Estimation of Impact of Disturbances on Soil Respiration in Forest Ecosystems of Russia
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Fire
4.2. Biogenic Disturbances
4.3. Harvest
4.4. Caveats and Limitations
- The temporal and spatial coverage of Rs measurement, including short measurement windows (many studies reported Rs only over part of the growing season) and geographic gaps (remote and infrastructure-poor regions were underrepresented).
- Disturbance severity and characterization. Severity gradients and the compound of multiple disturbances were not fully captured.
- Methodological variability among studies, including different instruments, techniques, and the lack of direct partitioning between Ra and Rh.
- Modeling assumptions. We assumed that post-disturbance response curves and their parameters remained constant over multi-decadal restoration periods, neglecting potential shifts under changing climate or soil conditions, as well as neglecting trends in disturbance regimes.
- Uncertainty quantification. Formal error propagation through our multi-step workflow was hindered by missing variance and covariance information in the underlying studies; we therefore relied on standard error estimates at each stage and expert judgment to gauge overall uncertainty.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bond-Lamberty, B.; Ballantyne, A.; Berryman, E.; Fluet-Chouinard, E.; Jian, J.; Morris, K.A.; Rey, A.; Vargas, R. Twenty Years of Progress, Challenges, and Opportunities in Measuring and Understanding Soil Respiration. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007637. [Google Scholar] [CrossRef]
- Bowden, R.D.; Castro, M.S.; Melillo, J.M.; Steudler, P.A.; Aber, J.D. Fluxes of Greenhouse Gases between Soils and the Atmosphere in a Temperate Forest Following a Simulated Hurricane Blowdown. Biogeochemistry 1993, 21, 61–71. [Google Scholar] [CrossRef]
- Singh, S.; Amiro, B.D.; Quideau, S.A. Effects of Forest Floor Organic Layer and Root Biomass on Soil Respiration Following Boreal Forest Fire. Can. J. For. Res. 2008, 38, 647–655. [Google Scholar] [CrossRef]
- Nadelhoffer, K.J. The Potential Effects of Nitrogen Deposition on Fine-Root Production in Forest Ecosystems. New Phytol. 2000, 147, 131–139. [Google Scholar] [CrossRef]
- Niu, B.; Zhang, X.; Piao, S.; Janssens, I.A.; Fu, G.; He, Y.; Zhang, Y.; Shi, P.; Dai, E.; Yu, C.; et al. Warming Homogenizes Apparent Temperature Sensitivity of Ecosystem Respiration. Sci. Adv. 2021, 7, eabc7358. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Zhang, W.; Zhu, W.; Gundersen, P.; Fang, Y.; Li, D.; Wang, H. Nitrogen Addition Reduces Soil Respiration in a Mature Tropical Forest in Southern China. Glob. Change Biol. 2008, 14, 403–412. [Google Scholar] [CrossRef]
- Pereira, P.; Mataix-Solera, J.; Úbeda, X.; Rein, G.; Cerdà, A. (Eds.) Fire Effects on Soil Properties; CSIRO Publishing: Clayton, Australia, 2019; ISBN 978-1-4863-0813-2. [Google Scholar]
- Ribeiro-Kumara, C.; Pumpanen, J.; Heinonsalo, J.; Metslaid, M.; Orumaa, A.; Jõgiste, K.; Berninger, F.; Köster, K. Long-Term Effects of Forest Fires on Soil Greenhouse Gas Emissions and Extracellular Enzyme Activities in a Hemiboreal Forest. Sci. Total Environ. 2020, 718, 135291. [Google Scholar] [CrossRef]
- Harmon, M.E.; Bond-Lamberty, B.; Tang, J.; Vargas, R. Heterotrophic Respiration in Disturbed Forests: A Review with Examples from North America. J. Geophys. Res. Biogeosci. 2011, 116, G00K04. [Google Scholar] [CrossRef]
- Hirsch, A.I.; Little, W.S.; Houghton, R.A.; Scott, N.A.; White, J.D. The Net Carbon Flux Due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis Using a Process-Based Model. Glob. Change Biol. 2004, 10, 908–924. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Andrews, J.A. Soil Respiration and the Global Carbon Cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Townsend, A.R.; Vitousek, P.M.; Holland, E.A. Tropical Soils Could Dominate the Short-Term Carbon Cycle Feedbacks to Increased Global Temperatures. Clim. Change 1992, 22, 293–303. [Google Scholar] [CrossRef]
- Alexander, M. Introduction to Soil Microbiology, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1977. [Google Scholar]
- Boone, R.D.; Nadelhoffer, K.J.; Canary, J.D.; Kaye, J.P. Roots Exert a Strong Influence on the Temperature Sensitivity of Soil Respiration. Nature 1998, 396, 570–572. [Google Scholar] [CrossRef]
- Kelly, J.; Doerr, S.H.; Ekroos, J.; Ibáñez, T.S.; Islam, M.R.; Santín, C.; Soares, M.; Kljun, N. No Recovery of Soil Respiration Four Years after Fire and Post-Fire Management in a Nordic Boreal Forest. Agric. For. Meteorol. 2025, 364, 110454. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Rammer, W.; Verkerk, P.J. Increasing Forest Disturbances in Europe and Their Impact on Carbon Storage. Nat. Clim. Change 2014, 4, 806–810. [Google Scholar] [CrossRef]
- Shvidenko, A.; Schepaschenko, D. Climate Change and Wildfires in Russia. Contemp. Probl. Ecol. 2013, 6, 683–692. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Kharuk, V.I.; Ranson, K.J. Wildfires Dynamics in Siberian Larch Forests. Forests 2016, 7, 125. [Google Scholar] [CrossRef]
- VEGA-Science BEГA-Science—A Unique Tool for Satellite Data Scientific Analysis. Available online: http://sci-vega.ru/ (accessed on 20 October 2024).
