Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (277)

Search Parameters:
Keywords = soil carbon recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5265 KiB  
Article
Influence of Agricultural Practices on Soil Physicochemical Properties and Rhizosphere Microbial Communities in Apple Orchards in Xinjiang, China
by Guangxin Zhang, Zili Wang, Huanhuan Zhang, Xujiao Li, Kun Liu, Kun Yu, Zhong Zheng and Fengyun Zhao
Horticulturae 2025, 11(8), 891; https://doi.org/10.3390/horticulturae11080891 (registering DOI) - 1 Aug 2025
Viewed by 189
Abstract
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological [...] Read more.
In response to the challenges posed by soil degradation in the arid regions of Xinjiang, China, green and organic management practices have emerged as effective alternatives to conventional agricultural management methods, helping to mitigate soil degradation by promoting natural soil recovery and ecological balance. However, most of the existing studies focus on a single management practice or indicator and lack a systematic assessment of the effects of integrated orchard management in arid zones. This study aims to investigate how different agricultural management practices influence soil physicochemical properties and inter-root microbial communities in apple orchards in Xinjiang and to identify the main physicochemical factors affecting the composition of inter-root microbial communities. Inter-root soil samples were collected from apple orchards under green management (GM), organic management (OM), and conventional management (CM) in major apple-producing regions of Xinjiang. Microbial diversity and community composition of the samples were analyzed using high-throughput amplicon sequencing. The results revealed significant differences (p < 0.05) in soil physicochemical properties across different management practices. Specifically, GM significantly reduced soil pH and C:N compared with OM. Both OM and GM significantly decreased soil available nutrient content compared with CM. Moreover, GM and OM significantly increased bacterial diversity and changed the community composition of bacteria and fungi. Proteobacteria and Ascomycota were identified as the dominant bacteria and fungi, respectively, in all management practices. Linear discriminant analysis (LEfSe) showed that biomarkers were more abundant under OM, suggesting that OM may contribute to ecological functions through specific microbial taxa. Co-occurrence network analysis (building a network of microbial interactions) demonstrated that the topologies of bacteria and fungi varied across different management practices and that OM increased the complexity of microbial co-occurrence networks. Mantel test analysis (analyzing soil factors and microbial community correlations) showed that C:N and available potassium (AK) were significantly and positively correlated with the community composition of bacteria and fungi, and that C:N, soil organic carbon (SOC), and alkaline hydrolyzable nitrogen (AN) were significantly and positively correlated with the diversity of fungi. Redundancy analysis (RDA) further indicated that SOC, C:N, and AK were the primary soil physicochemical factors influencing the composition of microbial communities. This study provides theoretical guidance for the sustainable management of orchards in arid zones. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

19 pages, 3536 KiB  
Article
Loss and Early Recovery of Biomass and Soil Organic Carbon in Restored Mangroves After Paspalum vaginatum Invasion in West Africa
by Julio César Chávez Barrera, Juan Fernando Gallardo Lancho, Robert Puschendorf and Claudia Maricusa Agraz Hernández
Resources 2025, 14(8), 122; https://doi.org/10.3390/resources14080122 - 29 Jul 2025
Viewed by 264
Abstract
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified [...] Read more.
Invasive plant species pose an increasing threat to mangroves globally. This study assessed the impact of Paspalum vaginatum invasion on carbon loss and early recovery following four years of restoration in a mangrove forest with Rhizophora racemosa in Benin. Organic carbon was quantified in the total biomass, including both aboveground and belowground components, as well as in the soil to a depth of −50 cm. In addition, soil gas fluxes of CO2, CH4, and N2O were measured. Three sites were evaluated: a conserved mangrove, a site degraded by P. vaginatum, and the same site post-restoration via hydrological rehabilitation and reforestation. Invasion significantly reduced carbon storage, especially in soil, due to lower biomass, incorporation of low C/N ratio organic residues, and compaction. Restoration recovered 7.8% of the total biomass carbon compared to the conserved mangrove site, although soil organic carbon did not rise significantly in the short term. However, improvements in deep soil C/N ratios (15–30 and 30–50 cm) suggest enhanced soil organic matter recalcitrance linked to R. racemosa reforestation. Soil CO2 emissions dropped by 60% at the restored site, underscoring restoration’s potential to mitigate early carbon loss. These results highlight the need to control invasive species and suggest that restoration can generate additional social benefits. Full article
Show Figures

