Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (263)

Search Parameters:
Keywords = soil biogeochemical cycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1792 KiB  
Review
The Response Mechanism of Soil Microbial Carbon Use Efficiency to Land-Use Change: A Review
by Zongkun Li and Dandan Qi
Sustainability 2025, 17(15), 7023; https://doi.org/10.3390/su17157023 - 2 Aug 2025
Viewed by 461
Abstract
Microbial carbon use efficiency (CUE) is an important indicator of soil organic carbon accumulation and loss and a key parameter in biogeochemical cycling models. Its regulatory mechanism is highly dependent on microbial communities and their dynamic mediation of abiotic factors. Land-use change (e.g., [...] Read more.
Microbial carbon use efficiency (CUE) is an important indicator of soil organic carbon accumulation and loss and a key parameter in biogeochemical cycling models. Its regulatory mechanism is highly dependent on microbial communities and their dynamic mediation of abiotic factors. Land-use change (e.g., agricultural expansion, deforestation, urbanization) profoundly alter carbon input patterns and soil physicochemical properties, further exacerbating the complexity and uncertainty of CUE. Existing carbon cycle models often neglect microbial ecological processes, resulting in an incomplete understanding of how microbial traits interact with environmental factors to regulate CUE. This paper provides a comprehensive review of the microbial regulation mechanisms of CUE under land-use change and systematically explores how microorganisms drive organic carbon allocation through community compositions, interspecies interactions, and environmental adaptability, with particular emphasis on the synergistic response between microbial communities and abiotic factors. We found that the buffering effect of microbial communities on abiotic factors during land-use change is a key factor determining CUE change patterns. This review not only provides a theoretical framework for clarifying the microbial-dominated carbon turnover mechanism but also lays a scientific foundation for the precise implementation of sustainable land management and carbon neutrality goals. Full article
(This article belongs to the Special Issue Soil Ecology and Carbon Cycle)
Show Figures

Figure 1

15 pages, 1328 KiB  
Article
Effects of Ridge-Furrow Film Mulching Patterns on Soil Bacterial Diversity in a Continuous Potato Cropping System
by Shujuan Jiao, Yichen Kang, Weina Zhang, Yuhui Liu, Hong Li, Wenlin Li and Shuhao Qin
Agronomy 2025, 15(8), 1784; https://doi.org/10.3390/agronomy15081784 - 24 Jul 2025
Viewed by 236
Abstract
Soil bacteria drive biogeochemical cycles and influence disease suppression, playing pivotal roles in sustainable agriculture. Using Illumina MiSeq sequencing, we assessed how six ridge-furrow film mulching patterns affect soil bacterial diversity in a continuous potato system. The Shannon index showed significantly higher diversity [...] Read more.
Soil bacteria drive biogeochemical cycles and influence disease suppression, playing pivotal roles in sustainable agriculture. Using Illumina MiSeq sequencing, we assessed how six ridge-furrow film mulching patterns affect soil bacterial diversity in a continuous potato system. The Shannon index showed significantly higher diversity in fully mulched treatments (T2–T3) versus controls (CK), suggesting mulching enhances microbial community richness. This result suggests that complete mulching combined with ridge planting (T2) may significantly enhance bacterial proliferation in soil. The bacterial communities were predominantly composed of Acidobacteria, Pseudomonadota, Bacteroidota, Chloroflexota, and Planctomycetota. Among these, Acidobacteria showed the highest abundance, with ridge planting patterns favoring greater Acidobacteria richness compared to furrow planting. In contrast, Pseudomonadota exhibited higher abundance under half-mulching conditions than under complete mulching. At class level, Acidobacteria and Proteobacteria emerged as the most abundant groups, with Proteobacteria constituting 22.6–35.7% of total microbial populations. Notably, Proteobacteria demonstrated particular dominance under the complete mulching with ridge planting pattern (T2). At the genus level, Subgroup_6_norank represented the most dominant taxon among the 439 identified bacterial genera, accounting for 14.0–20.2% of communities across all treatments, with half-mulching ridge planting (T4) showing the highest relative abundance. Our findings demonstrate that different ridge-furrow film mulching patterns significantly influence soil microbial diversity. While traditional non-mulched (CK) and mulched flat plots (T1) exhibited similar impacts on bacterial community structure, other treatments displayed distinct taxonomic profiles. Complete mulching patterns, particularly ridge planting (T2), appear most conducive to microbial development, suggesting their potential to enhance soil biogeochemical cycling in continuous cropping systems. These results provide valuable insights for optimizing mulching practices to improve soil health in agricultural ecosystems. Full article
Show Figures