- Bondur, V.G.; Voronova, O.S.; Cherepanova, E.V.; Tsydylina, M.N.; Zima, A.L. The Spatiotemporal analysis of multiannual wildfires and emissions of greenhouse gases and aerosols in Russia based on satellite data. Investig. Earth Space 2020, 4, 3–17. [Google Scholar] [CrossRef]
- Bondur, V.G.; Tsidilina, M.N.; Cherepanova, E.V. Satellite Monitoring of Wildfire Impacts on the Conditions of Various Types of Vegetation Cover in the Federal Districts of the Russian Federation. Izv. Atmos. Ocean. Phys. 2019, 55, 1238–1253. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Styzenko, F.V.; Egorov, V.A.; Loupian, E.A. Satellite-based assessment of Russian forest fire mortality. For. Sci. 2015, 2, 83–94. [Google Scholar]
- Krylov, A.; McCarty, J.L.; Potapov, P.; Loboda, T.; Tyukavina, A.; Turubanova, S.; Hansen, M.C. Remote Sensing Estimates of Stand-Replacement Fires in Russia, 2002–2011. Environ. Res. Lett. 2014, 9, 105007. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Penner, J.E. Improving Global Estimates of Atmospheric Emissions from Biomass Burning. J. Geophys. Res. D Atmos. 2004, 109, D14S01. [Google Scholar] [CrossRef]
- Shorohova, E.; Kuuluvainen, T.; Kangur, A.; Jogiste, K. Natural Stand Structures, Disturbance Regimes and Successional Dynamics in the Eurasian Boreal Forests: A Review with Special Reference to Russian Studies. Ann. Des Sci. For. 2009, 66, 201. [Google Scholar] [CrossRef]
- Sedykh, V.N. Forest Forming Process; Nauka Publishing: Novosibirsk, Russia, 2009. [Google Scholar]
- Moore, D.J.P.; Trahan, N.A.; Wilkes, P.; Quaife, T.; Stephens, B.B.; Elder, K.; Desai, A.R.; Negron, J.; Monson, R.K. Persistent Reduced Ecosystem Respiration after Insect Disturbance in High Elevation Forests. Ecol. Lett. 2013, 16, 731–737. [Google Scholar] [CrossRef]
- Mattson, W.J.; Addy, N.D. Phytophagous Insects as Regulators of Forest Primary Production. Science 1975, 190, 515–522. [Google Scholar] [CrossRef]
- Ruel, J.-C.; Wermelinger, B.; Gauthier, S.; Burton, P.J.; Waldron, K.; Shorohova, E. Selected Examples of Interactions Between Natural Disturbances. In Boreal Forests in the Face of Climate Change: Sustainable Management; Girona, M.M., Morin, H., Gauthier, S., Bergeron, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 123–141. ISBN 978-3-031-15988-6. [Google Scholar]
- Lovett, G.M.; Arthur, M.A.; Weathers, K.C.; Griffin, J.M. Long-Term Changes in Forest Carbon and Nitrogen Cycling Caused by an Introduced Pest/Pathogen Complex. Ecosystems 2010, 13, 1188–1200. [Google Scholar] [CrossRef]
- Morehouse, K.; Johns, T.; Kaye, J.; Kaye, M. Carbon and Nitrogen Cycling Immediately Following Bark Beetle Outbreaks in Southwestern Ponderosa Pine Forests. For. Ecol. Manag. 2008, 255, 2698–2708. [Google Scholar] [CrossRef]
- Nuckolls, A.E.; Wurzburger, N.; Ford, C.R.; Hendrick, R.L.; Vose, J.M.; Kloeppel, B.D. Hemlock Declines Rapidly with Hemlock Woolly Adelgid Infestation: Impacts on the Carbon Cycle of Southern Appalachian Forests. Ecosystems 2009, 12, 179–190. [Google Scholar] [CrossRef]
- Hancock, J.E.; Arthur, M.A.; Weathers, K.C.; Lovett, G.M. Carbon Cycling along a Gradient of Beech Bark Disease Impact in the Catskill Mountains, New York. Can. J. For. Res. 2008, 38, 1267–1274. [Google Scholar] [CrossRef]
- Rey, A.; Pegoraro, E.; Tedeschi, V.; De Parri, I.; Jarvis, P.G.; Valentini, R. Annual Variation in Soil Respiration and its Components in a Coppice Oak Forest in Central Italy. Glob. Change Biol. 2002, 8, 851–866. [Google Scholar] [CrossRef]
- Bhupinderpal-Shingh; Nordgren, A.; Löfvenius, M.O.; Högberg, M.N.; Mellander, P.-E.; Högberg, P. Tree Root and Soil Heterotrophic Respiration as Revealed by Girdling of Boreal Scots Pine Forest: Extending Observations beyond the First Year. Plant Cell Environ. 2003, 26, 1287–1296. [Google Scholar] [CrossRef]