Figure 1

20 pages, 3380 KiB  
Article
Resilience of Mangrove Carbon Sequestration Under Typhoon Disturbance: Insights from Different Restoration Ages
by Youwei Lin, Ruina Liu, Yunfeng Shi, Shengjie Han, Huaibao Zhao and Zongbo Peng
Forests 2025, 16(7), 1165; https://doi.org/10.3390/f16071165 - 15 Jul 2025
Viewed by 310
Abstract
Typhoons are major climate disturbances that significantly impact coastal ecosystems, particularly mangrove forests. This study examines the effects of typhoons on mangrove communities at different stages of recovery, focusing on how environmental factors influence carbon storage and net ecosystem exchange (NEE). Three mangrove [...] Read more.
Typhoons are major climate disturbances that significantly impact coastal ecosystems, particularly mangrove forests. This study examines the effects of typhoons on mangrove communities at different stages of recovery, focusing on how environmental factors influence carbon storage and net ecosystem exchange (NEE). Three mangrove sites were selected based on their recovery age: young, moderately restored, and mature. The results revealed that typhoons had the most pronounced effect on young mangroves, resulting in significant reductions in both above-ground and soil carbon storage. In contrast, mid-aged and mature mangroves demonstrated greater resilience, with mature mangroves recovering most rapidly in terms of community structure and carbon storage. Key factors such as wind speed, heavy rainfall, and changes in photosynthetically active radiation (PAR) contributed to carbon storage losses, particularly in young mangrove forests. This study underscores the importance of recovery age in determining mangrove resilience to extreme weather events and offers insights for enhancing restoration and conservation strategies to mitigate the impacts of climate change on coastal carbon sequestration. Full article
(This article belongs to the Section Natural Hazards and Risk Management)
Show Figures

Figure 1

21 pages, 2362 KiB  
Article
Stabilization of Expansive Clay Using Volcanic Ash
by Svetlana Melentijević, Aitor López Marcos, Roberto Ponce and Sol López-Andrés
Geosciences 2025, 15(7), 261; https://doi.org/10.3390/geosciences15070261 - 8 Jul 2025
Cited by 2 | Viewed by 371
Abstract
Considering the increasing requirements for the recovery of different natural and industrial waste materials, the application of volcanic ash as an alternative sustainable binder to traditionally employed lime and cement is proposed for soil stabilization for geotechnical engineering purposes, thus providing a reduction [...] Read more.
Considering the increasing requirements for the recovery of different natural and industrial waste materials, the application of volcanic ash as an alternative sustainable binder to traditionally employed lime and cement is proposed for soil stabilization for geotechnical engineering purposes, thus providing a reduction in carbon emissions. Soil stabilization was performed on natural clays with very high swelling potential, i.e. those classified as inadequate for reuse as a building material for geotechnical purposes. A mineralogical and chemical characterization of raw materials was carried out prior to the performance of different geotechnical laboratory tests, i.e., testing Atterberg limits, compaction, swelling potential, compressibility and resistance parameters over naturally remolded clay and soil mixtures with different binders. The swelling potential was reduced with an increase in the amount of applied binder, necessitating the addition of 10, 20, and 30% of volcanic ash compared to 3% lime, 3% cement and 5% lime, respectively, for a similar reduction in swelling potential. An investigation of the resistance parameters for soil mixture specimens that provided a suitable reduction in swelling potential for their reuse was performed, and a comparison to the parameters of naturally remolded clay was made. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

