Estimation of Impact of Disturbances on Soil Respiration in Forest Ecosystems of Russia
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Fire
4.2. Biogenic Disturbances
4.3. Harvest
4.4. Caveats and Limitations
- The temporal and spatial coverage of Rs measurement, including short measurement windows (many studies reported Rs only over part of the growing season) and geographic gaps (remote and infrastructure-poor regions were underrepresented).
- Disturbance severity and characterization. Severity gradients and the compound of multiple disturbances were not fully captured.
- Methodological variability among studies, including different instruments, techniques, and the lack of direct partitioning between Ra and Rh.
- Modeling assumptions. We assumed that post-disturbance response curves and their parameters remained constant over multi-decadal restoration periods, neglecting potential shifts under changing climate or soil conditions, as well as neglecting trends in disturbance regimes.
- Uncertainty quantification. Formal error propagation through our multi-step workflow was hindered by missing variance and covariance information in the underlying studies; we therefore relied on standard error estimates at each stage and expert judgment to gauge overall uncertainty.
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bond-Lamberty, B.; Ballantyne, A.; Berryman, E.; Fluet-Chouinard, E.; Jian, J.; Morris, K.A.; Rey, A.; Vargas, R. Twenty Years of Progress, Challenges, and Opportunities in Measuring and Understanding Soil Respiration. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007637. [Google Scholar] [CrossRef]
- Bowden, R.D.; Castro, M.S.; Melillo, J.M.; Steudler, P.A.; Aber, J.D. Fluxes of Greenhouse Gases between Soils and the Atmosphere in a Temperate Forest Following a Simulated Hurricane Blowdown. Biogeochemistry 1993, 21, 61–71. [Google Scholar] [CrossRef]
- Singh, S.; Amiro, B.D.; Quideau, S.A. Effects of Forest Floor Organic Layer and Root Biomass on Soil Respiration Following Boreal Forest Fire. Can. J. For. Res. 2008, 38, 647–655. [Google Scholar] [CrossRef]
- Nadelhoffer, K.J. The Potential Effects of Nitrogen Deposition on Fine-Root Production in Forest Ecosystems. New Phytol. 2000, 147, 131–139. [Google Scholar] [CrossRef]
- Niu, B.; Zhang, X.; Piao, S.; Janssens, I.A.; Fu, G.; He, Y.; Zhang, Y.; Shi, P.; Dai, E.; Yu, C.; et al. Warming Homogenizes Apparent Temperature Sensitivity of Ecosystem Respiration. Sci. Adv. 2021, 7, eabc7358. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Zhang, W.; Zhu, W.; Gundersen, P.; Fang, Y.; Li, D.; Wang, H. Nitrogen Addition Reduces Soil Respiration in a Mature Tropical Forest in Southern China. Glob. Change Biol. 2008, 14, 403–412. [Google Scholar] [CrossRef]
- Pereira, P.; Mataix-Solera, J.; Úbeda, X.; Rein, G.; Cerdà, A. (Eds.) Fire Effects on Soil Properties; CSIRO Publishing: Clayton, Australia, 2019; ISBN 978-1-4863-0813-2. [Google Scholar]
- Ribeiro-Kumara, C.; Pumpanen, J.; Heinonsalo, J.; Metslaid, M.; Orumaa, A.; Jõgiste, K.; Berninger, F.; Köster, K. Long-Term Effects of Forest Fires on Soil Greenhouse Gas Emissions and Extracellular Enzyme Activities in a Hemiboreal Forest. Sci. Total Environ. 2020, 718, 135291. [Google Scholar] [CrossRef]
- Harmon, M.E.; Bond-Lamberty, B.; Tang, J.; Vargas, R. Heterotrophic Respiration in Disturbed Forests: A Review with Examples from North America. J. Geophys. Res. Biogeosci. 2011, 116, G00K04. [Google Scholar] [CrossRef]
- Hirsch, A.I.; Little, W.S.; Houghton, R.A.; Scott, N.A.; White, J.D. The Net Carbon Flux Due to Deforestation and Forest Re-Growth in the Brazilian Amazon: Analysis Using a Process-Based Model. Glob. Change Biol. 2004, 10, 908–924. [Google Scholar] [CrossRef]
- Schlesinger, W.H.; Andrews, J.A. Soil Respiration and the Global Carbon Cycle. Biogeochemistry 2000, 48, 7–20. [Google Scholar] [CrossRef]
- Townsend, A.R.; Vitousek, P.M.; Holland, E.A. Tropical Soils Could Dominate the Short-Term Carbon Cycle Feedbacks to Increased Global Temperatures. Clim. Change 1992, 22, 293–303. [Google Scholar] [CrossRef]
- Alexander, M. Introduction to Soil Microbiology, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1977. [Google Scholar]
- Boone, R.D.; Nadelhoffer, K.J.; Canary, J.D.; Kaye, J.P. Roots Exert a Strong Influence on the Temperature Sensitivity of Soil Respiration. Nature 1998, 396, 570–572. [Google Scholar] [CrossRef]
- Kelly, J.; Doerr, S.H.; Ekroos, J.; Ibáñez, T.S.; Islam, M.R.; Santín, C.; Soares, M.; Kljun, N. No Recovery of Soil Respiration Four Years after Fire and Post-Fire Management in a Nordic Boreal Forest. Agric. For. Meteorol. 2025, 364, 110454. [Google Scholar] [CrossRef]
- Seidl, R.; Schelhaas, M.-J.; Rammer, W.; Verkerk, P.J. Increasing Forest Disturbances in Europe and Their Impact on Carbon Storage. Nat. Clim. Change 2014, 4, 806–810. [Google Scholar] [CrossRef]
- Shvidenko, A.; Schepaschenko, D. Climate Change and Wildfires in Russia. Contemp. Probl. Ecol. 2013, 6, 683–692. [Google Scholar] [CrossRef]
- Ponomarev, E.I.; Kharuk, V.I.; Ranson, K.J. Wildfires Dynamics in Siberian Larch Forests. Forests 2016, 7, 125. [Google Scholar] [CrossRef]
- VEGA-Science BEГA-Science—A Unique Tool for Satellite Data Scientific Analysis. Available online: http://sci-vega.ru/ (accessed on 20 October 2024).