- Ryan, M.G.; Law, B.E. Interpreting, Measuring, and Modeling Soil Respiration. Biogeochemistry 2005, 73, 3–27. [Google Scholar] [CrossRef]
- Štursová, M.; Šnajdr, J.; Cajthaml, T.; Bárta, J.; Šantrůčková, H.; Baldrian, P. When the Forest Dies: The Response of Forest Soil Fungi to a Bark Beetle-Induced Tree Dieback. ISME J. 2014, 8, 1920–1931. [Google Scholar] [CrossRef] [PubMed]
- Clow, D.W.; Rhoades, C.; Briggs, J.; Caldwell, M.; Lewis, W.M. Responses of Soil and Water Chemistry to Mountain Pine Beetle Induced Tree Mortality in Grand County, Colorado, USA. Appl. Geochem. 2011, 26, S174–S178. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, X. Soil Respiration and the Environment, 1st ed.; Academic Press: Cambridge, MA, USA, 2006; ISBN 978-0-12-088782-8. [Google Scholar]
- Berg, B.; Laskowski, R. (Eds.) Litter Decomposition: A Guide to Carbon and Nutrient Turnover, 1st ed.; Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2005; ISBN 978-0-08-092011-5. [Google Scholar]
- Concilio, A.; Ma, S.; Ryu, S.-R.; North, M.; Chen, J. Soil Respiration Response to Experimental Disturbances over 3 Years. For. Ecol. Manag. 2006, 228, 82–90. [Google Scholar] [CrossRef]
- Lytle, D.E.; Cronan, C.S. Comparative Soil CO2 Evolution, Litter Decay, and Root Dynamics in Clearcut and Uncut Spruce-Fir Forest. For. Ecol. Manag. 1998, 103, 121–128. [Google Scholar] [CrossRef]
- Londo, A.J.; Messina, M.G.; Schoenholtz, S.H. Forest Harvesting Effects on Soil Temperature, Moisture, and Respiration in a Bottomland Hardwood Forest. J. Soil Sci. 1999, 63, 637–644. [Google Scholar] [CrossRef]
- Ma, Y.; Geng, Y.; Huang, Y.; Shi, Y.; Niklaus, P.A.; Schmid, B.; He, J.-S. Effect of Clear-Cutting Silviculture on Soil Respiration in a Subtropical Forest of China. J. Plant Ecol. 2013, 6, 335–348. [Google Scholar] [CrossRef]
- Darenova, E.; Cater, M.; Pavelka, M. Different Harvest Intensity and Soil CO2 Efflux in Sessile Oak Coppice Forests. iForest 2016, 9, 546–552. [Google Scholar] [CrossRef]
- Coletta, V.; Pellicone, G.; Bernardini, V.; Cinti, B.D.; Froio, R.; Marziliano, P.A.; Matteucci, G.; Ricca, N.; Turco, R.; Veltri, A. Short-Time Effect of Harvesting Methods on Soil Respiration Dynamics in a Beech Forest in Southern Mediterranean Italy. iForest 2017, 10, 645–651. [Google Scholar] [CrossRef]
- Striegl, R.G.; Wickland, K.P. Effects of a Clear-Cut Harvest on Soil Respiration in a Jack Pine—Lichen Woodland. Can. J. For. Res. 1998, 28, 534–539. [Google Scholar] [CrossRef]
- Parro, K.; Köster, K.; Jõgiste, K.; Seglinš, K.; Sims, A.; Stanturf, J.A.; Metslaid, M. Impact of Post-Fire Management on Soil Respiration, Carbon and Nitrogen Content in a Managed Hemiboreal Forest. J. Environ. Manag. 2019, 233, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Bond-Lamberty, B.P.; Thomson, A.M. A Global Database of Soil Respiration Data, Version 4.0.; ORNL DAAC: Oak Ridge, TN, USA, 2018. [Google Scholar] [CrossRef]
- Mukhortova, L.V.; Schepaschenko, D.; Moltchanova, E.; Shvidenko, A.; Khabarov, N.; See, L. Respiration of Russian Soils: Climatic Drivers and Response to Climate Change. Sci. Total Environ. 2021, 785, 147314. [Google Scholar] [CrossRef]
- Efremov, D.F.; Shvidenko, A.Z. Long-Term Ecological Consequences of Catastrophic Forest Fires in Forests of Far East and Their Contribution to Global Processes. In Forest Fire Management at Ecoregional Level; World Bank, Publ. “Alex”: Moscow, Russia, 2004; pp. 66–73. [Google Scholar]
- Shvidenko, A.; Schepaschenko, D.; McCallum, I.; Nilsson, S. Russian Forests and Forestry. Available online: http://www.iiasa.ac.at/models-tools-data/russian-forests-and-forestry-database (accessed on 1 May 2025).