Figure 1

22 pages, 1326 KiB  
Review
Soil Organic Carbon Sequestration Mechanisms and the Chemical Nature of Soil Organic Matter—A Review
by Gonzalo Almendros and José A. González-Pérez
Sustainability 2025, 17(15), 6689; https://doi.org/10.3390/su17156689 - 22 Jul 2025
Viewed by 392
Abstract
This article presents a review of several non-exclusive pathways for the sequestration of soil organic carbon, which can be classified into two large classical groups: the modification of plant and microbial macromolecules and the abiotic and microbial neoformation of humic substances. Classical studies [...] Read more.
This article presents a review of several non-exclusive pathways for the sequestration of soil organic carbon, which can be classified into two large classical groups: the modification of plant and microbial macromolecules and the abiotic and microbial neoformation of humic substances. Classical studies have established a causal relationship between aromatic structures and the stability of soil humus (traditional hypotheses regarding lignin and aromatic microbial metabolites as primary precursors for soil organic matter). However, further evidence has emerged that underscores the significance of humification mechanisms based solely on aliphatics. The precursors may be carbohydrates, which may be transformed by the effects of fire or catalytic dehydration reactions in soil. Furthermore, humic-type structures may be formed through the condensation of unsaturated fatty acids or the alteration of aliphatic biomacromolecules, such as cutins, suberins, and non-hydrolysable plant polyesters. In addition to the intrinsic value of understanding the potential for carbon sequestration in diverse soil types, biogeochemical models of the carbon cycle necessitate the assessment of the total quantity, nature, provenance, and resilience of the sequestered organic matter. This emphasises the necessity of applying specific techniques to gain insights into their molecular structures. The application of appropriate analytical techniques to soil organic matter, including sequential chemolysis or thermal degradation combined with isotopic analysis and high-resolution mass spectrometry, derivative spectroscopy (visible and infrared), or 13C magnetic resonance after selective degradation, enables the simultaneous assessment of the concurrent biophysicochemical stabilisation mechanisms of C in soils. Full article
(This article belongs to the Section Soil Conservation and Sustainability)
Show Figures

Figure 1

12 pages, 1736 KiB  
Article
Contrasting Effects of Moso Bamboo Expansion into Broad-Leaved and Coniferous Forests on Soil Microbial Communities
by Rong Lin, Wenjie Long, Fanqian Kong, Juanjuan Zhu, Miaomiao Wang, Juan Liu, Rui Li and Songze Wan
Forests 2025, 16(7), 1188; https://doi.org/10.3390/f16071188 - 18 Jul 2025
Viewed by 233
Abstract
Soil microbes play a crucial role in driving biogeochemical cycles and are closely linked with aboveground plants during forest succession. Moso bamboo (Phyllostachys edulis) encroachment into adjacent forests of varying composition is known to alter plant diversity in subtropical and tropical [...] Read more.
Soil microbes play a crucial role in driving biogeochemical cycles and are closely linked with aboveground plants during forest succession. Moso bamboo (Phyllostachys edulis) encroachment into adjacent forests of varying composition is known to alter plant diversity in subtropical and tropical regions. However, how soil microbial communities respond to this vegetation type transformation has not fully explored. To address this knowledge gap, a time-alternative spatial method was employed in the present study, and we investigated the effect of Moso bamboo expansion into subtropical broad-leaved forest and coniferous forest on soil microbial phospholipid fatty acids (PLFAs). We also measured the dynamics of key soil properties during the Moso bamboo expansion processes. Our results showed that Moso bamboo encroachment into subtropical broad-leaved forest induced an elevation in soil bacterial PLFAs (24.78%) and total microbial PLFAs (22.70%), while decreasing the fungal-to-bacterial (F:B) ratio. This trend was attributed to declines in soil NO3-N (18.63%) and soil organic carbon (SOC) concentrations (28.83%). Conversely, expansion into coniferous forests promoted soil fungal PLFAs (40.41%) and F:B ratio, primarily driven by increases in soil pH (4.83%) and decreases in SOC (36.18%). These results provide mechanistic insights into how contrasting expansion trajectories of Moso bamboo restructure soil microbial communities and highlight the need to consider vegetation context-dependency when evaluating the ecological consequences of Moso bamboo expansion. Full article
(This article belongs to the Special Issue Forest Soil Microbiology and Biogeochemistry)
Show Figures