- Bondur, V.G.; Voronova, O.S.; Cherepanova, E.V.; Tsydylina, M.N.; Zima, A.L. The Spatiotemporal analysis of multiannual wildfires and emissions of greenhouse gases and aerosols in Russia based on satellite data. Investig. Earth Space 2020, 4, 3–17. [Google Scholar] [CrossRef]
- Bondur, V.G.; Tsidilina, M.N.; Cherepanova, E.V. Satellite Monitoring of Wildfire Impacts on the Conditions of Various Types of Vegetation Cover in the Federal Districts of the Russian Federation. Izv. Atmos. Ocean. Phys. 2019, 55, 1238–1253. [Google Scholar] [CrossRef]
- Bartalev, S.A.; Styzenko, F.V.; Egorov, V.A.; Loupian, E.A. Satellite-based assessment of Russian forest fire mortality. For. Sci. 2015, 2, 83–94. [Google Scholar]
- Krylov, A.; McCarty, J.L.; Potapov, P.; Loboda, T.; Tyukavina, A.; Turubanova, S.; Hansen, M.C. Remote Sensing Estimates of Stand-Replacement Fires in Russia, 2002–2011. Environ. Res. Lett. 2014, 9, 105007. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Penner, J.E. Improving Global Estimates of Atmospheric Emissions from Biomass Burning. J. Geophys. Res. D Atmos. 2004, 109, D14S01. [Google Scholar] [CrossRef]
- Shorohova, E.; Kuuluvainen, T.; Kangur, A.; Jogiste, K. Natural Stand Structures, Disturbance Regimes and Successional Dynamics in the Eurasian Boreal Forests: A Review with Special Reference to Russian Studies. Ann. Des Sci. For. 2009, 66, 201. [Google Scholar] [CrossRef]
- Sedykh, V.N. Forest Forming Process; Nauka Publishing: Novosibirsk, Russia, 2009. [Google Scholar]
- Moore, D.J.P.; Trahan, N.A.; Wilkes, P.; Quaife, T.; Stephens, B.B.; Elder, K.; Desai, A.R.; Negron, J.; Monson, R.K. Persistent Reduced Ecosystem Respiration after Insect Disturbance in High Elevation Forests. Ecol. Lett. 2013, 16, 731–737. [Google Scholar] [CrossRef]
- Mattson, W.J.; Addy, N.D. Phytophagous Insects as Regulators of Forest Primary Production. Science 1975, 190, 515–522. [Google Scholar] [CrossRef]
- Ruel, J.-C.; Wermelinger, B.; Gauthier, S.; Burton, P.J.; Waldron, K.; Shorohova, E. Selected Examples of Interactions Between Natural Disturbances. In Boreal Forests in the Face of Climate Change: Sustainable Management; Girona, M.M., Morin, H., Gauthier, S., Bergeron, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 123–141. ISBN 978-3-031-15988-6. [Google Scholar]
- Lovett, G.M.; Arthur, M.A.; Weathers, K.C.; Griffin, J.M. Long-Term Changes in Forest Carbon and Nitrogen Cycling Caused by an Introduced Pest/Pathogen Complex. Ecosystems 2010, 13, 1188–1200. [Google Scholar] [CrossRef]
- Morehouse, K.; Johns, T.; Kaye, J.; Kaye, M. Carbon and Nitrogen Cycling Immediately Following Bark Beetle Outbreaks in Southwestern Ponderosa Pine Forests. For. Ecol. Manag. 2008, 255, 2698–2708. [Google Scholar] [CrossRef]
- Nuckolls, A.E.; Wurzburger, N.; Ford, C.R.; Hendrick, R.L.; Vose, J.M.; Kloeppel, B.D. Hemlock Declines Rapidly with Hemlock Woolly Adelgid Infestation: Impacts on the Carbon Cycle of Southern Appalachian Forests. Ecosystems 2009, 12, 179–190. [Google Scholar] [CrossRef]
- Hancock, J.E.; Arthur, M.A.; Weathers, K.C.; Lovett, G.M. Carbon Cycling along a Gradient of Beech Bark Disease Impact in the Catskill Mountains, New York. Can. J. For. Res. 2008, 38, 1267–1274. [Google Scholar] [CrossRef]
- Rey, A.; Pegoraro, E.; Tedeschi, V.; De Parri, I.; Jarvis, P.G.; Valentini, R. Annual Variation in Soil Respiration and its Components in a Coppice Oak Forest in Central Italy. Glob. Change Biol. 2002, 8, 851–866. [Google Scholar] [CrossRef]
- Bhupinderpal-Shingh; Nordgren, A.; Löfvenius, M.O.; Högberg, M.N.; Mellander, P.-E.; Högberg, P. Tree Root and Soil Heterotrophic Respiration as Revealed by Girdling of Boreal Scots Pine Forest: Extending Observations beyond the First Year. Plant Cell Environ. 2003, 26, 1287–1296. [Google Scholar] [CrossRef]