- Schepaschenko, D.; Moltchanova, E.; Fedorov, S.; Karminov, V.; Ontikov, P.; Santoro, M.; See, L.; Kositsyn, V.; Shvidenko, A.; Romanovskaya, A.; et al. Russian Forest Sequesters Substantially More Carbon than Previously Reported. Sci. Rep. 2021, 11, 12825. [Google Scholar] [CrossRef]
- Odum, E.P. The Strategy of Ecosystem Development. Science 1969, 164, 262–270. [Google Scholar] [CrossRef]
- Mukhortova, L.V.; Schepaschenko, D.; Shvidenko, A. Soil Respiration Database. Available online: https://pure.iiasa.ac.at/17556 (accessed on 1 May 2025).
- Bartalev, S.A.; Stytsenko, F.V. An Assessment of the Forest Stands Destruction by Fire Based on the Remote Sensing Data on a Seasonal Distribution of Burnt Areas. For. Sci. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I.; et al. Global Trends of Forest Loss Due to Fire From 2001 to 2019. Front. Remote Sens. 2022, 3, 825190. [Google Scholar] [CrossRef]
- Holden, S.R.; Rogers, B.M.; Treseder, K.K.; Randerson, J.T. Fire Severity Influences the Response of Soil Microbes to a Boreal Forest Fire. Environ. Res. Lett. 2016, 11, 035004. [Google Scholar] [CrossRef]
- Gui, H.; Wang, J.; Hu, M.; Zhou, Z.; Wan, S. Impacts of Fire on Soil Respiration and Its Components: A Global Meta-Analysis. Agric. For. Meteorol. 2023, 336, 109496. [Google Scholar] [CrossRef]
- Johnson, D.B.; Yedinak, K.M.; Sulman, B.N.; Berry, T.D.; Kruger, K.; Whitman, T. Effects of Fire and Fire-Induced Changes in Soil Properties on Post-Burn Soil Respiration. Fire Ecol. 2024, 20, 90. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Matson, P.A.; Vitousek, P. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2011; ISBN 978-1-4419-9504-9. [Google Scholar]
- Amiro, B.D.; MacPherson, J.I.; Desjardins, R.L.; Chen, J.M.; Liu, J. Post-Fire Carbon Dioxide Fluxes in the Western Canadian Boreal Forest: Evidence from Towers, Aircraft and Remote Sensing. Agric. For. Meteorol. 2003, 115, 91–107. [Google Scholar] [CrossRef]
- Burke, R.A.; Zepp, R.G.; Tarr, M.A.; Miller, W.L.; Stocks, B.J. Effect of Fire on Soil-Atmosphere Exchange of Methane and Carbon Dioxide in Canadian Boreal Forest Sites. Can. J. For. Res. 1997, 102, 29289–29300. [Google Scholar] [CrossRef]
- Fritze, H.; Pennanen, T.; Pietikäinen, J. Recovery of Soil Microbial Biomass and Activity from Prescribed Burning. Can. J. For. Res. 1993, 23, 1286–1290. [Google Scholar] [CrossRef]
- Racine, C.H. Tundra Fire Effects on Soils and Three Plant Communities along a Hill-Slope Gradient in the Seward Peninsula, Alaska. Arctic 1981, 34, 71–84. [Google Scholar] [CrossRef]
- Sawamoto, T.; Hatano, R.; Yajima, T.; Takahashi, K.; Isaev, A.P. Soil Respiration in Siberian Taiga Ecosystems with Different Histories of Forest Fire. Soil Sci. Plant Nutr. 2000, 46, 31–42. [Google Scholar] [CrossRef]
- Weber, M.G. Forest Soil Respiration in Eastern Ontario Jack Pine Ecosystems. Can. J. For. Res. 1985, 15, 1069–1073. [Google Scholar] [CrossRef]
- Weber, M.G. Forest Soil Respiration after Cutting and Burning in Immature Aspen Ecosystems. For. Ecol. Manag. 1990, 31, 1–14. [Google Scholar] [CrossRef]
- Serrasolsas, I.; Khanna, P.K. Changes in Heated and Autoclaved Forest Soils of S.E. Australia. I. Carbon and Nitrogen. Biogeochemistry 1995, 29, 3–24. [Google Scholar] [CrossRef]
- Plaza-Álvarez, P.A.; Lucas-Borja, M.E.; Sagra, J.; Moya, D.; Fontúrbel, T.; De las Heras, J. Soil Respiration Changes after Prescribed Fires in Spanish Black Pine (Pinus Nigra Arn. ssp. Salzmannii) Monospecific and Mixed Forest Stands. Forests 2017, 8, 248. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, S.; Gu, Y.; Wu, L.; Hu, H.; He, J. Fire Decreases Soil Respiration and Its Components in Terrestrial Ecosystems. Funct. Ecol. 2023, 37, 3124–3135. [Google Scholar] [CrossRef]
- Certini, G. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Köster, E.; Köster, K.; Berninger, F.A.; Pumpanen, J.S. Carbon Dioxide, Methane and Nitrous Oxide Fluxes from Podzols of a Fire Chronosequence in the Boreal Forests in Värriö, Finnish Lapland. Geoderma Reg. 2015, 5, 181–187. [Google Scholar] [CrossRef]
