Advancing Forest Ecosystem Sustainability: Integrating Plant Physiology, Microbial Ecology, and Spatial Technologies

A special issue of Forests (ISSN 1999-4907). This special issue belongs to the section "Forest Ecology and Management".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 1618

Special Issue Editors

Key Laboratory of Heilongjiang Province for Cold-Regions Wetlands Ecology and Environment Research, Harbin University, Harbin, China
Interests: chlorophyll fluorescence; abiotic stress; plant photosynthesis; climate change
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
Interests: microbial community diversity; soil carbon cycle; soil fertility; enzyme stability; greenhouse gases emission; global change; soil multifunctionality
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue focuses on the intersection of forest plant physiology, soil microbial ecology, and Geographic Information System (GIS) applications to promote sustainable forest ecosystem management. Forest plants and soil microbes are fundamental to ecosystem processes, influencing nutrient cycling, biodiversity, and climate regulation. Understanding their physiological responses and interactions is crucial in addressing contemporary environmental challenges, such as climate change and habitat degradation.

We invite submissions exploring forest plant physiological mechanisms, including photosynthesis, water-use efficiency, and stress responses under changing environmental conditions. Contributions examining microbial community structures in soil, metabolic pathways, and their roles in nutrient cycling are particularly welcome. Moreover, studies leveraging GIS to analyze spatial patterns and model ecosystem processes or to integrate plant and microbial data into decision-making frameworks will be prioritized.

We encourage theoretical, methodological, and empirical studies, as well as reviews and case studies that link forest plant physiology, microbial ecology, and GIS. Contributions should provide novel insights into ecosystem functioning, propose innovative methods, or demonstrate applications with ecological, economic, or societal relevance.

Dr. Nan Xu
Dr. Xuechen Yang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • forest plant physiology
  • soil microbial ecology
  • GIS applications
  • nutrient cycling
  • biodiversity
  • ecosystem modeling
  • stress physiology
  • climate change adaptation
  • spatial analysis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 3125 KiB  
Article
Influences of the China–Russia Crude Oil Pipelines on the Characteristics of Soil Bacterial and Fungal Communities in Permafrost Regions of the Da Xing’anling Mountains, Northeast China
by Xue Yang, Yanling Shi, Xiaoying Jin, Zuwang Li, Wenhui Wang, Shuai Huang and Huijun Jin
Forests 2025, 16(7), 1038; https://doi.org/10.3390/f16071038 - 20 Jun 2025
Viewed by 343
Abstract
Engineering disturbances are increasing in permafrost regions of northeastern China, where soil microorganisms play essential roles in biogeochemical cycling and are highly sensitive to linear infrastructure disturbances. However, limited research has addressed how microbial communities respond to different post-engineering-disturbance recovery stages. This study [...] Read more.
Engineering disturbances are increasing in permafrost regions of northeastern China, where soil microorganisms play essential roles in biogeochemical cycling and are highly sensitive to linear infrastructure disturbances. However, limited research has addressed how microbial communities respond to different post-engineering-disturbance recovery stages. This study investigated the impacts of the China–Russia Crude Oil Pipelines (CRCOPs) on soil microbial communities in a typical boreal forest permafrost zone of the Da Xing’anling Mountains. Soil samples were collected from undisturbed forest (the control, CK); short-term disturbed sites associated with Pipeline II, which was constructed in 2018 (SD); and long-term disturbed sites associated with Pipeline I, which was constructed in 2011 (LD). Pipeline engineering disturbances significantly increased soil clay content and pH while reducing soil water content (SWC), soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) (p < 0.05). No significant differences in these soil properties were observed between SD and LD. Bacterial diversity increased significantly, whereas fungal diversity significantly decreased following pipeline disturbances (p < 0.05). The beta diversity of both bacterial and fungal communities differed significantly among the three disturbance types. At the phylum level, pipeline disturbance increased the relative abundances of Proteobacteria, Acidobacteriota, Actinobacteriota, Ascomycota, and Mortierellomycota while reducing those of Bacteroidota and Basidiomycota. These shifts were associated with disturbance-induced changes in soil properties. Microbial co-occurrence networks in SD exhibited greater complexity and connectivity than those in CK and LD, suggesting intensified biotic interactions and active ecological reassembly during the early recovery phase. These findings suggest that pipeline disturbance could drive soil microbial systems into a new stable state that is difficult to restore over the long term, highlighting the profound impacts of linear infrastructure on microbial ecological functions in cold regions. This study provides a scientific basis for ecological restoration and biodiversity conservation in permafrost-affected areas. Full article
Show Figures

Figure 1

Review

Jump to: Research

32 pages, 1903 KiB  
Review
Multi-Source Remote Sensing and GIS for Forest Carbon Monitoring Toward Carbon Neutrality
by Xiongwei Liang, Shaopeng Yu, Bo Meng, Xiaodi Wang, Chunxue Yang, Chuanqi Shi and Junnan Ding
Forests 2025, 16(6), 971; https://doi.org/10.3390/f16060971 - 9 Jun 2025
Viewed by 1095
Abstract
Forests play a pivotal role in the global carbon cycle, making accurate estimation of forest carbon stocks essential for climate change mitigation efforts. However, the diverse methods available for assessing forest carbon yield varying results and have different limitations. This study provides a [...] Read more.
Forests play a pivotal role in the global carbon cycle, making accurate estimation of forest carbon stocks essential for climate change mitigation efforts. However, the diverse methods available for assessing forest carbon yield varying results and have different limitations. This study provides a comprehensive review of current methods for estimating forest carbon stocks, including field-based measurements, remote sensing techniques, and integrated approaches. We systematically collected and analyzed recent studies (2010–2025) on forest carbon estimation across various ecosystems. Our review indicates that field-based methods, such as forest inventories and allometric equations, offer high accuracy at local scales but are labor-intensive. Remote sensing methods (e.g., LiDAR and satellite imagery) enable large-scale carbon assessment with moderate accuracy and efficiency. Integrated approaches that combine ground measurements with remote sensing data can improve accuracy while expanding spatial coverage. We discuss the strengths and weaknesses of each method category in terms of accuracy, cost, and scalability. Based on the synthesis of findings, we recommend a balanced approach that leverages both ground and remote sensing techniques for reliable forest carbon monitoring. This review also identifies knowledge gaps and suggests directions for future research to enhance the precision and applicability of forest carbon estimation methods. Full article
Show Figures

Figure 1

Back to TopTop