- Ryan, M.G.; Law, B.E. Interpreting, Measuring, and Modeling Soil Respiration. Biogeochemistry 2005, 73, 3–27. [Google Scholar] [CrossRef]
- Štursová, M.; Šnajdr, J.; Cajthaml, T.; Bárta, J.; Šantrůčková, H.; Baldrian, P. When the Forest Dies: The Response of Forest Soil Fungi to a Bark Beetle-Induced Tree Dieback. ISME J. 2014, 8, 1920–1931. [Google Scholar] [CrossRef] [PubMed]
- Clow, D.W.; Rhoades, C.; Briggs, J.; Caldwell, M.; Lewis, W.M. Responses of Soil and Water Chemistry to Mountain Pine Beetle Induced Tree Mortality in Grand County, Colorado, USA. Appl. Geochem. 2011, 26, S174–S178. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, X. Soil Respiration and the Environment, 1st ed.; Academic Press: Cambridge, MA, USA, 2006; ISBN 978-0-12-088782-8. [Google Scholar]
- Berg, B.; Laskowski, R. (Eds.) Litter Decomposition: A Guide to Carbon and Nutrient Turnover, 1st ed.; Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2005; ISBN 978-0-08-092011-5. [Google Scholar]
- Concilio, A.; Ma, S.; Ryu, S.-R.; North, M.; Chen, J. Soil Respiration Response to Experimental Disturbances over 3 Years. For. Ecol. Manag. 2006, 228, 82–90. [Google Scholar] [CrossRef]
- Lytle, D.E.; Cronan, C.S. Comparative Soil CO2 Evolution, Litter Decay, and Root Dynamics in Clearcut and Uncut Spruce-Fir Forest. For. Ecol. Manag. 1998, 103, 121–128. [Google Scholar] [CrossRef]
- Londo, A.J.; Messina, M.G.; Schoenholtz, S.H. Forest Harvesting Effects on Soil Temperature, Moisture, and Respiration in a Bottomland Hardwood Forest. J. Soil Sci. 1999, 63, 637–644. [Google Scholar] [CrossRef]
- Ma, Y.; Geng, Y.; Huang, Y.; Shi, Y.; Niklaus, P.A.; Schmid, B.; He, J.-S. Effect of Clear-Cutting Silviculture on Soil Respiration in a Subtropical Forest of China. J. Plant Ecol. 2013, 6, 335–348. [Google Scholar] [CrossRef]
- Darenova, E.; Cater, M.; Pavelka, M. Different Harvest Intensity and Soil CO2 Efflux in Sessile Oak Coppice Forests. iForest 2016, 9, 546–552. [Google Scholar] [CrossRef]
- Coletta, V.; Pellicone, G.; Bernardini, V.; Cinti, B.D.; Froio, R.; Marziliano, P.A.; Matteucci, G.; Ricca, N.; Turco, R.; Veltri, A. Short-Time Effect of Harvesting Methods on Soil Respiration Dynamics in a Beech Forest in Southern Mediterranean Italy. iForest 2017, 10, 645–651. [Google Scholar] [CrossRef]
- Striegl, R.G.; Wickland, K.P. Effects of a Clear-Cut Harvest on Soil Respiration in a Jack Pine—Lichen Woodland. Can. J. For. Res. 1998, 28, 534–539. [Google Scholar] [CrossRef]
- Parro, K.; Köster, K.; Jõgiste, K.; Seglinš, K.; Sims, A.; Stanturf, J.A.; Metslaid, M. Impact of Post-Fire Management on Soil Respiration, Carbon and Nitrogen Content in a Managed Hemiboreal Forest. J. Environ. Manag. 2019, 233, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Bond-Lamberty, B.P.; Thomson, A.M. A Global Database of Soil Respiration Data, Version 4.0.; ORNL DAAC: Oak Ridge, TN, USA, 2018. [Google Scholar] [CrossRef]
- Mukhortova, L.V.; Schepaschenko, D.; Moltchanova, E.; Shvidenko, A.; Khabarov, N.; See, L. Respiration of Russian Soils: Climatic Drivers and Response to Climate Change. Sci. Total Environ. 2021, 785, 147314. [Google Scholar] [CrossRef]
- Efremov, D.F.; Shvidenko, A.Z. Long-Term Ecological Consequences of Catastrophic Forest Fires in Forests of Far East and Their Contribution to Global Processes. In Forest Fire Management at Ecoregional Level; World Bank, Publ. “Alex”: Moscow, Russia, 2004; pp. 66–73. [Google Scholar]
- Shvidenko, A.; Schepaschenko, D.; McCallum, I.; Nilsson, S. Russian Forests and Forestry. Available online: http://www.iiasa.ac.at/models-tools-data/russian-forests-and-forestry-database (accessed on 1 May 2025).