- Köster, K.; Berninger, F.; Lindén, A.; Köster, E.; Pumpanen, J. Recovery in Fungal Biomass Is Related to Decrease in Soil Organic Matter Turnover Time in a Boreal Fire Chronosequence. Geoderma 2014, 235–236, 74–82. [Google Scholar] [CrossRef]
- Köster, E.; Köster, K.; Berninger, F.; Aaltonen, H.; Zhou, X.; Pumpanen, J. Carbon Dioxide, Methane and Nitrous Oxide Fluxes from a Fire Chronosequence in Subarctic Boreal Forests of Canada. Sci. Total Environ. 2017, 601–602, 895–905. [Google Scholar] [CrossRef]
- Köster, E.; Köster, K.; Berninger, F.; Prokushkin, A.; Aaltonen, H.; Zhou, X.; Pumpanen, J. Changes in Fluxes of Carbon Dioxide and Methane Caused by Fire in Siberian Boreal Forest with Continuous Permafrost. J. Environ. Manag. 2018, 228, 405–415. [Google Scholar] [CrossRef]
- Zyryanova, O.A.; Abaimov, A.P.; Chikhacheva, T.L. The influence of fire on forest formation process in larch forests of Northern Siberia. For. Sci. 2008, 1, 3–10. [Google Scholar]
- Farber, S.K. Formation of Stands of East Siberia; Nauka: Novosibirsk, Russia, 2000. [Google Scholar]
- Kim, Y.; Tanaka, N. Effect of Forest Fire on the Fluxes of CO2, CH4 and N2O in Boreal Forest Soils, Interior Alaska. J. Geophys. Res. D Atmos. 2003, 108, FFR 10-1–FFR 10-12. [Google Scholar] [CrossRef]
- Liu, H.; Randerson, J.T.; Lindfors, J.; Chapin, F.S., III. Changes in the Surface Energy Budget after Fire in Boreal Ecosystems of Interior Alaska: An Annual Perspective. J. Geophys. Res. D Atmos. 2005, 110, D13101. [Google Scholar] [CrossRef]
- O’Neill, K.P.; Richter, D.D.; Kasischke, E.S. Succession-Driven Changes in Soil Respiration Following Fire in Black Spruce Stands of Interior Alaska. Biogeochemistry 2006, 80, 1–20. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Fang, C.; Moncrieff, J.B. The Dependence of Soil CO2 Efflux on Temperature. Soil Biol. Biochem. 2001, 33, 155–165. [Google Scholar] [CrossRef]
- Choromanska, U.; DeLuca, T.H. Microbial Activity and Nitrogen Mineralization in Forest Mineral Soils Following Heating: Evaluation of Post-Fire Effects. Soil Biol. Biochem. 2002, 34, 263–271. [Google Scholar] [CrossRef]
- O’Neill, K.P.; Kasischke, E.S.; Richter, D.D. Environmental Controls on Soil CO2 Flux Following Fire in Black Spruce, White Spruce, and Aspen Stands of Interior Alaska. Can. J. For. Res. 2002, 32, 1525–1541. [Google Scholar] [CrossRef]
- Qu, L.; Ma, K.; Xu, X.; Wang, L.; Sasa, K. Effects of Post-Fire Conditions on Soil Respiration in Boreal Forests with Special Reference to Northeast China Forests. Front. Biol. China 2009, 4, 180–186. [Google Scholar] [CrossRef]
- Uribe, C.; Inclán, R.; Sánchez, D.M.; Clavero, M.A.; Fernández, A.M.; Morante, R.; Cardeña, A.; Blanco, A.; Van Miegroet, H. Effect of Wildfires on Soil Respiration in Three Typical Mediterranean Forest Ecosystems in Madrid, Spain. Plant Soil 2013, 369, 403–420. [Google Scholar] [CrossRef]
- Sun, L.; Hu, T.; Kim, J.H.; Guo, F.; Song, H.; Lv, X.; Hu, H. The Effect of Fire Disturbance on Short-Term Soil Respiration in Typical Forest of Greater Xing’an Range, China. J. For. Res. 2014, 25, 613–620. [Google Scholar] [CrossRef]
- Hu, T.; Sun, L.; Hu, H.; Weise, D.R.; Guo, F. Soil Respiration of the Dahurian Larch (Larix gmelinii) Forest and the Response to Fire Disturbance in Da Xing’an Mountains, China. Sci. Rep. 2017, 7, 2967. [Google Scholar] [CrossRef]
- Amiro, B.D.; MacPherson, J.I.; Desjardins, R.L. BOREAS Flight Measurements of Forest-Fire Effects on Carbon Dioxide and Energy Fluxes. Agric. For. Meteorol. 1999, 96, 199–208. [Google Scholar] [CrossRef]
- Köster, K.; Köster, E.; Orumaa, A.; Parro, K.; Jõgiste, K.; Berninger, F.; Pumpanen, J.; Metslaid, M. How Time since Forest Fire Affects Stand Structure, Soil Physical-Chemical Properties and Soil CO2 Efflux in Hemiboreal Scots Pine Forest Fire Chronosequence? Forests 2016, 7, 201. [Google Scholar] [CrossRef]