14 pages, 1465 KiB  
Article
Free-Range Chickens Reared Within an Olive Grove Influenced the Soil Microbial Community and Carbon Sequestration
by Luisa Massaccesi, Rosita Marabottini, Chiara Poesio, Simona Mattioli, Cesare Castellini and Alberto Agnelli
Soil Syst. 2025, 9(3), 69; https://doi.org/10.3390/soilsystems9030069 - 3 Jul 2025
Viewed by 279
Abstract
Although the benefits of rational grazing by polygastric animals are well known, little is understood about how chicken grazing affects soil biological health and its capacity to store organic matter. This study aimed to assess the impact of long-term free-range chicken grazing in [...] Read more.
Although the benefits of rational grazing by polygastric animals are well known, little is understood about how chicken grazing affects soil biological health and its capacity to store organic matter. This study aimed to assess the impact of long-term free-range chicken grazing in an olive grove on the soil chemical and biochemical properties, including the total organic carbon (TOC), total nitrogen (TN), microbial biomass (Cmic), basal respiration, and microbial community structure, as well as the soil’s capability to stock organic carbon and total nitrogen. A field experiment was conducted in an olive grove grazed by chickens for over 20 years, with the animal load decreasing with distance from the poultry houses. At 20 m, where the chicken density was highest, the soils showed reduced OC and TN contents and a decline in fungal biomass. This was mainly due to the loss of both aboveground vegetation and root biomass from intensive grazing. At 50 m, where grazing pressure was lower, the soil OC, TN, and microbial community size and activity were similar to those in a control, ungrazed area. These findings suggest that high chicken density can negatively affect soil health, while moderate grazing allows for the recovery of vegetation and soil organic matter. Rational management of free-range chicken grazing, particularly through the control of chicken density or managing grazing time and frequency, is therefore recommended to preserve soil functions and fertility. Full article
Show Figures

Figure 1

13 pages, 1276 KiB  
Article
Recovery and Reuse of Nutrients from Hydroponic Effluent in the Context of Circular Agriculture
by Lisa Eliana Samudio Legal, Simeón Aguayo Trinidad, María Natalia Piol, Pedro Gabriel Gamarra Alfonso, Jiam Pires Frigo and Andréia Cristina Furtado
Sustainability 2025, 17(13), 6045; https://doi.org/10.3390/su17136045 - 1 Jul 2025
Viewed by 475
Abstract
This research evaluated the recovery and reuse of dolomitic calcareous amendment saturated with nutrients adsorbed from hydroponic effluent as a soil improver and its impact on the agronomic performance of Phaseolus vulgaris. Initially, the dolomitic calcareous amendment (DCA) was saturated with nutrients [...] Read more.
This research evaluated the recovery and reuse of dolomitic calcareous amendment saturated with nutrients adsorbed from hydroponic effluent as a soil improver and its impact on the agronomic performance of Phaseolus vulgaris. Initially, the dolomitic calcareous amendment (DCA) was saturated with nutrients from the hydroponic effluent through adsorption tests. The characterization of the DCA was conducted before and after nutrient saturation to verify its composition. Soil analysis was carried out prior to the trial, and a completely randomized experimental design was applied with four treatments and five replications, totaling 20 experimental units for each soil type (sandy and clayey): T1 (control), T2 (raw dolomitic calcareous amendment—DCA), T3 (saturated dolomitic calcareous amendment—DCAS), and T4 (granulated dolomitic calcareous amendment—DCAG). Agronomic performance parameters of Phaseolus vulgaris were assessed to determine nutrient availability to the plant: number of pods, pod length (cm), number of seeds per pod, and weight of 100 seeds (g). Data normality was verified using the Shapiro–Wilk test, and results were analyzed using ANOVA and mean comparisons through Tukey’s test (p < 0.05) using InfoStat software 2020I. Additionally, plant tissue was analyzed to determine nutrient absorption in the seeds, and both soil types were analyzed after harvest. Adsorption results indicated that the DCA retained phosphorus, manganese, calcium, and zinc. According to the characterization, DCA primarily consisted of calcium and magnesium carbonates; following the saturation process, an increase in carbonate groups was observed due to calcium adsorption from the hydroponic effluent. Results in both soil types showed no significant differences in pod number, pod length, or seeds per pod, except for the weight of 100 seeds in sandy soil, where T1, T2, and T3 differed significantly from T4. Based on references, the phosphorus content in the harvested seeds from T3 in sandy soil is classified as sufficient. The findings demonstrate the potential of recovering and reusing nutrients from hydroponic effluent using DCA and transforming it into a value-added agricultural input for soil improvement, presenting a promising alternative for more sustainable and efficient agriculture. Full article
Show Figures