- Schepaschenko, D.; Moltchanova, E.; Fedorov, S.; Karminov, V.; Ontikov, P.; Santoro, M.; See, L.; Kositsyn, V.; Shvidenko, A.; Romanovskaya, A.; et al. Russian Forest Sequesters Substantially More Carbon than Previously Reported. Sci. Rep. 2021, 11, 12825. [Google Scholar] [CrossRef]
- Odum, E.P. The Strategy of Ecosystem Development. Science 1969, 164, 262–270. [Google Scholar] [CrossRef]
- Mukhortova, L.V.; Schepaschenko, D.; Shvidenko, A. Soil Respiration Database. Available online: https://pure.iiasa.ac.at/17556 (accessed on 1 May 2025).
- Bartalev, S.A.; Stytsenko, F.V. An Assessment of the Forest Stands Destruction by Fire Based on the Remote Sensing Data on a Seasonal Distribution of Burnt Areas. For. Sci. 2021, 2, 115–122. [Google Scholar] [CrossRef]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I.; et al. Global Trends of Forest Loss Due to Fire From 2001 to 2019. Front. Remote Sens. 2022, 3, 825190. [Google Scholar] [CrossRef]
- Holden, S.R.; Rogers, B.M.; Treseder, K.K.; Randerson, J.T. Fire Severity Influences the Response of Soil Microbes to a Boreal Forest Fire. Environ. Res. Lett. 2016, 11, 035004. [Google Scholar] [CrossRef]
- Gui, H.; Wang, J.; Hu, M.; Zhou, Z.; Wan, S. Impacts of Fire on Soil Respiration and Its Components: A Global Meta-Analysis. Agric. For. Meteorol. 2023, 336, 109496. [Google Scholar] [CrossRef]
- Johnson, D.B.; Yedinak, K.M.; Sulman, B.N.; Berry, T.D.; Kruger, K.; Whitman, T. Effects of Fire and Fire-Induced Changes in Soil Properties on Post-Burn Soil Respiration. Fire Ecol. 2024, 20, 90. [Google Scholar] [CrossRef]
- Chapin, F.S., III; Matson, P.A.; Vitousek, P. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2011; ISBN 978-1-4419-9504-9. [Google Scholar]
- Amiro, B.D.; MacPherson, J.I.; Desjardins, R.L.; Chen, J.M.; Liu, J. Post-Fire Carbon Dioxide Fluxes in the Western Canadian Boreal Forest: Evidence from Towers, Aircraft and Remote Sensing. Agric. For. Meteorol. 2003, 115, 91–107. [Google Scholar] [CrossRef]
- Burke, R.A.; Zepp, R.G.; Tarr, M.A.; Miller, W.L.; Stocks, B.J. Effect of Fire on Soil-Atmosphere Exchange of Methane and Carbon Dioxide in Canadian Boreal Forest Sites. Can. J. For. Res. 1997, 102, 29289–29300. [Google Scholar] [CrossRef]
- Fritze, H.; Pennanen, T.; Pietikäinen, J. Recovery of Soil Microbial Biomass and Activity from Prescribed Burning. Can. J. For. Res. 1993, 23, 1286–1290. [Google Scholar] [CrossRef]
- Racine, C.H. Tundra Fire Effects on Soils and Three Plant Communities along a Hill-Slope Gradient in the Seward Peninsula, Alaska. Arctic 1981, 34, 71–84. [Google Scholar] [CrossRef]
- Sawamoto, T.; Hatano, R.; Yajima, T.; Takahashi, K.; Isaev, A.P. Soil Respiration in Siberian Taiga Ecosystems with Different Histories of Forest Fire. Soil Sci. Plant Nutr. 2000, 46, 31–42. [Google Scholar] [CrossRef]
- Weber, M.G. Forest Soil Respiration in Eastern Ontario Jack Pine Ecosystems. Can. J. For. Res. 1985, 15, 1069–1073. [Google Scholar] [CrossRef]
- Weber, M.G. Forest Soil Respiration after Cutting and Burning in Immature Aspen Ecosystems. For. Ecol. Manag. 1990, 31, 1–14. [Google Scholar] [CrossRef]
- Serrasolsas, I.; Khanna, P.K. Changes in Heated and Autoclaved Forest Soils of S.E. Australia. I. Carbon and Nitrogen. Biogeochemistry 1995, 29, 3–24. [Google Scholar] [CrossRef]
- Plaza-Álvarez, P.A.; Lucas-Borja, M.E.; Sagra, J.; Moya, D.; Fontúrbel, T.; De las Heras, J. Soil Respiration Changes after Prescribed Fires in Spanish Black Pine (Pinus Nigra Arn. ssp. Salzmannii) Monospecific and Mixed Forest Stands. Forests 2017, 8, 248. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, S.; Gu, Y.; Wu, L.; Hu, H.; He, J. Fire Decreases Soil Respiration and Its Components in Terrestrial Ecosystems. Funct. Ecol. 2023, 37, 3124–3135. [Google Scholar] [CrossRef]
- Certini, G. Effects of Fire on Properties of Forest Soils: A Review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef]