- Wang, C.; Bond-Lamberty, B.; Gower, S.T. Soil Surface CO2 Flux in a Boreal Black Spruce Fire Chronosequence. J. Geophys. Res. D Atmos. 2003, 108, WFX 5-1–WFX 5-8. [Google Scholar] [CrossRef]
- Gupta, S.D.; Mackenzie, M.D. Spatial Patterns of Soil Respiration Links Above and Belowground Processes along a Boreal Aspen Fire Chronosequence. PLoS ONE 2016, 11, e0165602. [Google Scholar] [CrossRef]
- Song, J.; Liu, Z.; Zhang, Y.; Yan, T.; Shen, Z.; Piao, S. Effects of Wildfire on Soil Respiration and its Heterotrophic and Autotrophic Components in a Montane Coniferous Forest. J. Plant Ecol. 2019, 12, 336–345. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Luo, Y.; Zhou, X.; Jiang, Y.; Zhao, J.; Chen, Y.; Wang, C.; Guo, L.; Cao, J. Contrasting Responses after Fires of the Source Components of Soil Respiration and Ecosystem Respiration. Eur. J. Soil Sci. 2019, 70, 616–629. [Google Scholar] [CrossRef]
- Cuevas-González, M.; Gerard, F.; Balzter, H.; Riaño, D. Analysing Forest Recovery after Wildfire Disturbance in Boreal Siberia Using Remotely Sensed Vegetation Indices. Glob. Change Biol. 2009, 15, 561–577. [Google Scholar] [CrossRef]
- Goetz, S.J.; Fiske, G.J.; Bunn, A.G. Using Satellite Time-Series Data Sets to Analyze Fire Disturbance and Forest Recovery across Canada. Remote Sens. Environ. 2006, 101, 352–365. [Google Scholar] [CrossRef]
- Loboda, T.; O’Neal, K.J.; Csiszar, I. Regionally Adaptable dNBR-Based Algorithm for Burned Area Mapping from MODIS Data. Remote Sens. Environ. 2007, 109, 429–442. [Google Scholar] [CrossRef]
- Baranchikov, Y.N.; Kondakov, Y.P. Outbreaks of Siberian Moth Dendrolimus Superans Sibiricus Tschtvrk in Central Siberia. In Proceedings of the Proc. SOA Interagency Gypsy Moss Forum; USDA Forest Service, NEFES: Radnor, PA, USA, 1997; pp. 10–13. [Google Scholar]
- Isaev, A.S. (Ed.) Program of Extraordinary Activities on Biological Struggle with Pests in Forests of Krasnoyarsk Kray; World Bank Project; Federal Forest Service of Russia: Moscow, Russia, 1997. [Google Scholar]
- FAFM RF. Overview of Sanitary and Pathological Conditions of Forests of the Russian Federation in 2016; Russian Center of Forest Protection of the Federal Agency of the Russian Federation: Pushkino, Russia, 2017; p. 105. [Google Scholar]
- Tomes, J.; Fleischer, P.; Kubov, M.; Fleischer, P. Soil Respiration after Bark Beetle Infestation along a Vertical Transect in Mountain Spruce Forest. Forests 2024, 15, 611. [Google Scholar] [CrossRef]
- Baranchikov, Y.N.; Kondakov, Y.P.; Petrenko, E.S. Catastrophic Outbreaks of Siberian Silk Moth in Forests of Krasnoyarsk Krai. In Safety of Russia. Regional Problems of Safety. Krasnoyarsk Krai; Znanie: Moscow, Russia, 2001; pp. 146–147. [Google Scholar]
- Baranchikov, Y.N.; Perevoznikova, V.D.; Vishnyakova, Z.V. Carbon Emission by Soils in Forests Damaged by the Siberian Moth. Russ. J. Ecol. 2002, 33, 398–401. [Google Scholar] [CrossRef]
- Edburg, S.L.; Hicke, J.A.; Lawrence, D.M.; Thornton, P.E. Simulating Coupled Carbon and Nitrogen Dynamics Following Mountain Pine Beetle Outbreaks in the Western United States. J. Geophys. Res. Biogeosci. 2011, 116, G04033. [Google Scholar] [CrossRef]
- Kurz, W.A.; Dymond, C.C.; Stinson, G.; Rampley, G.J.; Neilson, E.T.; Carroll, A.L.; Ebata, T.; Safranyik, L. Mountain Pine Beetle and Forest Carbon Feedback to Climate Change. Nature 2008, 452, 987–990. [Google Scholar]
- Goetz, S.J.; Bond-Lamberty, B.; Law, B.E.; Hicke, J.A.; Huang, C.; Houghton, R.A.; McNulty, S.; O’Halloran, T.; Harmon, M.E.; Meddens, A.J.H.; et al. Observations and Assessment of Forest Carbon Dynamics Following Disturbance in North America. J. Geophys. Res. Biogeosci. 2012, 117, G02022. [Google Scholar] [CrossRef]
- Kosunen, M.; Lyytikäinen-Saarenmaa, P.; Ojanen, P.; Blomqvist, M.; Starr, M. Response of Soil Surface Respiration to Storm and Ips typographus (L.) Disturbance in Boreal Norway Spruce Stands. Forests 2019, 10, 307. [Google Scholar] [CrossRef]