Figure 1

14 pages, 1769 KiB  
Article
Analysis of the Digestion Dynamics and Dietary Risk Assessment of Fluridone in Cotton Fields via QuEChERS Coupled with HPLC
by Sen Wang, Ruitong Yang, Yuxuan Li, Zhiqiang Jin, Yutian Xia, Yipin Zhao, Xiaoqiang Han, Guoqiang Zhang, Chunjuan Wang, Ting Ma, Cailan Wu and Desong Yang
Toxics 2025, 13(7), 526; https://doi.org/10.3390/toxics13070526 - 23 Jun 2025
Viewed by 238
Abstract
Fluridone is a pyrrolidone soil-sealing herbicide that has been widely used in cotton fields in Xinjiang in recent years. The purpose of this study was to establish a method for determining fluridone residues in cotton fields and to perform residue digestion tests, final [...] Read more.
Fluridone is a pyrrolidone soil-sealing herbicide that has been widely used in cotton fields in Xinjiang in recent years. The purpose of this study was to establish a method for determining fluridone residues in cotton fields and to perform residue digestion tests, final residue analysis, and dietary risk assessment. Samples were extracted with acetonitrile, purified with primary secondary amine (PSA) and multi-walled carbon nanotubes (MWCNTs), and analyzed by high-performance liquid chromatography (HPLC). The results showed that in a certain concentration range, the concentration and peak area of fluridone showed a good linear relationship (R2 > 0.99), with limit of detection (LOD) and limit of quantification (LOQ) values of 0.00090–0.00108 mg·kg−1 and 0.0030–0.0033 mg·kg−1, respectively. The relative standard deviation (RSD) values of fluridone were 0.46% to 4.57% at the spiked level of 0.1, 0.5, and 1.0 mg·kg−1, respectively. The average daily recovery rate of fluridone was 85.08% to 95.07%. The residual levels of fluridone in cottonseed oil were below the safety threshold, indicating no significant dietary risk to consumers. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

13 pages, 1417 KiB  
Article
Rhizosphere and Non-Rhizosphere Soil Microbial Communities in Alpine Desertified Grassland Affected by Vegetation Restoration
by Xuan Gao, Hongyu Qian, Rui Huang, Wangyi He, Haodong Jiang, Ao Shen, Zhi Li and Yufu Hu
Plants 2025, 14(13), 1925; https://doi.org/10.3390/plants14131925 - 23 Jun 2025
Viewed by 356
Abstract
The rhizosphere serves as a critical interface for plant–soil–microorganism interactions. Rhizosphere soil refers to the soil directly adhering to root surfaces, while non-rhizosphere soil denotes the surrounding soil not in direct contact with roots. This study investigated the characteristics of soil microbial community [...] Read more.
The rhizosphere serves as a critical interface for plant–soil–microorganism interactions. Rhizosphere soil refers to the soil directly adhering to root surfaces, while non-rhizosphere soil denotes the surrounding soil not in direct contact with roots. This study investigated the characteristics of soil microbial community structure, diversity, and enzyme activity dynamics in both rhizosphere and non-rhizosphere soils of Salix cupularis (shrub) across different restoration periods (4, 8, 16, and 24 years) in alpine sandy lands on the eastern Qinghai–Tibet Plateau, with unrestored sandy land as control (CK), while analyzing relationships between soil properties and microbial characteristics. Results demonstrated that with increasing restoration duration, activities of sucrase, urease, alkaline phosphatase, and catalase in Salix cupularis rhizosphere showed increasing trends across periods, with rhizosphere enzyme activities consistently exceeding non-rhizosphere levels. Bacterial Chao1 and Shannon indices followed similar patterns to enzyme activities, revealing statistically significant differences between rhizosphere and non-rhizosphere soils after 8 and 24 years of restoration, respectively. Dominant bacterial phyla ranked by relative abundance were Actinobacteria > Proteobacteria > Acidobacteria > Chloroflexi > Gemmatimonadetes. The relative abundance of Actinobacteria exhibited highly significant positive correlations with carbon, nitrogen, phosphorus, and enzyme activity indicators, indicating that Salix cupularis restoration promoted improvements in soil physicochemical properties and nutrient accumulation, thereby enhancing bacterial community diversity and increasing Actinobacteria abundance. These findings provide fundamental data for restoration ecology and microbial ecology in alpine ecosystems, offering a scientific basis for optimizing ecological restoration processes and improving recovery efficiency in alpine sandy ecosystems. Full article
Show Figures

