Analysis of the Digestion Dynamics and Dietary Risk Assessment of Fluridone in Cotton Fields via QuEChERS Coupled with HPLC
Abstract
1. Introduction
2. Materials and Methods
2.1. Residue Digestion in the Field and Final Residue Testing
2.2. Collection and Preparation of Samples
2.3. Sample Preprocessing
2.4. Instrument Test Condition
2.5. Preparation of Standard Solutions and Matrix-Matched Standard Solutions
2.5.1. Preparation of Standard Solutions
2.5.2. Preparation of Matrix-Matched Standard Solutions
2.5.3. Recovery Rate Experiment with Spiking
2.6. Validation of Analytical Method
2.7. Degradation Dynamics of Fluridone in Soil
2.8. Dietary Risk Assessment
3. Results
3.1. Optimization of Testing Conditions
3.2. Optimization of Preprocessing Methods
3.2.1. Optimization of Extraction Solvents
3.2.2. Optimization of Extraction Methods
3.2.3. Optimization of Salt
3.2.4. Optimization of Purification Conditions
3.3. Method Validation
3.3.1. The Linearity, Limit of Detection (LOD), Limit of Quantitation (LOQ), and Matrix Effect of the Method
3.3.2. The Accuracy and Precision of This Method
3.4. Degradation Dynamics of Fluridone in Cotton Field Soil
3.5. Final Residues of Fluridone in Cotton Field Soil, Cotton Plants, and Cottonseeds
3.6. Dietary Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, L.; Chen, Y.; Lei, Z. A study on high-quality development of the cotton industry of Xinjiang. Macroecon. Manag. 2021, 10, 77–83+90. [Google Scholar]
- Xu, F.; Li, Y.; Ren, S. Consideration on the application and development of drip irrigation technology under cotton film in Xinjiang. Trans. Chin. Soc. Agric. Eng. 2003, 1, 25–27. [Google Scholar]
- Xiaohu, C.; Ping, L.; Yahui, S.; Rui, H.; Yudong, Z.; Na, W.; Jungang, W. Effects of Population Density of Bolboschoenus planiculmis on the Absorption and Accumulation of Cotton Nutrients. J. Cotton Sci. 2020, 32, 143–150. [Google Scholar]
- Wei, J.Y.; Zhang, J.Y.; Ma, D.M. Investigation and Study on Law of Succession of Weeds in Cotton Fields in Changji, Xinjiang. China Cotton 2016, 43, 31–33. [Google Scholar]
- Zhang, Y. Development of metominostrobin, a fungicide for rice fields. World Pestic. 2002, 24, 6–12. [Google Scholar]
- Zhang, G. Current Status of Application, Development and Prospect of Strobin Fungicides. Pestic. Sci. Adm. 2003, 24, 30–34. [Google Scholar]
- Cahoon, C.; York, A.; Jordan, D.; Seagroves, R.; Everman, W.; Jennings, K. Fluridone carryover to rotational crops following application to cotton. J. Cotton Sci. 2015, 19, 631–640. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Chen, Y.; Wang, R.; Lin, Z.; Lin, D.; Zheng, S. Evaluation of QuEChERS methods for the analysis of 66 organophosphorus pesticide residues in vegetables by liquid chromatography-tandem mass spectrometry. Chin. J. Chromatogr. 2012, 30, 146–153. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, M.; Zhang, X.; Shou, L. Research and Application of Rapid Detection Technology for 10 Kinds of Pesticide Residues in Cowpea. Chin. J. Pestic. Sci. 2023, 25, 1358–1369. [Google Scholar]