- Hicke, J.A.; Allen, C.D.; Desai, A.R.; Dietze, M.C.; Hall, R.J.; Hogg, E.H.; Kashian, D.M.; Moore, D.; Raffa, K.F.; Sturrock, R.N.; et al. Effects of Biotic Disturbances on Forest Carbon Cycling in the United States and Canada. Glob. Change Biol. 2012, 18, 7–34. [Google Scholar] [CrossRef]
- Edburg, S.L.; Hicke, J.A.; Brooks, P.D.; Pendall, E.G.; Ewers, B.E.; Norton, U.; Gochis, D.; Gutmann, E.D.; Meddens, A.J. Cascading Impacts of Bark Beetle-Caused Tree Mortality on Coupled Biogeophysical and Biogeochemical Processes. Front. Ecol. Environ. 2012, 10, 416–424. [Google Scholar] [CrossRef]
- Mukhortova, L.V.; Kirdyanov, A.V.; Myglan, V.S.; Guggenberger, G. Wood Transformation in Dead-Standing Trees in the Forest-Tundra of Central Siberia. Biol. Bull. Russ. Acad. Sci. 2009, 36, 58–65. [Google Scholar] [CrossRef]
- Busse, M.D. Downed Bole-Wood Decomposition in Lodgepole Pine Forests of Central Oregon. J. Soil Sci. 1994, 58, 221–227. [Google Scholar] [CrossRef]
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R.; et al. Ecology of Coarse Woody Debris in Temperate Ecosystems. Adv. Ecol. Res. 1986, 15, 133–302. [Google Scholar] [CrossRef]
- Hicke, J.A.; Meddens, A.J.H.; Kolden, C.A. Recent Tree Mortality in the Western United States from Bark Beetles and Forest Fires. For. Sci. 2016, 62, 141–153. [Google Scholar] [CrossRef]
- Kulakowski, D.; Jarvis, D. The Influence of Mountain Pine Beetle Outbreaks and Drought on Severe Wildfires in Northwestern Colorado and Southern Wyoming: A Look at the Past Century. For. Ecol. Manag. 2011, 262, 1686–1696. [Google Scholar] [CrossRef]
- Ayres, M.P.; Lombardero, M.J. Assessing the Consequences of Global Change for Forest Disturbance from Herbivores and Pathogens. Sci. Total Environ. 2000, 262, 263–286. [Google Scholar]
- Williams, D.W.; Liebhold, A.M. Climate Change and the Outbreak Ranges of Two North American Bark Beetles. Agric. For. Entomol. 2002, 4, 87–99. [Google Scholar]
- Shvidenko, A.; Gustafson, E.; McGuire, A.D.; Kharuk, V.I.; Schepaschenko, D.G.; Shugart, H.H.; Tchebakova, N.M.; Vygodskaya, N.N.; Onuchin, A.A.; Hayes, D.J.; et al. Terrestrial Ecosystems and Their Change. In Regional Environmental Changes in Siberia and Their Global Consequences; Groisman, P.Y., Gutman, G., Eds.; Springer Environmental Science and Engineering: Dordrecht, The Netherlands, 2013; pp. 171–249. ISBN 978-94-007-4569-8. [Google Scholar]
- Knorre, A.A.; Rasnobarskiy, V.G.; Vagnorjus, P.A. The Threat of Disappearing of Fir Stands in Natural Reserve “Stolby” as a Result of Invasion of Four-Eyed Fir Bark Beetle (Polygraphus proximus Blandf.); Scientific Reports of State Natural Reseve “Stolby”: Krasnoyarsk, Russia, 2015; pp. 211–222. [Google Scholar]
- Volney, W.J.A.; Fleming, R.A. Climate Change and Impacts of Boreal Forest Insects. Agric. Ecosyst. Environ. 2000, 82, 283–294. [Google Scholar] [CrossRef]
- Pautov, Y.A.; Il’chukov, S.V. Spatial structure of planted trees on the concentrated logging sites in the Komi Republic. For. Sci. 2001, 2, 27–32. [Google Scholar]
- Ivanov, V.V. Ecological consequences of mechanized logging in the southern taiga of the Krasnoyarsk region. For. Sci. 2005, 2, 3–8. [Google Scholar]
- Dymov, A.A. The Impact of Clearcutting in Boreal Forests of Russia on Soils: A Review. Eurasian Soil Sci. 2017, 50, 780–790. [Google Scholar] [CrossRef]
- Sheingauz, A.S. Overview of the Forest Sector in the Russian Far East: Production, Industry, and the Problem of Illegal Logging; Forest Trends: Washington, DC, USA, 2004; ISBN 1-932928-03-0. [Google Scholar]
- Akande, O.J.; Ma, Z.; Huang, C.; He, F.; Chang, S.X. Meta-analysis Shows Forest Soil CO2 Effluxes Are Dependent on the Disturbance Regime and Biome Type. Ecol. Lett. 2023, 26, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yang, Y.; Chen, G.; Xie, J.; Gao, R.; Qian, W. Effects of Clear-Cutting and Slash Burning on Soil Respiration in Chinese Fir and Evergreen Broadleaved Forests in Mid-Subtropical China. Plant Soil 2010, 333, 249–261. [Google Scholar] [CrossRef]