Figure 1

26 pages, 11805 KiB  
Article
Coupling Marxan and InVEST Models to Identify Ecological Protection Areas: A Case Study of Anhui Province
by Xinmu Zhang, Xinran Zhang, Lei Zhang, Kangkang Gu and Xinchen Gu
Land 2025, 14(7), 1314; https://doi.org/10.3390/land14071314 - 20 Jun 2025
Viewed by 430
Abstract
This study, taking Anhui Province as a case study, systematically evaluated the spatiotemporal differentiation characteristics of six ecosystem services (biodiversity maintenance, water yield, carbon fixation, vegetation net primary productivity (NPP), soil retention, and crop production) from 2000 to 2020 through the integration of [...] Read more.
This study, taking Anhui Province as a case study, systematically evaluated the spatiotemporal differentiation characteristics of six ecosystem services (biodiversity maintenance, water yield, carbon fixation, vegetation net primary productivity (NPP), soil retention, and crop production) from 2000 to 2020 through the integration of multi-stakeholder decision-making preferences and the Marxan model. Four conservation scenarios (ecological security priority, social benefit orientation, minimum cost constraint, and balance synergy) were established to explore the spatial optimization pathways of ecological protection zones under differentiated policy objectives. The findings indicated that: (1) The ecosystem services in Anhui Province exhibited a “low north and high south” spatial gradient, with significant synergies observed in natural ecosystem services in the southern Anhui mountainous areas, while the northern Anhui agricultural areas were subjected to significant trade-offs due to intensive development. (2) High service provision in the southern Anhui mountainous areas was maintained by topographic barriers and forest protection policies (significant NPP improvement zones accounted for 50.125%), whereas soil–water services degradation in the northern Anhui plains was caused by agricultural intensification and groundwater overexploitation (slight soil retention degradation covered 24.505%, and water yield degradation areas reached 29.766%). Urbanization demonstrated a double-edged sword effect—the expansion of the Hefei metropolitan area triggered suburban biodiversity degradation (significant degradation patches occupied 0.0758%), while ecological restoration projects promoted mountain NPP growth, highlighting the necessity of synergizing natural recovery and artificial interventions. (3) Multi-scenario planning revealed that the spatial congruence between the ecological security priority scenario and traditional ecological protection redlines reached 46.57%, whereas the social benefit scenario achieved only 12.13%, exposing the inadequate responsiveness of the current conservation framework to service demands in densely populated areas. This research validated the technical superiority of multi-objective systematic planning in reconciling ecological protection and development conflicts, providing scientific support for optimizing ecological security patterns in the Yangtze River Delta region. Full article
Show Figures

Figure 1

18 pages, 3125 KiB  
Article
Influences of the China–Russia Crude Oil Pipelines on the Characteristics of Soil Bacterial and Fungal Communities in Permafrost Regions of the Da Xing’anling Mountains, Northeast China
by Xue Yang, Yanling Shi, Xiaoying Jin, Zuwang Li, Wenhui Wang, Shuai Huang and Huijun Jin
Forests 2025, 16(7), 1038; https://doi.org/10.3390/f16071038 - 20 Jun 2025
Viewed by 348
Abstract
Engineering disturbances are increasing in permafrost regions of northeastern China, where soil microorganisms play essential roles in biogeochemical cycling and are highly sensitive to linear infrastructure disturbances. However, limited research has addressed how microbial communities respond to different post-engineering-disturbance recovery stages. This study [...] Read more.
Engineering disturbances are increasing in permafrost regions of northeastern China, where soil microorganisms play essential roles in biogeochemical cycling and are highly sensitive to linear infrastructure disturbances. However, limited research has addressed how microbial communities respond to different post-engineering-disturbance recovery stages. This study investigated the impacts of the China–Russia Crude Oil Pipelines (CRCOPs) on soil microbial communities in a typical boreal forest permafrost zone of the Da Xing’anling Mountains. Soil samples were collected from undisturbed forest (the control, CK); short-term disturbed sites associated with Pipeline II, which was constructed in 2018 (SD); and long-term disturbed sites associated with Pipeline I, which was constructed in 2011 (LD). Pipeline engineering disturbances significantly increased soil clay content and pH while reducing soil water content (SWC), soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) (p < 0.05). No significant differences in these soil properties were observed between SD and LD. Bacterial diversity increased significantly, whereas fungal diversity significantly decreased following pipeline disturbances (p < 0.05). The beta diversity of both bacterial and fungal communities differed significantly among the three disturbance types. At the phylum level, pipeline disturbance increased the relative abundances of Proteobacteria, Acidobacteriota, Actinobacteriota, Ascomycota, and Mortierellomycota while reducing those of Bacteroidota and Basidiomycota. These shifts were associated with disturbance-induced changes in soil properties. Microbial co-occurrence networks in SD exhibited greater complexity and connectivity than those in CK and LD, suggesting intensified biotic interactions and active ecological reassembly during the early recovery phase. These findings suggest that pipeline disturbance could drive soil microbial systems into a new stable state that is difficult to restore over the long term, highlighting the profound impacts of linear infrastructure on microbial ecological functions in cold regions. This study provides a scientific basis for ecological restoration and biodiversity conservation in permafrost-affected areas. Full article
Show Figures