- Köster, E.; Köster, K.; Berninger, F.A.; Pumpanen, J.S. Carbon Dioxide, Methane and Nitrous Oxide Fluxes from Podzols of a Fire Chronosequence in the Boreal Forests in Värriö, Finnish Lapland. Geoderma Reg. 2015, 5, 181–187. [Google Scholar] [CrossRef]
- Köster, K.; Berninger, F.; Lindén, A.; Köster, E.; Pumpanen, J. Recovery in Fungal Biomass Is Related to Decrease in Soil Organic Matter Turnover Time in a Boreal Fire Chronosequence. Geoderma 2014, 235–236, 74–82. [Google Scholar] [CrossRef]
- Köster, E.; Köster, K.; Berninger, F.; Aaltonen, H.; Zhou, X.; Pumpanen, J. Carbon Dioxide, Methane and Nitrous Oxide Fluxes from a Fire Chronosequence in Subarctic Boreal Forests of Canada. Sci. Total Environ. 2017, 601–602, 895–905. [Google Scholar] [CrossRef]
- Köster, E.; Köster, K.; Berninger, F.; Prokushkin, A.; Aaltonen, H.; Zhou, X.; Pumpanen, J. Changes in Fluxes of Carbon Dioxide and Methane Caused by Fire in Siberian Boreal Forest with Continuous Permafrost. J. Environ. Manag. 2018, 228, 405–415. [Google Scholar] [CrossRef]
- Zyryanova, O.A.; Abaimov, A.P.; Chikhacheva, T.L. The influence of fire on forest formation process in larch forests of Northern Siberia. For. Sci. 2008, 1, 3–10. [Google Scholar]
- Farber, S.K. Formation of Stands of East Siberia; Nauka: Novosibirsk, Russia, 2000. [Google Scholar]
- Kim, Y.; Tanaka, N. Effect of Forest Fire on the Fluxes of CO2, CH4 and N2O in Boreal Forest Soils, Interior Alaska. J. Geophys. Res. D Atmos. 2003, 108, FFR 10-1–FFR 10-12. [Google Scholar] [CrossRef]
- Liu, H.; Randerson, J.T.; Lindfors, J.; Chapin, F.S., III. Changes in the Surface Energy Budget after Fire in Boreal Ecosystems of Interior Alaska: An Annual Perspective. J. Geophys. Res. D Atmos. 2005, 110, D13101. [Google Scholar] [CrossRef]
- O’Neill, K.P.; Richter, D.D.; Kasischke, E.S. Succession-Driven Changes in Soil Respiration Following Fire in Black Spruce Stands of Interior Alaska. Biogeochemistry 2006, 80, 1–20. [Google Scholar] [CrossRef]
- Davidson, E.A.; Janssens, I.A. Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature 2006, 440, 165–173. [Google Scholar] [CrossRef]
- Fang, C.; Moncrieff, J.B. The Dependence of Soil CO2 Efflux on Temperature. Soil Biol. Biochem. 2001, 33, 155–165. [Google Scholar] [CrossRef]
- Choromanska, U.; DeLuca, T.H. Microbial Activity and Nitrogen Mineralization in Forest Mineral Soils Following Heating: Evaluation of Post-Fire Effects. Soil Biol. Biochem. 2002, 34, 263–271. [Google Scholar] [CrossRef]
- O’Neill, K.P.; Kasischke, E.S.; Richter, D.D. Environmental Controls on Soil CO2 Flux Following Fire in Black Spruce, White Spruce, and Aspen Stands of Interior Alaska. Can. J. For. Res. 2002, 32, 1525–1541. [Google Scholar] [CrossRef]
- Qu, L.; Ma, K.; Xu, X.; Wang, L.; Sasa, K. Effects of Post-Fire Conditions on Soil Respiration in Boreal Forests with Special Reference to Northeast China Forests. Front. Biol. China 2009, 4, 180–186. [Google Scholar] [CrossRef]
- Uribe, C.; Inclán, R.; Sánchez, D.M.; Clavero, M.A.; Fernández, A.M.; Morante, R.; Cardeña, A.; Blanco, A.; Van Miegroet, H. Effect of Wildfires on Soil Respiration in Three Typical Mediterranean Forest Ecosystems in Madrid, Spain. Plant Soil 2013, 369, 403–420. [Google Scholar] [CrossRef]
- Sun, L.; Hu, T.; Kim, J.H.; Guo, F.; Song, H.; Lv, X.; Hu, H. The Effect of Fire Disturbance on Short-Term Soil Respiration in Typical Forest of Greater Xing’an Range, China. J. For. Res. 2014, 25, 613–620. [Google Scholar] [CrossRef]
- Hu, T.; Sun, L.; Hu, H.; Weise, D.R.; Guo, F. Soil Respiration of the Dahurian Larch (Larix gmelinii) Forest and the Response to Fire Disturbance in Da Xing’an Mountains, China. Sci. Rep. 2017, 7, 2967. [Google Scholar] [CrossRef]
- Amiro, B.D.; MacPherson, J.I.; Desjardins, R.L. BOREAS Flight Measurements of Forest-Fire Effects on Carbon Dioxide and Energy Fluxes. Agric. For. Meteorol. 1999, 96, 199–208. [Google Scholar] [CrossRef]
- Köster, K.; Köster, E.; Orumaa, A.; Parro, K.; Jõgiste, K.; Berninger, F.; Pumpanen, J.; Metslaid, M. How Time since Forest Fire Affects Stand Structure, Soil Physical-Chemical Properties and Soil CO2 Efflux in Hemiboreal Scots Pine Forest Fire Chronosequence? Forests 2016, 7, 201. [Google Scholar] [CrossRef]
