diversity and abundance of nitrogen cycle-related genes in paddy soil. Appl. Biol. Chem. 2020, 63, 17. [Google Scholar] [CrossRef]
- Li, B.; Zhu, D.; Li, J.; Liu, X.; Yan, B.; Mao, L.; Zhang, M.; Wang, Y.; Li, X. Converting upland to paddy fields alters soil nitrogen microbial functions at different depths in black soil region. Agric. Ecosyst. Environ. 2024, 372, 109089. [Google Scholar] [CrossRef]
- Sun, G.; Fang, Y.; Han, G.J.; Fu, Y. Effects of rice-fish integrated ecosystem on physical and chemical properties of paddy soil. Soil Fertil. Sci. China 2009, 4, 21–24. [Google Scholar]
- Wan, N.; Li, S.; Li, T.; Cavalieri, A.; Weiner, J.; Zheng, X.; Ji, X.; Zhang, J.; Zhang, H.; Zhang, H. Ecological intensification of rice production through rice-fish co-culture. J. Clean. Prod. 2019, 234, 1002–1012. [Google Scholar] [CrossRef]
Parameters | 1 WGR | 2 HSI | 3 VSI | 4 LBR |
---|---|---|---|---|
RFS | 548.96 ± 103.11 d | 3.00 ± 0.54 c | 14.3 ± 1.72 c | 36.57 ± 3.02 a |
RFLS 0.5 | 746.13 ± 104.52 bc | 4.90 ± 0.85 b | 15.82 ± 2.92 b | 34.63 ± 2.27 ab |
RFLS 1 | 903.49 ± 182.97 a | 6.13 ± 1.31 a | 17.72 ± 2.37 a | 32.89 ± 1.77 b |
RFLS 1.5 | 844.42 ± 157.96 ab | 5.95 ± 1.05 a | 17.48 ± 2.02 a | 33.83 ± 2.66 b |
RFLS 2 | 769.04 ± 145.81 bc | 5.23 ± 0.88 ab | 16.11 ± 2.12 ab | 33.8 ± 2.55 b |
RFLS 2.5 | 695.04 ± 145.78 c | 4.95 ± 1.09 b | 16.14 ± 1.88 ab | 33.09 ± 3.22 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, C.; Li, Y.; Zhou, Q.; Liu, W.; Liao, Y.; Pan, J.; Chen, Q.; He, H.; Wang, Z. Effects of Paramisgurnus dabryanus Density on the Growth Performance of Pelophylax nigromaculatus and the Soil Microbial Communities Within a Rice–Frog–Loach Integrated Aquaculture System. Microorganisms 2025, 13, 1794. https://doi.org/10.3390/microorganisms13081794
Yu C, Li Y, Zhou Q, Liu W, Liao Y, Pan J, Chen Q, He H, Wang Z. Effects of Paramisgurnus dabryanus Density on the Growth Performance of Pelophylax nigromaculatus and the Soil Microbial Communities Within a Rice–Frog–Loach Integrated Aquaculture System. Microorganisms. 2025; 13(8):1794. https://doi.org/10.3390/microorganisms13081794
Chicago/Turabian StyleYu, Chuanqi, Yaping Li, Qiubai Zhou, Wenshuo Liu, Yuhong Liao, Jie Pan, Qi Chen, Haohua He, and Zirui Wang. 2025. "Effects of Paramisgurnus dabryanus Density on the Growth Performance of Pelophylax nigromaculatus and the Soil Microbial Communities Within a Rice–Frog–Loach Integrated Aquaculture System" Microorganisms 13, no. 8: 1794. https://doi.org/10.3390/microorganisms13081794
APA StyleYu, C., Li, Y., Zhou, Q., Liu, W., Liao, Y., Pan, J., Chen, Q., He, H., & Wang, Z. (2025). Effects of Paramisgurnus dabryanus Density on the Growth Performance of Pelophylax nigromaculatus and the Soil Microbial Communities Within a Rice–Frog–Loach Integrated Aquaculture System. Microorganisms, 13(8), 1794. https://doi.org/10.3390/microorganisms13081794