Figure 1

19 pages, 2685 KiB  
Article
Thresholds and Trade-Offs: Fire Severity Modulates Soil Microbial Biomass-Function Coupling in Taiga Forests, Northeast of China
by Huijiao Qu, Siyu Jiang, Zhichao Cheng, Dan Wei, Libin Yang and Jia Zhou
Microorganisms 2025, 13(6), 1318; https://doi.org/10.3390/microorganisms13061318 - 5 Jun 2025
Viewed by 556
Abstract
Forest fires critically disrupt soil ecosystems by altering physicochemical properties and microbial structure-function dynamics. This study assessed short-term impacts of fire intensities (light/moderate/heavy) on microbial communities in Larix gmelinii forests one year post-fire. Using phospholipid fatty acid (PLFA) and Biolog EcoPlate analyses, we [...] Read more.
Forest fires critically disrupt soil ecosystems by altering physicochemical properties and microbial structure-function dynamics. This study assessed short-term impacts of fire intensities (light/moderate/heavy) on microbial communities in Larix gmelinii forests one year post-fire. Using phospholipid fatty acid (PLFA) and Biolog EcoPlate analyses, we found the following: (1) fire reduced soil organic carbon (SOC), dissolved organic carbon (DOC), total nitrogen (TN), and available nitrogen/potassium (AN/AK) via pyrolytic carbon release, while heavy-intensity fires enriched available phosphorus (AP), AN, and AK through ash deposition. (2) Thermal mortality and nutrient-pH-moisture stress persistently suppressed microbial biomass and metabolic activity. Moderate fires increased taxonomic richness but reduced functional diversity, confirming “functional redundancy.” (3) Neither soil microbial biomass nor metabolic activity at the fire site reached pre-fire levels after one year of recovery. Our findings advance post-fire soil restoration frameworks and advocate multi-omics integration to decode fire-adapted functional gene networks, guiding climate-resilient forest management. Full article
(This article belongs to the Special Issue Advances in Genomics and Ecology of Environmental Microorganisms)
Show Figures

Figure 1

17 pages, 782 KiB  
Article
Estimation of Impact of Disturbances on Soil Respiration in Forest Ecosystems of Russia
by Dmitry Schepaschenko, Liudmila Mukhortova and Anatoly Shvidenko
Forests 2025, 16(6), 925; https://doi.org/10.3390/f16060925 - 31 May 2025
Viewed by 485
Abstract
Soil respiration (Rs) is a significant contributor to the global carbon cycle, with its two main sources—microbial (heterotrophic, Rh) and plant root (autotrophic, Ra) respiration—being sensitive to various environmental factors. This study investigates the impact of ecosystem disturbances (Ds), including fire, biogenic (insects [...] Read more.
Soil respiration (Rs) is a significant contributor to the global carbon cycle, with its two main sources—microbial (heterotrophic, Rh) and plant root (autotrophic, Ra) respiration—being sensitive to various environmental factors. This study investigates the impact of ecosystem disturbances (Ds), including fire, biogenic (insects and pathogens), and harvesting, on soil respiration in Russia’s forest ecosystems. We introduced response factors to account for the effects of these disturbances on Rh over three distinct stages of ecosystem recovery. Our analysis, based on data from case studies, remote sensing data, and the national forest inventory, revealed that Ds increase Rh by an average of 2.1 ± 3.2% during the restoration period. Biogenic disturbances showed the highest impacts, with average increases of 16.5 ± 3.2%, while the contributions of clearcuts and wildfires were, on average, less pronounced—2.0 ± 3.1% and 0.8 ± 3.3%, respectively. These disturbances modify forest soil dynamics by affecting soil temperature, moisture, and nutrient availability, influencing carbon fluxes over varying timescales. This research underscores the role of ecosystem disturbances in altering soil carbon dynamics and highlights the need for improved data and monitoring of forest disturbances to reduce uncertainty in soil carbon flux estimates. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