- Wang, C.; Bond-Lamberty, B.; Gower, S.T. Soil Surface CO2 Flux in a Boreal Black Spruce Fire Chronosequence. J. Geophys. Res. D Atmos. 2003, 108, WFX 5-1–WFX 5-8. [Google Scholar] [CrossRef]
- Gupta, S.D.; Mackenzie, M.D. Spatial Patterns of Soil Respiration Links Above and Belowground Processes along a Boreal Aspen Fire Chronosequence. PLoS ONE 2016, 11, e0165602. [Google Scholar] [CrossRef]
- Song, J.; Liu, Z.; Zhang, Y.; Yan, T.; Shen, Z.; Piao, S. Effects of Wildfire on Soil Respiration and its Heterotrophic and Autotrophic Components in a Montane Coniferous Forest. J. Plant Ecol. 2019, 12, 336–345. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Y.; Luo, Y.; Zhou, X.; Jiang, Y.; Zhao, J.; Chen, Y.; Wang, C.; Guo, L.; Cao, J. Contrasting Responses after Fires of the Source Components of Soil Respiration and Ecosystem Respiration. Eur. J. Soil Sci. 2019, 70, 616–629. [Google Scholar] [CrossRef]
- Cuevas-González, M.; Gerard, F.; Balzter, H.; Riaño, D. Analysing Forest Recovery after Wildfire Disturbance in Boreal Siberia Using Remotely Sensed Vegetation Indices. Glob. Change Biol. 2009, 15, 561–577. [Google Scholar] [CrossRef]
- Goetz, S.J.; Fiske, G.J.; Bunn, A.G. Using Satellite Time-Series Data Sets to Analyze Fire Disturbance and Forest Recovery across Canada. Remote Sens. Environ. 2006, 101, 352–365. [Google Scholar] [CrossRef]
- Loboda, T.; O’Neal, K.J.; Csiszar, I. Regionally Adaptable dNBR-Based Algorithm for Burned Area Mapping from MODIS Data. Remote Sens. Environ. 2007, 109, 429–442. [Google Scholar] [CrossRef]
- Baranchikov, Y.N.; Kondakov, Y.P. Outbreaks of Siberian Moth Dendrolimus Superans Sibiricus Tschtvrk in Central Siberia. In Proceedings of the Proc. SOA Interagency Gypsy Moss Forum; USDA Forest Service, NEFES: Radnor, PA, USA, 1997; pp. 10–13. [Google Scholar]
- Isaev, A.S. (Ed.) Program of Extraordinary Activities on Biological Struggle with Pests in Forests of Krasnoyarsk Kray; World Bank Project; Federal Forest Service of Russia: Moscow, Russia, 1997. [Google Scholar]
- FAFM RF. Overview of Sanitary and Pathological Conditions of Forests of the Russian Federation in 2016; Russian Center of Forest Protection of the Federal Agency of the Russian Federation: Pushkino, Russia, 2017; p. 105. [Google Scholar]
- Tomes, J.; Fleischer, P.; Kubov, M.; Fleischer, P. Soil Respiration after Bark Beetle Infestation along a Vertical Transect in Mountain Spruce Forest. Forests 2024, 15, 611. [Google Scholar] [CrossRef]
- Baranchikov, Y.N.; Kondakov, Y.P.; Petrenko, E.S. Catastrophic Outbreaks of Siberian Silk Moth in Forests of Krasnoyarsk Krai. In Safety of Russia. Regional Problems of Safety. Krasnoyarsk Krai; Znanie: Moscow, Russia, 2001; pp. 146–147. [Google Scholar]
- Baranchikov, Y.N.; Perevoznikova, V.D.; Vishnyakova, Z.V. Carbon Emission by Soils in Forests Damaged by the Siberian Moth. Russ. J. Ecol. 2002, 33, 398–401. [Google Scholar] [CrossRef]
- Edburg, S.L.; Hicke, J.A.; Lawrence, D.M.; Thornton, P.E. Simulating Coupled Carbon and Nitrogen Dynamics Following Mountain Pine Beetle Outbreaks in the Western United States. J. Geophys. Res. Biogeosci. 2011, 116, G04033. [Google Scholar] [CrossRef]
- Kurz, W.A.; Dymond, C.C.; Stinson, G.; Rampley, G.J.; Neilson, E.T.; Carroll, A.L.; Ebata, T.; Safranyik, L. Mountain Pine Beetle and Forest Carbon Feedback to Climate Change. Nature 2008, 452, 987–990. [Google Scholar]
- Goetz, S.J.; Bond-Lamberty, B.; Law, B.E.; Hicke, J.A.; Huang, C.; Houghton, R.A.; McNulty, S.; O’Halloran, T.; Harmon, M.E.; Meddens, A.J.H.; et al. Observations and Assessment of Forest Carbon Dynamics Following Disturbance in North America. J. Geophys. Res. Biogeosci. 2012, 117, G02022. [Google Scholar] [CrossRef]
- Kosunen, M.; Lyytikäinen-Saarenmaa, P.; Ojanen, P.; Blomqvist, M.; Starr, M. Response of Soil Surface Respiration to Storm and Ips typographus (L.) Disturbance in Boreal Norway Spruce Stands. Forests 2019, 10, 307. [Google Scholar] [CrossRef]