Figure 1

15 pages, 845 KiB  
Article
Aboveground and Belowground Input Effects on Soil Health in Urban Camphor Tree Forests
by Xuejia Huang, Yuanying Peng, Wende Yan, Tianyi Yan, Xiaocui Liang, Junjie Lei, Xiaoyong Chen and Yaqin Qi
Sustainability 2025, 17(14), 6358; https://doi.org/10.3390/su17146358 - 11 Jul 2025
Viewed by 242
Abstract
Urban forests provide essential ecosystem services, including improving soil health, sequestering carbon (C), and supporting biodiversity. However, the effects of anthropogenic litter and root management on soil biogeochemical processes in urban environments remain poorly understood. This study applied the Detritus Inputs and Removal [...] Read more.
Urban forests provide essential ecosystem services, including improving soil health, sequestering carbon (C), and supporting biodiversity. However, the effects of anthropogenic litter and root management on soil biogeochemical processes in urban environments remain poorly understood. This study applied the Detritus Inputs and Removal Treatment (DIRT) framework to examine how aboveground and belowground organic inputs influence soil organic carbon (SOC), total nitrogen (TN), soil water content (SWC), and enzymatic activities in subtropical urban camphor tree forests in China. Six treatments were implemented: litter removal (LR), litter addition (LA), root exclusion (RE), combined litter and root removal (LR + RE), combined litter addition and root exclusion (LA + RE), and an undisturbed litter control (LC). The results showed that the LA treatment significantly enhanced SOC, TN, SWC, and key soil enzyme activities (protease, catalase, and urease) compared to the LC, highlighting the crucial role of litter in enhancing soil fertility and microbial functioning. These elevated enzyme activities suggest intensified microbial nutrient cycling and metabolic activity in response to organic matter inputs. In contrast, the combined LR + RE treatment reduced SOC and enzyme activities but unexpectedly increased TN, indicating disrupted nutrient cycling, possibly due to accelerated microbial nitrogen mineralization and decomposition of existing soil organic matter in the absence of fresh carbon inputs. The LA treatment also showed the highest carbon-to-nitrogen (C:N) ratio, reflecting a carbon-enriched environment that may favor long-term carbon stabilization. Additionally, SWC was most improved under the LA + RE treatment, suggesting its potential for enhancing soil moisture retention in urban settings. These findings underscore the complementary roles of litter and root inputs in maintaining soil health and biogeochemical balance in urban forests. The study provides insights into enzyme-mediated soil processes under varying organic input regimes and highlights the value of targeted organic matter management to enhance urban ecosystem services. Full article
Show Figures