18 pages, 1151 KiB  
Article
Co-Hydrothermal Carbonization of Swine Manure and Soybean Hulls: Synergistic Effects on the Potential Use of Hydrochar as a Biofuel and Soil Improver
by Bryan Chiguano-Tapia, Elena Diaz, M. Angeles de la Rubia and Angel F. Mohedano
Sustainability 2025, 17(11), 5022; https://doi.org/10.3390/su17115022 - 30 May 2025
Viewed by 702
Abstract
The management through co-hydrothermal carbonization (co-HTC) of swine manure (SM) and soybean hulls (SH), a by-product of animal feeding, is established as a strategy for their material and/or energy recovery. The effect of hydrothermal carbonization (HTC) temperature (210–240 °C) and mass ratio (1:0, [...] Read more.
The management through co-hydrothermal carbonization (co-HTC) of swine manure (SM) and soybean hulls (SH), a by-product of animal feeding, is established as a strategy for their material and/or energy recovery. The effect of hydrothermal carbonization (HTC) temperature (210–240 °C) and mass ratio (1:0, 1:1, 1:3, 0:1) on hydrochar characteristics revealed that an improved hydrochar (C (51–59%), HHV (21–24 MJ/kg), N (~2%), S (~0.3%), and ash (<9%)) is produced with respect to hydrochar obtained from individually treated wastes. Regarding biofuel characteristics, hydrochar obtained from the SM/SH mass ratio (1:3) at 240 °C complied with the requirements of the ISO/TS 17225-8:2023 (N < 2.5%; S < 0.3%; HHV > 17 MJ/kg; ash < 12%) and showed high energy content (23.2 MJ/kg) and a greater thermal stability than the hydrochar obtained from individual wastes. Hydrochar retained relatively high amounts of nutrients such as phosphorus (6.5–9.7 g/kg), potassium (2.0–3.5 g/kg), and calcium (9–20 g/kg), which supports their use as soil improvers. Moreover, all hydrochar fulfill the standards (Spanish Royal Decrees 1051/2022, 824/2024 and EU Regulation 2019/1009) for sustainable nutrition in agriculture soils in terms of heavy metals concentration. The co-HTC of swine manure and soybean hulls demonstrated a promising transformation of waste materials into biofuel and/or soil improvers. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Graphical abstract