- Hicke, J.A.; Allen, C.D.; Desai, A.R.; Dietze, M.C.; Hall, R.J.; Hogg, E.H.; Kashian, D.M.; Moore, D.; Raffa, K.F.; Sturrock, R.N.; et al. Effects of Biotic Disturbances on Forest Carbon Cycling in the United States and Canada. Glob. Change Biol. 2012, 18, 7–34. [Google Scholar] [CrossRef]
- Edburg, S.L.; Hicke, J.A.; Brooks, P.D.; Pendall, E.G.; Ewers, B.E.; Norton, U.; Gochis, D.; Gutmann, E.D.; Meddens, A.J. Cascading Impacts of Bark Beetle-Caused Tree Mortality on Coupled Biogeophysical and Biogeochemical Processes. Front. Ecol. Environ. 2012, 10, 416–424. [Google Scholar] [CrossRef]
- Mukhortova, L.V.; Kirdyanov, A.V.; Myglan, V.S.; Guggenberger, G. Wood Transformation in Dead-Standing Trees in the Forest-Tundra of Central Siberia. Biol. Bull. Russ. Acad. Sci. 2009, 36, 58–65. [Google Scholar] [CrossRef]
- Busse, M.D. Downed Bole-Wood Decomposition in Lodgepole Pine Forests of Central Oregon. J. Soil Sci. 1994, 58, 221–227. [Google Scholar] [CrossRef]
- Harmon, M.E.; Franklin, J.F.; Swanson, F.J.; Sollins, P.; Gregory, S.V.; Lattin, J.D.; Anderson, N.H.; Cline, S.P.; Aumen, N.G.; Sedell, J.R.; et al. Ecology of Coarse Woody Debris in Temperate Ecosystems. Adv. Ecol. Res. 1986, 15, 133–302. [Google Scholar] [CrossRef]
- Hicke, J.A.; Meddens, A.J.H.; Kolden, C.A. Recent Tree Mortality in the Western United States from Bark Beetles and Forest Fires. For. Sci. 2016, 62, 141–153. [Google Scholar] [CrossRef]
- Kulakowski, D.; Jarvis, D. The Influence of Mountain Pine Beetle Outbreaks and Drought on Severe Wildfires in Northwestern Colorado and Southern Wyoming: A Look at the Past Century. For. Ecol. Manag. 2011, 262, 1686–1696. [Google Scholar] [CrossRef]
- Ayres, M.P.; Lombardero, M.J. Assessing the Consequences of Global Change for Forest Disturbance from Herbivores and Pathogens. Sci. Total Environ. 2000, 262, 263–286. [Google Scholar]
- Williams, D.W.; Liebhold, A.M. Climate Change and the Outbreak Ranges of Two North American Bark Beetles. Agric. For. Entomol. 2002, 4, 87–99. [Google Scholar]
- Shvidenko, A.; Gustafson, E.; McGuire, A.D.; Kharuk, V.I.; Schepaschenko, D.G.; Shugart, H.H.; Tchebakova, N.M.; Vygodskaya, N.N.; Onuchin, A.A.; Hayes, D.J.; et al. Terrestrial Ecosystems and Their Change. In Regional Environmental Changes in Siberia and Their Global Consequences; Groisman, P.Y., Gutman, G., Eds.; Springer Environmental Science and Engineering: Dordrecht, The Netherlands, 2013; pp. 171–249. ISBN 978-94-007-4569-8. [Google Scholar]
- Knorre, A.A.; Rasnobarskiy, V.G.; Vagnorjus, P.A. The Threat of Disappearing of Fir Stands in Natural Reserve “Stolby” as a Result of Invasion of Four-Eyed Fir Bark Beetle (Polygraphus proximus Blandf.); Scientific Reports of State Natural Reseve “Stolby”: Krasnoyarsk, Russia, 2015; pp. 211–222. [Google Scholar]
- Volney, W.J.A.; Fleming, R.A. Climate Change and Impacts of Boreal Forest Insects. Agric. Ecosyst. Environ. 2000, 82, 283–294. [Google Scholar] [CrossRef]
- Pautov, Y.A.; Il’chukov, S.V. Spatial structure of planted trees on the concentrated logging sites in the Komi Republic. For. Sci. 2001, 2, 27–32. [Google Scholar]
- Ivanov, V.V. Ecological consequences of mechanized logging in the southern taiga of the Krasnoyarsk region. For. Sci. 2005, 2, 3–8. [Google Scholar]
- Dymov, A.A. The Impact of Clearcutting in Boreal Forests of Russia on Soils: A Review. Eurasian Soil Sci. 2017, 50, 780–790. [Google Scholar] [CrossRef]
- Sheingauz, A.S. Overview of the Forest Sector in the Russian Far East: Production, Industry, and the Problem of Illegal Logging; Forest Trends: Washington, DC, USA, 2004; ISBN 1-932928-03-0. [Google Scholar]
- Akande, O.J.; Ma, Z.; Huang, C.; He, F.; Chang, S.X. Meta-analysis Shows Forest Soil CO2 Effluxes Are Dependent on the Disturbance Regime and Biome Type. Ecol. Lett. 2023, 26, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yang, Y.; Chen, G.; Xie, J.; Gao, R.; Qian, W. Effects of Clear-Cutting and Slash Burning on Soil Respiration in Chinese Fir and Evergreen Broadleaved Forests in Mid-Subtropical China. Plant Soil 2010, 333, 249–261. [Google Scholar] [CrossRef]