Figure 1

17 pages, 3983 KiB  
Article
Reduced Precipitation Alters Soil Nutrient Dynamics by Regulating the Chemical Properties of Deadwood Substrates
by Laicong Luo, Xi Yuan, Chunsheng Wu, Dehuan Zong, Xueying Zhong, Kang Lin, Long Li, Bingxu Yang, Xuejiao Han, Chao Luo, Wenping Deng, Shijie Li and Yuanqiu Liu
Forests 2025, 16(7), 1112; https://doi.org/10.3390/f16071112 - 4 Jul 2025
Viewed by 248
Abstract
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby [...] Read more.
Global climate change has intensified the heterogeneity of precipitation regimes in subtropical regions, and the increasing frequency of extreme drought events poses a significant threat to biogeochemical cycling in forest ecosystems. Yet, the pathways by which reduced precipitation regulates deadwood decomposition and thereby influences soil nutrient pools remain poorly resolved. Here, we investigated a Cunninghamia lanceolata (Lamb.) Hook. plantation in subtropical China under ambient precipitation (CK) and precipitation reduction treatments of 30%, 50%, and 80%, systematically examining how reduced precipitation alters the chemical properties of deadwood substrates and, in turn, soil nutrient status. Our findings reveal that (1) as precipitation declined, soil water content decreased significantly (p < 0.01), while deadwood pH declined and total organic carbon (TOC), nonstructural carbohydrates (NSCs), and lignin content markedly accumulated (p < 0.01); (2) these shifts in deadwood chemistry affected feedback mechanisms, leading to the suppression of soil nutrient pools: extreme drought (80% reduction) significantly reduced soil TOC, dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) (p < 0.01) and inhibited N and P mineralization, whereas the 30% reduction treatment elicited a transient increase in soil microbial biomass carbon (MBC), indicative of microbial acclimation to mild water stress; and (3) principal component analysis (PCA) showed that the 80% reduction treatment drove lignin accumulation in deadwood, while the 30% reduction treatment exerted the greatest influence on soil DOC, TOC, and MBC; partial least squares path modeling (PLS-PM) further demonstrated that soil water content and deadwood substrate properties (pH, lignin, soluble sugars, TOC, C/N, and lignin/N) were strongly negatively correlated (r = −0.9051, p < 0.01), and that deadwood chemistry was, in turn, negatively correlated with soil nutrient variables (pH, TOC, DOC, MBC, TP, TN, and dissolved organic nitrogen [DON]; r = −0.8056, p < 0.01). Together, these results indicate that precipitation reduction—by drying soils—profoundly modifies deadwood chemical composition (lignin accumulation and NSC retention) and thereby, via slowed organic-matter mineralization, constrains soil nutrient release and accumulation. This work provides a mechanistic framework for understanding forest carbon–nitrogen cycling under climate change. Full article
(This article belongs to the Special Issue Deadwood Decomposition and Its Impact on Forest Soil)
Show Figures

Figure 1

20 pages, 6564 KiB  
Article
Influence of Soil Depth and Land Use Type on the Diversity of and Metabolic Restriction in the Soil Microbial Community of a Forest-Grass Ecotone
by Xuman Ma, Xiaogang Li, Yaxin Meng, Jinhua Liu, Jinxin Wang, Xiaomeng Yu, Weipeng Wang and Xuehua Xu
Microorganisms 2025, 13(7), 1450; https://doi.org/10.3390/microorganisms13071450 - 22 Jun 2025
Viewed by 387
Abstract
Revealing soil microbial diversity and metabolic limitations in different land uses and soil depths is essential to understanding the regulation processes of soil nutrients. Here, bacterial and fungal microbial diversity and metabolic restriction in the 0–50 cm soil layers of four land uses, [...] Read more.
Revealing soil microbial diversity and metabolic limitations in different land uses and soil depths is essential to understanding the regulation processes of soil nutrients. Here, bacterial and fungal microbial diversity and metabolic restriction in the 0–50 cm soil layers of four land uses, namely farmland, grassland, Betula platyphylla secondary forest, and Larix principis-rupprechtii-planted forest in the mountainous forest-grass ecotone of northern China, were determined. The results showed that soil microbial diversity in farmland was the lowest. Soil microorganisms from all land uses are limited by nitrogen, with the highest nitrogen limitation in planted forest. However, microbial nitrogen limitation in farmland increased with increasing soil depth, while microbial nitrogen limitation in grassland, secondary forest, and planted forest decreased with increasing soil depth. The bacterial and fungal community composition was influenced by soil organic carbon, total nitrogen, soil organic carbon:total phosphorus ratio, soil water content, soil organic carbon, and total nitrogen:total phosphorus ratio. The soil organic carbon:total phosphorus ratio has an impact on microbial metabolic limitation. This study shows that soil microbial communities were more affected by land-use type than soil depth. Land use changes the input of soil nutrients from aboveground plants, which affects the physical and chemical properties of soil, microbial community diversity, and microbial metabolic limitation. The vertical filtration effect between soil layers reduces soil nutrients, making the microbial diversity and enzyme activity of surface soil greater than those of deep soil. Our study helps to understand the function of soil microorganisms under different land use types in the forest-grass ecotone of northern China and provides a basis for predicting biogeochemical cycle dynamics in the ecotone in the context of global warming. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