- Zhu, B.Q.; Jin, S.Q.; Tian, C.X.; Hu, F.; Xu, X.Y.; Luo, J.W. Simultaneous Determination of 40 Organophosphorus Pesticides in Tea by Online GPC/GC-MS/MS with Multi-walled Carbon Nanotubes as Dispersive Solid Phase Extraction Sorbent. J. Instrum. Anal. 2018, 37, 404–410. [Google Scholar]
- Schenck, F.J.; Hobbs, J.E. Evaluation of the quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach to pesticide residue analysis. Bull. Environ. Contam. Toxicol. 2004, 73, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.H.; Huang, Y.Y.; Yu, L. Detection of Toxaphene in Soil by Modified QuEChERS Technique. Agrochemicals 2018, 57, 435–437. [Google Scholar]
- Cui, J. Rapid determination of nitrophenols in soil by improved QuEChERS method combined with HPLC-MS/MS. Chem. Res. Appl. 2024, 36, 905–909. [Google Scholar]
- Zhang, H.C.; Chen, D.Y.; Han, Y.; Chen, J.Y.; Dai, X.F.; Kong, Z.Q.; Yan, T.C. Residues and dissipation dynamics of six typical pesticides and three metabolites in cucumber by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry. Chin. J. Pestic. Sci. 2022, 24, 168–176. [Google Scholar]
- Attallah, E.R.; Hamdy Abdelwahed, M.; Abo-Aly, M.M. Development and validation of multi-residue method for determination of 412 pesticide residues in cotton fiber using GC-MS/MS and LC-MS/MS. J. Text. Inst. 2018, 109, 46–63. [Google Scholar] [CrossRef]
- Li, M.; Li, P.; Wang, L.; Feng, M.; Han, L. Determination and Dissipation of Fipronil and Its Metabolites in Peanut and Soil. J. Agric. Food Chem. 2015, 63, 4435–4443. [Google Scholar] [CrossRef]
- Dong, Z.; Zhou, R.; Bian, C.; Li, H.; Wang, L.; Fu, J.; Xie, G.; Shi, X.; Li, X.; Li, Z.; et al. Persistence, decontamination and dietary risk assessment of propyrisulfuron residue in natural paddy field environment using QuEChERS@UPLC-Q-TOF-MS/MS. Microchem. J. 2022, 181, 107832. [Google Scholar] [CrossRef]
- Zhou, R.; Dong, Z.; Bian, C.; Wang, L.; Wu, T.; Zhou, W.; Li, Y.; Li, B. Residue analysis, dissipation behavior, storage stability and dietary risk assessment of florpyrauxifen-benzyl in natural paddy field environment using UPLC-QTOF-MS/MS. J. Food Compos. Anal. 2022, 114, 104781. [Google Scholar] [CrossRef]
- Luo, J.; Bian, C.; Rao, L.; Zhou, W.; Li, Y.; Li, B. Determination of the residue behavior of isocycloseram in Brassica oleracea and soil using the QuEChERS method coupled with HPLC. Food Chem. 2022, 367, 130734. [Google Scholar] [CrossRef]
- Chang, H.; Wang, L.; Huang, C.; Zhou, R.; Wu, T.; Li, B. Residue analysis, dissipation dynamics, and dietary risk assessment of benzovindiflupyr in peanut field environment by LC-MS. J. Food Compos. Anal. 2023, 123, 130734. [Google Scholar] [CrossRef]