- Edwards, N.T.; Ross-Todd, B.M. Soil Carbon Dynamics in a Mixed Deciduous Forest Following Clear-Cutting with and without Residue Removal. J. Soil Sci. 1983, 47, 1014–1021. [Google Scholar] [CrossRef]
- Pumpanen, J.; Westman, C.J.; Ilvesniemi, H. Soil CO2 Efflux from a Podzolic Forest Soil before and after Forest Clear-Cutting and Site Preparation. Boreal Environ. Res. 2004, 9, 199–212. [Google Scholar]
- Yuan, Z.Y.; Chen, H.Y.H. Fine Root Biomass, Production, Turnover Rates, and Nutrient Contents in Boreal Forest Ecosystems in Relation to Species, Climate, Fertility, and Stand Age: Literature Review and Meta-Analyses. Crit. Rev. Plant Sci. 2010, 29, 204–221. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Herrmann, V.; Morgan, R.B.; Bond-Lamberty, B.; Cook-Patton, S.C.; Ferson, A.E.; Muller-Landau, H.C.; Wang, M.M. Carbon Cycling in Mature and Regrowth Forests Globally. Environ. Res. Lett. 2021, 16, 053009. [Google Scholar]
- Madsen, R.L.; Asplund, J.; Nybakken, L.; Biong, R.; Kjønaas, O.J. Harvesting History Affects Soil Respiration and Litterfall but Not Overall Carbon Balance in Boreal Norway Spruce Forests. For. Ecol. Manag. 2025, 578, 122485. [Google Scholar]
- Gundale, M.J.; Axelsson, E.P.; Buness, V.; Callebaut, T.; DeLuca, T.H.; Hupperts, S.F.; Ibáñez, T.S.; Metcalfe, D.B.; Nilsson, M.; Peichl, M.; et al. The Biological Controls of Soil Carbon Accumulation Following Wildfire and Harvest in Boreal Forests: A Review. Glob. Change Biol. 2024, 30, e17276. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Phillips, O.L.; Houghton, R.A.; Fang, J.; Kauppi, P.E.; Keith, H.; Kurz, W.A.; Ito, A.; Lewis, S.L.; et al. The Enduring World Forest Carbon Sink. Nature 2024, 631, 563–569. [Google Scholar] [CrossRef] [PubMed]
Disturbance Agents | Model Parameters (Equation (1)) | SE | |||
---|---|---|---|---|---|
a | b | c | d | ||
Fire | −2207.98 | −0.1423 | 2180.24 | −0.1413 | 3.3 |
Biogenic | 0 | −3.00 | 56.05 | −0.19 | 3.2 |
Harvest | 4.24 | −0.1848 | 10.00 | −0.4772 | 3.1 |
Indicators | Values by Age Groups of Forest Stands | ||||
---|---|---|---|---|---|
Unstocked | Yng1 | Yng2 | MidAge | Total | |
Forest land, 103 km2 | 8002.42 | ||||
Area of MFFS, 103 km2 | 341.47 | 577.03 | 755.61 | 2116.86 | 3790.97 |
Fire | |||||
Impacted area, 103 km2 | 220.93 | 373.34 | 488.88 | 1369.61 | 2452.76 |
Effect on Rh for disturbed area, % ±SE | −36.6 | 2.7 | 11.9 | 2.3 | 0.8 ± 3.3 |
Effect on Rh for all forest lands, % ±SE | −1.01 | 0.13 | 0.73 | 0.39 | 0.24 ± 1.01 |
Biogenic | |||||
Impacted area, 103 km2 | 20.15 | 34.04 | 44.58 | 124.89 | 223.67 |
Effect on Rh for disturbed areas, % ±SE | 86.3 | 52.3 | 3.4 | 0.13 | 16.5 ± 3.2 |
Effect on Rh for forest lands, % ±SE | 0.22 | 0.22 | 0.02 | 0.00 | 0.46 ± 0.09 |
Harvest | |||||
Impacted area, 103 km2 | 100.39 | 169.65 | 222.15 | 622.36 | 1114.55 |
Effect on Rh for disturbed area, % ±SE | 13.0 | 4.8 | 0.3 | 0.01 | 2.0 ± 3.1 |
Effect on Rh for forest lands, % ±SE | 0.16 | 0.10 | 0.01 | 0.00 | 0.27 ± 0.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schepaschenko, D.; Mukhortova, L.; Shvidenko, A. Estimation of Impact of Disturbances on Soil Respiration in Forest Ecosystems of Russia. Forests 2025, 16, 925. https://doi.org/10.3390/f16060925
Schepaschenko D, Mukhortova L, Shvidenko A. Estimation of Impact of Disturbances on Soil Respiration in Forest Ecosystems of Russia. Forests. 2025; 16(6):925. https://doi.org/10.3390/f16060925
Chicago/Turabian StyleSchepaschenko, Dmitry, Liudmila Mukhortova, and Anatoly Shvidenko. 2025. "Estimation of Impact of Disturbances on Soil Respiration in Forest Ecosystems of Russia" Forests 16, no. 6: 925. https://doi.org/10.3390/f16060925
APA StyleSchepaschenko, D., Mukhortova, L., & Shvidenko, A. (2025). Estimation of Impact of Disturbances on Soil Respiration in Forest Ecosystems of Russia. Forests, 16(6), 925. https://doi.org/10.3390/f16060925