- Edwards, N.T.; Ross-Todd, B.M. Soil Carbon Dynamics in a Mixed Deciduous Forest Following Clear-Cutting with and without Residue Removal. J. Soil Sci. 1983, 47, 1014–1021. [Google Scholar] [CrossRef]
- Pumpanen, J.; Westman, C.J.; Ilvesniemi, H. Soil CO2 Efflux from a Podzolic Forest Soil before and after Forest Clear-Cutting and Site Preparation. Boreal Environ. Res. 2004, 9, 199–212. [Google Scholar]
- Yuan, Z.Y.; Chen, H.Y.H. Fine Root Biomass, Production, Turnover Rates, and Nutrient Contents in Boreal Forest Ecosystems in Relation to Species, Climate, Fertility, and Stand Age: Literature Review and Meta-Analyses. Crit. Rev. Plant Sci. 2010, 29, 204–221. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Herrmann, V.; Morgan, R.B.; Bond-Lamberty, B.; Cook-Patton, S.C.; Ferson, A.E.; Muller-Landau, H.C.; Wang, M.M. Carbon Cycling in Mature and Regrowth Forests Globally. Environ. Res. Lett. 2021, 16, 053009. [Google Scholar]
- Madsen, R.L.; Asplund, J.; Nybakken, L.; Biong, R.; Kjønaas, O.J. Harvesting History Affects Soil Respiration and Litterfall but Not Overall Carbon Balance in Boreal Norway Spruce Forests. For. Ecol. Manag. 2025, 578, 122485. [Google Scholar]
- Gundale, M.J.; Axelsson, E.P.; Buness, V.; Callebaut, T.; DeLuca, T.H.; Hupperts, S.F.; Ibáñez, T.S.; Metcalfe, D.B.; Nilsson, M.; Peichl, M.; et al. The Biological Controls of Soil Carbon Accumulation Following Wildfire and Harvest in Boreal Forests: A Review. Glob. Change Biol. 2024, 30, e17276. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The Enduring World Forest Carbon Sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef] [PubMed]
Disturbance Agents | Model Parameters (Equation (1)) | SE | |||
---|---|---|---|---|---|
a | b | c | d | ||
Fire | −2207.98 | −0.1423 | 2180.24 | −0.1413 | 3.3 |
Biogenic | 0 | −3.00 | 56.05 | −0.19 | 3.2 |
Harvest | 4.24 | −0.1848 | 10.00 | −0.4772 | 3.1 |
Indicators | Values by Age Groups of Forest Stands | ||||
---|---|---|---|---|---|
Unstocked | Yng1 | Yng2 | MidAge | Total | |
Forest land, 103 km2 | 8002.42 | ||||
Area of MFFS, 103 km2 | 341.47 | 577.03 | 755.61 | 2116.86 | 3790.97 |
Fire | |||||
Impacted area, 103 km2 | 220.93 | 373.34 | 488.88 | 1369.61 | 2452.76 |
Effect on Rh for disturbed area, % ±SE | −36.6 | 2.7 | 11.9 | 2.3 | 0.8 ± 3.3 |
Effect on Rh for all forest lands, % ±SE | −1.01 | 0.13 | 0.73 | 0.39 | 0.24 ± 1.01 |
Biogenic | |||||
Impacted area, 103 km2 | 20.15 | 34.04 | 44.58 | 124.89 | 223.67 |
Effect on Rh for disturbed areas, % ±SE | 86.3 | 52.3 | 3.4 | 0.13 | 16.5 ± 3.2 |
Effect on Rh for forest lands, % ±SE | 0.22 | 0.22 | 0.02 | 0.00 | 0.46 ± 0.09 |
Harvest | |||||
Impacted area, 103 km2 | 100.39 | 169.65 | 222.15 | 622.36 | 1114.55 |
Effect on Rh for disturbed area, % ±SE | 13.0 | 4.8 | 0.3 | 0.01 | 2.0 ± 3.1 |
Effect on Rh for forest lands, % ±SE | 0.16 | 0.10 | 0.01 | 0.00 | 0.27 ± 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schepaschenko, D.; Mukhortova, L.; Shvidenko, A. Estimation of Impact of Disturbances on Soil Respiration in Forest Ecosystems of Russia. Forests 2025, 16, 925. https://doi.org/10.3390/f16060925
Schepaschenko D, Mukhortova L, Shvidenko A. Estimation of Impact of Disturbances on Soil Respiration in Forest Ecosystems of Russia. Forests. 2025; 16(6):925. https://doi.org/10.3390/f16060925
Chicago/Turabian StyleSchepaschenko, Dmitry, Liudmila Mukhortova, and Anatoly Shvidenko. 2025. "Estimation of Impact of Disturbances on Soil Respiration in Forest Ecosystems of Russia" Forests 16, no. 6: 925. https://doi.org/10.3390/f16060925
APA StyleSchepaschenko, D., Mukhortova, L., & Shvidenko, A. (2025). Estimation of Impact of Disturbances on Soil Respiration in Forest Ecosystems of Russia. Forests, 16(6), 925. https://doi.org/10.3390/f16060925