- Raymond Bates, J.A. The evaluation of pesticide residues in food: Procedures and problems in setting maximum residues limits. J. Sci. Food Agric. 1979, 30, 401–416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.; Jiang, S. Agricultural product quality and safety risk monitoring and assessment. J. Agric. Sci. Technol. 2013, 15, 8–13. [Google Scholar]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef]
- Santana-Mayor, Á.; Socas-Rodríguez, B.; Herrera-Herrera, A.V.; Rodríguez-Delgado, M.Á. Current trends in QuEChERS method. A versatile procedure for food, environmental and biological analysis. Trends Anal. Chem. 2019, 116, 214–235. [Google Scholar] [CrossRef]
- Wang, L.; Bian, C.; Dong, Z.; Liu, L.; Huang, C.; Li, B.; Li, Y. Analytical method for the determination of guvermectin residues in rice environment by the QuEChERS method combined with HPLC. J. Food Compos. Anal. 2022, 111, 104644. [Google Scholar] [CrossRef]
- Liu, L.; Rao, L.; Li, W.; Zhou, W.; Li, B.; Tang, L. Detection of Glyamifop residues in rice and its environment by the QuEChERS method combined with HPLC–MS. Microchem. J. 2020, 158, 105157. [Google Scholar] [CrossRef]
- Wilkowska, A.; Biziuk, M. Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem. 2010, 125, 803–812. [Google Scholar] [CrossRef]
- Liu, X.; Xu, J.; Dong, F.; Li, Y.; Song, W.; Zheng, Y. Residue analysis of four diacylhydrazine insecticides in fruits and vegetables by Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 2011, 401, 1051–1058. [Google Scholar] [CrossRef]
- Pyrzynska, K. Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere 2011, 83, 1407–1413. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, L.; Zhou, L.; Zhang, F.; Kang, S.; Pan, C. Multi-walled carbon nanotubes as alternative reversed-dispersive solid phase extraction materials in pesticide multi-residue analysis with QuEChERS method. J. Chromatogr. A 2012, 1225, 17–25. [Google Scholar] [CrossRef]
- Rasool, S.; Rasool, T.; Gani, K.M. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chem. Eng. J. Adv. 2022, 11, 100301. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, S.; Wang, W.; Ren, M.; Li, F. Research progress on nutritional value, virus-free method and application of cottonseed for livestock and poultry feed. China Cotton 2023, 50, 35–41. [Google Scholar]
- Chang, H.; Wu, T.; Lin, W.; Gu, X.; Zhou, R.; Li, Y.; Li, B. Adsorption–desorption and leaching behavior of benzovindiflupyr in different soil types. Ecotoxicol. Environ. Saf. 2024, 282, 116724. [Google Scholar] [CrossRef] [PubMed]
Sample Type | Low | Middle | High |
---|---|---|---|
Soil | 0.1 | 0.5 | 1 |
Cotton plant | 0.1 | 0.5 | 1 |
Cottonseed | 0.1 | 0.5 | 1 |
Matrix | Regression Equation | R2 | LOD (mg·kg−1) | LOQ (mg·kg−1) | Matrix Effects (%) |
---|---|---|---|---|---|
Blank | y = 14,465.8x + 6524.04 | 0.9999159 | / | / | / |
Soil | y = 14,536.7x + 4981.41 | 0.9998105 | 0.00090 | 0.0030 | 0.49 |
Plant | y = 15,606.5x + 6476.5 | 0.9921023 | 0.00108 | 0.0036 | 7.89 |
Cottonseed | y = 15,868.4x + 872.01 | 0.9996730 | 0.00099 | 0.0033 | 8.84 |
Matrix | Spiked-Level | Intra-Day (n = 5) | Inter-Day (n = 15) | ||||||