18 pages, 3125 KiB  
Article
Influences of the China–Russia Crude Oil Pipelines on the Characteristics of Soil Bacterial and Fungal Communities in Permafrost Regions of the Da Xing’anling Mountains, Northeast China
by Xue Yang, Yanling Shi, Xiaoying Jin, Zuwang Li, Wenhui Wang, Shuai Huang and Huijun Jin
Forests 2025, 16(7), 1038; https://doi.org/10.3390/f16071038 - 20 Jun 2025
Viewed by 352
Abstract
Engineering disturbances are increasing in permafrost regions of northeastern China, where soil microorganisms play essential roles in biogeochemical cycling and are highly sensitive to linear infrastructure disturbances. However, limited research has addressed how microbial communities respond to different post-engineering-disturbance recovery stages. This study [...] Read more.
Engineering disturbances are increasing in permafrost regions of northeastern China, where soil microorganisms play essential roles in biogeochemical cycling and are highly sensitive to linear infrastructure disturbances. However, limited research has addressed how microbial communities respond to different post-engineering-disturbance recovery stages. This study investigated the impacts of the China–Russia Crude Oil Pipelines (CRCOPs) on soil microbial communities in a typical boreal forest permafrost zone of the Da Xing’anling Mountains. Soil samples were collected from undisturbed forest (the control, CK); short-term disturbed sites associated with Pipeline II, which was constructed in 2018 (SD); and long-term disturbed sites associated with Pipeline I, which was constructed in 2011 (LD). Pipeline engineering disturbances significantly increased soil clay content and pH while reducing soil water content (SWC), soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) (p < 0.05). No significant differences in these soil properties were observed between SD and LD. Bacterial diversity increased significantly, whereas fungal diversity significantly decreased following pipeline disturbances (p < 0.05). The beta diversity of both bacterial and fungal communities differed significantly among the three disturbance types. At the phylum level, pipeline disturbance increased the relative abundances of Proteobacteria, Acidobacteriota, Actinobacteriota, Ascomycota, and Mortierellomycota while reducing those of Bacteroidota and Basidiomycota. These shifts were associated with disturbance-induced changes in soil properties. Microbial co-occurrence networks in SD exhibited greater complexity and connectivity than those in CK and LD, suggesting intensified biotic interactions and active ecological reassembly during the early recovery phase. These findings suggest that pipeline disturbance could drive soil microbial systems into a new stable state that is difficult to restore over the long term, highlighting the profound impacts of linear infrastructure on microbial ecological functions in cold regions. This study provides a scientific basis for ecological restoration and biodiversity conservation in permafrost-affected areas. Full article
Show Figures

Figure 1

20 pages, 3025 KiB  
Article
Variations in the Structure and Composition of Soil Microbial Communities of Different Forests in the Daxing’anling Mountains, Northeastern China
by Han Qu, Mingyu Wang, Xiangyu Meng, Youjia Zhang, Xin Gao, Yuhe Zhang, Xin Sui and Maihe Li
Microorganisms 2025, 13(6), 1298; https://doi.org/10.3390/microorganisms13061298 - 3 Jun 2025
Viewed by 555
Abstract
Soil microorganisms are crucial in global biogeochemical cycles, impacting ecosystems’ energy flows and material cycling. This study, via high-throughput sequencing in four forests—the original Larix gmelinii (Rupr.) Kuzen. forest (LG), the conifer–broad-leaved mixed Pinus sylvestris var. mongolica Litv. forest (PS), the original pure [...] Read more.
Soil microorganisms are crucial in global biogeochemical cycles, impacting ecosystems’ energy flows and material cycling. This study, via high-throughput sequencing in four forests—the original Larix gmelinii (Rupr.) Kuzen. forest (LG), the conifer–broad-leaved mixed Pinus sylvestris var. mongolica Litv. forest (PS), the original pure Betula platyphylla Sukaczev forest (BP), and the original pure Populus L. forest (PL) in Shuanghe National Nature Reserve, Daxing’anling mountains—explored soil microbial community structures and diversities. The results indicated that the BP and PL forests had the lowest soil bacterial ACE and Chao1 indices, and the original pure birch forest’s Shannon index was higher than that of the poplar forest. The soil’s fungal Chao1 index of the birch forest was higher than that of the larch forests. Bradyrhizobium and Roseiarcus were the dominant soil bacterial genera; the dominant soil fungal genera were Podila, Russula, and Sebacina. RDA and mantel analyses indicated that soil microbial community structures varied across forest types mainly because of the effective phosphorous and pH levels, soil’s total nitrogen level, and available phosphorus level. This study offers a scientific foundation for cold-temperate-forest ecosystem management regarding soil microbial diversity and community structural changes in different forest types. Full article
(This article belongs to the Special Issue Microbial Mechanisms for Soil Improvement and Plant Growth)
Show Figures