20 pages, 2829 KiB  
Article
Actinobacteria Emerge as Novel Dominant Soil Bacterial Taxa in Long-Term Post-Fire Recovery of Taiga Forests
by Siyu Jiang, Huijiao Qu, Zhichao Cheng, Xiaoyu Fu, Libin Yang and Jia Zhou
Microorganisms 2025, 13(6), 1262; https://doi.org/10.3390/microorganisms13061262 - 29 May 2025
Cited by 1 | Viewed by 481
Abstract
The long-term post-fire recovery phase is a critical stage for forest ecosystems to progress toward regeneration and mature succession. During this process, soil bacteria exhibit greater environmental adaptability, rapidly driving nutrient cycling and facilitating vegetation restoration. This study investigated the community structure and [...] Read more.
The long-term post-fire recovery phase is a critical stage for forest ecosystems to progress toward regeneration and mature succession. During this process, soil bacteria exhibit greater environmental adaptability, rapidly driving nutrient cycling and facilitating vegetation restoration. This study investigated the community structure and diversity of soil bacteria during long-term recovery after forest fires in the cold temperate zone, focusing on soils from the 2000 fires in Daxing’anling. Soil samples were classified into Low (L), Moderate (M), and High (H) fire damage intensity, with bacterial community composition and diversity analyzed using Illumina sequencing technology. After long-term fire recovery, the contents of soil organic carbon, black carbon, total nitrogen, alkaline nitrogen, available phosphorus, and available potassium were significantly higher elevated (p < 0.05), and water content was significantly lower, compared with that in the control check (CK) group. Soil urease, fluorescein diacetate, soil acid phosphatase, and soil dehydrogenase activities were significantly higher, and soil sucrase activity was significantly lower in H. There was a significant difference in the Alpha diversity index among the groups. Compared with CK, the Shannon index was significantly increased (p < 0.05) in L, while both Chao1 and Shannon indices were significantly decreased (p < 0.05) in M and significantly higher in H than CK. The results of the PCoA showed that there was a significant difference in the Beta diversity of the bacterial community among the groups (R2 = 0.60 p = 0.001). The dominant bacteria groups were Proteobacteria and Acidobacteriota, while Actinobacteria became the new dominant group during the long-term post-fire recovery. AP, WC, DOC, MBC, S-DHA, and S-SC were significantly and positively correlated with soil bacterial diversity (p < 0.05). The results of the co-occurrence network analysis showed that all groups were dominated by symbiotic relationships, with M having the highest network complexity and strongest competitive effects. This study found that the physicochemical properties of soils recovered over a long period of time after fire returned to or exceeded the unfired forest condition. The Actinobacteria phylum became a new dominant bacterial group, with stronger network complexity and competition, in the process of forest recovery after moderate fire. Full article
(This article belongs to the Special Issue Advances in Genomics and Ecology of Environmental Microorganisms)
Show Figures

Figure 1

16 pages, 1464 KiB  
Article
Impact of Fire Severity on Soil Bacterial Community Structure and Its Function in Pinus densata Forest, Southeastern Tibet
by Lei Hou, Jie Chen and Wen Lin
Forests 2025, 16(6), 894; https://doi.org/10.3390/f16060894 - 26 May 2025
Viewed by 394
Abstract
Forest fires are one of the significant factors affecting forest ecosystems globally, with their impacts on soil microbial community structure and function drawing considerable attention. This study focuses on the short-term effects of different fire intensities on soil bacterial community structure and function [...] Read more.
Forest fires are one of the significant factors affecting forest ecosystems globally, with their impacts on soil microbial community structure and function drawing considerable attention. This study focuses on the short-term effects of different fire intensities on soil bacterial community structure and function in Abies (Pinus densata) forests within the Birishen Mountain National Forest Park in southeastern Tibet. High-throughput sequencing technology was employed to analyze soil bacterial community variations under unburned (C), low-intensity burn (L), moderate-intensity burn (M), and high-intensity burn (S) conditions. The results revealed that with increasing fire severity, the dominant phylum Actinobacteriota significantly increased, while Proteobacteria and Acidobacteriota markedly decreased. At the genus level, the relative abundance of Bradyrhizobium declined significantly with higher fire severity, whereas Arthrobacter exhibited a notable increase. Additionally, soil environmental factors such as available phosphorus (AP), dissolved organic carbon (DOC), C/N ratio, and C/P ratio displayed distinct trends: AP content increased with fire severity, while DOC, C/N ratio, and C/P ratio showed decreasing trends. Non-metric Multidimensional Scaling (NMDS) analysis indicated significant differences in soil bacterial community structures across fire intensities. Diversity analysis demonstrated that Shannon and Simpson indices exhibited regular fluctuations correlated with fire severity and were significantly associated with soil C/N ratios. Functional predictions revealed a significant increase in nitrate reduction-related bacterial functions with fire severity, while nitrogen-fixing bacteria declined markedly. These findings suggest that forest fire severity profoundly influences soil bacterial community structure and function, potentially exerting long-term effects on nutrient cycling and ecosystem recovery in forest ecosystems. Full article
(This article belongs to the Special Issue Fire Ecology and Management in Forest—2nd Edition)
Show Figures

Figure 1

Back to TopTop