---|---|---|---|---|---|---|---|---|---|
Day1 | RSDr | Day2 | RSDr | Day3 | RSDr | RSDr | |||
(mg·kg−1) | Average Recoveries | Average Recoveries | Average Recoveries | Average Recoveries | |||||
(%) | (%) | (%) | (%) | (%) | (%) | (%) | (%) | ||
Soil | 0.1 | 93.55 | 2.70 | 92.16 | 4.46 | 89.08 | 2.59 | 91.60 | 3.25 |
0.5 | 94.50 | 4.57 | 90.35 | 3.57 | 89.14 | 3.29 | 91.33 | 3.81 | |
1 | 95.07 | 2.82 | 91.22 | 2.06 | 89.75 | 3.09 | 92.01 | 2.66 | |
Cottonseed | 0.1 | 87.40 | 2.76 | 87.49 | 1.49 | 85.81 | 1.24 | 86.90 | 1.83 |
0.5 | 89.09 | 1.37 | 87.25 | 1.26 | 88.67 | 0.95 | 88.34 | 1.19 | |
1 | 90.72 | 2.18 | 89.06 | 0.61 | 88.18 | 0.98 | 89.32 | 1.26 | |
Plant | 0.1 | 86.80 | 0.63 | 85.72 | 0.44 | 85.08 | 0.35 | 85.87 | 0.47 |
0.5 | 88.01 | 0.34 | 86.90 | 0.73 | 86.29 | 0.44 | 87.07 | 0.50 | |
1 | 89.89 | 0.78 | 88.00 | 0.46 | 86.69 | 0.46 | 88.19 | 0.56 |
Year | Dosage (g a.i.·ha−1) | Equation | Correlation Index (R2) | k (Day−1) | Half-Life (Days) |
---|---|---|---|---|---|
220.5 | 0.996 | 0.033 | 21.004 | ||
2023 | 441.0 | 0.997 | 0.042 | 16.503 | |
661.5 | 0.981 | 0.038 | 18.241 | ||
220.5 | 0.986 | 0.035 | 19.804 | ||
2024 | 441.0 | 0.987 | 0.037 | 18.734 | |
661.5 | 0.991 | 0.041 | 16.906 |
Year | Materials | Dosage (g a.i.·ha−1) | Final Residue (mg·kg−1) |
---|---|---|---|
220.5 | 0.067 | ||
Soil | 441.0 | 0.077 | |
661.5 | 0.155 | ||
220.5 | 0.234 | ||
2023 | Plant | 441.0 | 0.322 |
661.5 | 0.412 | ||
220.5 | <LOQ a | ||
Cottonseed | 441.0 | <LOQ a | |
661.5 | <LOQ a | ||
220.5 | 0.032 | ||
Soil | 441.0 | 0.075 | |
661.5 | 0.134 | ||
220.5 | 0.215 | ||
2024 | Plant | 441.0 | 0.341 |
661.5 | 0.402 | ||
220.5 | <LOQ a | ||
Cottonseed | 441.0 | <LOQ a | |
661.5 | <LOQ a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Yang, R.; Li, Y.; Jin, Z.; Xia, Y.; Zhao, Y.; Han, X.; Zhang, G.; Wang, C.; Ma, T.; et al. Analysis of the Digestion Dynamics and Dietary Risk Assessment of Fluridone in Cotton Fields via QuEChERS Coupled with HPLC. Toxics 2025, 13, 526. https://doi.org/10.3390/toxics13070526
Wang S, Yang R, Li Y, Jin Z, Xia Y, Zhao Y, Han X, Zhang G, Wang C, Ma T, et al. Analysis of the Digestion Dynamics and Dietary Risk Assessment of Fluridone in Cotton Fields via QuEChERS Coupled with HPLC. Toxics. 2025; 13(7):526. https://doi.org/10.3390/toxics13070526
Chicago/Turabian StyleWang, Sen, Ruitong Yang, Yuxuan Li, Zhiqiang Jin, Yutian Xia, Yipin Zhao, Xiaoqiang Han, Guoqiang Zhang, Chunjuan Wang, Ting Ma, and et al. 2025. "Analysis of the Digestion Dynamics and Dietary Risk Assessment of Fluridone in Cotton Fields via QuEChERS Coupled with HPLC" Toxics 13, no. 7: 526. https://doi.org/10.3390/toxics13070526
APA StyleWang, S., Yang, R., Li, Y., Jin, Z., Xia, Y., Zhao, Y., Han, X., Zhang, G., Wang, C., Ma, T., Wu, C., & Yang, D. (2025). Analysis of the Digestion Dynamics and Dietary Risk Assessment of Fluridone in Cotton Fields via QuEChERS Coupled with HPLC. Toxics, 13(7), 526. https://doi.org/10.3390/toxics13070526