Figure 1

18 pages, 1072 KiB  
Article
Advantages and Challenges of Using Phosphonate-Based Fungicides in Agriculture: Experimental Analysis and Model Development
by Anh Nguyen
Agronomy 2025, 15(6), 1360; https://doi.org/10.3390/agronomy15061360 - 31 May 2025
Viewed by 654
Abstract
Phosphonate-based fungicides are believed to control fungal diseases while also supplying nutrients to plants. However, opinions differ on whether they truly serve as nutrients for plants, and the residues of their transformation products have not yet been thoroughly evaluated or mathematically characterized. To [...] Read more.
Phosphonate-based fungicides are believed to control fungal diseases while also supplying nutrients to plants. However, opinions differ on whether they truly serve as nutrients for plants, and the residues of their transformation products have not yet been thoroughly evaluated or mathematically characterized. To address this gap, this study analyzed data from a two-factorial experiment investigating the effects of Agrifos 400 (potassium phosphonate) application. The experiment involved two soil types: red basalt soil and an organically enriched soil. Three-month-old pepper plants (Piper nigrum L.) were treated with Agrifos at application intervals of 10 and 20 days. The soils were inoculated with pathogenic Pythium spp., known to cause root rot diseases in plants. The soil chemical concentrations were analyzed every ten days, while plant growth parameters (height and leaf numbers) were recorded weekly. A mathematical model describing the fate of Agrifos transformation products was developed and parameterized using this experimental data. The results from the two-month experiment indicated that Agrifos did not enhance plant growth during this period. However, it led to a dramatic increase in soil phosphate (PO43−) levels, which could pose environmental risks. Despite this, the developed mathematical model demonstrated strong explanatory power, accurately capturing the observed data trends. Consequently, future research should consider integrating this model into broader biogeochemical cycle simulations, particularly those that incorporate chemical transport through soil water. Such integration would support more accurate predictions of the long-term environmental impacts of phosphonate-based products like Agrifos. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

13 pages, 884 KiB  
Article
Tree Canopies Drive δ13C and δ15N Patterns in Mediterranean Wood Pastures of the Iberian Peninsula
by Mercedes Ibañez, Salvador Aljazairi, María José Leiva, Cristina Chocarro, Roland A. Werner, Jaleh Ghashghaie and Maria-Teresa Sebastià
Land 2025, 14(6), 1135; https://doi.org/10.3390/land14061135 - 22 May 2025
Viewed by 457
Abstract
Mediterranean wood pastures are the result of traditional silvo-pastoral uses that shaped these ecosystems into a mosaic of trees and open grassland. This ecosystem structure is generally associated with increased soil fertility under tree canopies. However, the response of herbaceous plant functional types [...] Read more.
Mediterranean wood pastures are the result of traditional silvo-pastoral uses that shaped these ecosystems into a mosaic of trees and open grassland. This ecosystem structure is generally associated with increased soil fertility under tree canopies. However, the response of herbaceous plant functional types (PFTs)—grasses, legumes, and non-legume forbs—to these heterogeneous microenvironments (under the canopy vs. open grassland) remains largely unknown, particularly regarding carbon (C) and nitrogen (N) acquisition and use. Even less is known about how different tree species and environmental conditions influence these responses. In this study, we aim to assess how tree canopies influence carbon and nitrogen cycling by comparing the effects of traditional oak stands and pine plantations on herbaceous PFTs and soil dynamics. For that we use C and N content and natural isotopic abundances (δ13C and δ15N) as proxies for biogeochemical cycling. Our results show that ecosystem C and N patterns depend not only on herbaceous PFTs and the presence or absence of tree canopies but also on tree species identity and environmental conditions, including climate. In particular, pine-dominated plantations exhibited lower nitrogen availability compared to those dominated by oak, suggesting that oak stands may contribute more effectively to enhance soil fertility in Mediterranean wood pastures. Furthermore, the canopy effect was more pronounced under harsher environmental conditions, highlighting the role of trees in buffering environmental stress, particularly in arid regions. This suggests that changes in tree cover and tree species may drive complex changes in ecosystem C and N storage and cycling. Full article
(This article belongs to the Special Issue Observation, Monitoring and Analysis of Savannah Ecosystems)
Show Figures

Figure 1

17 pages, 2402 KiB  
Article
Effects of Different Vegetation Types on Soil Quality in Golden Huacha (Camellia petelotii) National Nature Reserve
by Yong Jiang, Sheng Xu, Weiwei Gu, Siqi Wu, Jian Qiu, Wenxu Zhu and Nanyan Liao
Forests 2025, 16(5), 865; https://doi.org/10.3390/f16050865 - 21 May 2025
Viewed by 343
Abstract
Natural and planted forests differentially regulate soil quality through vegetation–soil interactions. The effects of four types of planting covers on soil nutrients, enzyme activities, and microbial communities in the Guangxi Camellia nitidissima National Nature Reserve were studied, revealing the multi-dimensional influences of natural [...] Read more.
Natural and planted forests differentially regulate soil quality through vegetation–soil interactions. The effects of four types of planting covers on soil nutrients, enzyme activities, and microbial communities in the Guangxi Camellia nitidissima National Nature Reserve were studied, revealing the multi-dimensional influences of natural (broadleaf, shrubland) and planted forests (bamboo, pine) on soil quality. Surface soils (0–10 cm depth) were characterized for physicochemical properties (pH, TC, TN, NO3-N, AP), enzyme activities (α-amylase, urease, phosphatase, β-glucosidase), and microbial composition (using 16S rRNA and ITS region sequencing). Mantel tests and PLS–PM modeling were employed to investigate interactions among vegetation, soil variables, and microbes. Natural forests exhibited higher pH, nitrate nitrogen, and enzymatic activities (urease, phosphatase, β-glucosidase) alongside enhanced carbon–nitrogen accumulation and reduced acidification. Planted forests showed elevated available phosphorus and nutrient supply but lower organic matter retention. Microbial communities displayed higher similarity within natural forests, with fungal composition strongly linked to total carbon/nitrogen (p < 0.05). Vegetation type positively influenced bacterial diversity but negatively affected fungal communities. Natural forests maintained critical soil–microbe–plant interactions supporting ecosystem resilience through carbon–nitrogen cycling, while planted forests fostered divergent microbial functionality despite short-term nutrient benefits. These findings underscore natural forests’ unique role in preserving ecological stability and reveal fundamental limitations of artificial systems in mimicking microbially-mediated biogeochemical processes. Conservation policy should prioritize the protection of natural forests while simultaneously integrating microbial community management with vegetation restoration efforts to enhance long-term ecosystem functionality and nutrient cycling efficiency. Full article
Show Figures

Figure 1

20 pages, 5150 KiB  
Article
Soil Microbial Adaptation and Biogeochemical Feedback in Degraded Alpine Meadows of the Qinghai–Tibetan Plateau
by Bingzhang Li, Quzhen Gesang, Yan Sun, Yuting Wang, Jibin Nan and Jun Xu
Microorganisms 2025, 13(5), 1142; https://doi.org/10.3390/microorganisms13051142 - 16 May 2025
Viewed by 937
Abstract
Alpine meadows on the Qinghai–Tibetan Plateau are experiencing rapid degradation due to climate change and anthropogenic disturbances, leading to severe ecological consequences. In this study, we investigated the response of soil microbial communities and their metabolic functions across a degradation gradient using metagenomic [...] Read more.
Alpine meadows on the Qinghai–Tibetan Plateau are experiencing rapid degradation due to climate change and anthropogenic disturbances, leading to severe ecological consequences. In this study, we investigated the response of soil microbial communities and their metabolic functions across a degradation gradient using metagenomic sequencing and comprehensive soil physicochemical analysis in the city of Lhasa, China. Results showed that soil pH increased with degradation, while most nutrients, including different forms of nitrogen, phosphorus, and potassium, declined. pH, ammonium nitrogen, and organic matter were identified as key factors driving degradation dynamics. Microbial community composition shifted markedly, with distinct biomarker taxa emerging at different degradation levels. Network analysis revealed a progressive loss of microbial connectivity, with Actinobacteria dominance increasing in heavily degraded soils, while cross-phylum interactions weakened. Functional analysis of biogeochemical cycling genes showed that carbon, nitrogen, and phosphorus cycling were all disrupted by degradation, but each exhibited unique response patterns. These findings will extend our understanding of microbial-mediated soil processes under degradation and provide a scientific foundation for ecosystem management, conservation, and targeted restoration strategies in alpine meadows. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

20 pages, 3419 KiB  
Article
Changes in Microbial Activity Associated with the Nitrogen Biogeochemical Cycle in Differently Managed Soils, Including Protected Areas and Those Reclaimed with Gangue
by Jolanta Joniec, Edyta Kwiatkowska, Anna Walkiewicz and Grzegorz Grzywaczewski
Sustainability 2025, 17(10), 4343; https://doi.org/10.3390/su17104343 - 11 May 2025
Viewed by 440
Abstract
The proximity of ecologically valuable areas to industrial zones indicates a strong need for monitoring their condition. Soil assessment involves both molecular techniques for studying microbial biodiversity, such as PCR, sequencing, and metagenomics, as well as parameters of biochemical and enzymatic activity of [...] Read more.
The proximity of ecologically valuable areas to industrial zones indicates a strong need for monitoring their condition. Soil assessment involves both molecular techniques for studying microbial biodiversity, such as PCR, sequencing, and metagenomics, as well as parameters of biochemical and enzymatic activity of soil microorganisms. The authors studied the activity of microorganisms responsible for the nitrogen cycle to compare the condition of soils under different uses (wastelands and arable fields) located in the ecologically valuable areas of the Polesie National Park (PNP, protected area) and its surroundings. Additionally, they assessed the suitability of gangue for reclamation and its effectiveness depending on treatment duration (2 and 10 years). In most of the activities analyzed, their levels were lower in the park. A higher intensity of ammonification and nitrification was observed in the soil sampled from the field in the park; however, a reduced N2O emission was also recorded after incubation in the lab of soil samples collected in the autumn, which may indicate that nitrogen loss from the soil does not occur in this particular habitat, which requires further, long-term and cyclical field trials. These observations confirm the potential protective role of the park in relation to soils and atmosphere in the context of the nitrogen cycle. The activities under study in the reclaimed soils were in both cases lower than in soils from the fields. The current results prove that this method of reclamation is not entirely effective; however, long-term reclamation yielded better results. The present study provided valuable information on the effectiveness of the protective role of the PNP in relation to soils and air. Additionally, these results may be helpful in making decisions regarding the use of waste, such as gangue, for reclamation. Full article
Show Figures

Figure 1

17 pages, 3357 KiB  
Article
Factors Influencing the Spatial Distribution of Soil Total Phosphorus Based on Structural Equation Modeling
by Yameng Jiang, Jun Huang, Xi Guo, Yingcong Ye, Jia Liu and Yefeng Jiang
Agriculture 2025, 15(9), 1013; https://doi.org/10.3390/agriculture15091013 - 7 May 2025
Cited by 1 | Viewed by 449
Abstract
Soil total phosphorus plays an important role in soil fertility, plant growth, and bioge-ochemical cycles. This study aims to determine the spatial distribution characteristics of soil total phosphorus and identify its main influencing factors in the study area, thereby providing a basis for [...] Read more.
Soil total phosphorus plays an important role in soil fertility, plant growth, and bioge-ochemical cycles. This study aims to determine the spatial distribution characteristics of soil total phosphorus and identify its main influencing factors in the study area, thereby providing a basis for the scientific management of soil total phosphorus. Here, we conducted a comprehensive analysis by combining classical statistical analysis, ge-ostatistics methods, Pearson correlation analysis, one-way analysis of variance (ANOVA), and structural equation modeling (SEM) to explore the spatial distribution patterns of soil total phosphorus and its influencing factors. The results showed that soil total phosphorus in the study area ranged from 161.00 to 991.00 mg/kg, with an average of 495.71 mg/kg. Spatially, soil total phosphorus exhibited a patchy distribu-tion pattern, with high values primarily concentrated in cultivated areas along rivers and low values mainly located in forested areas in the southeastern and central re-gions. Additionally, the nugget effect of soil total phosphorus was 71.5%, indicating a moderate level of spatial variability. The Pearson correlation analysis revealed that soil total phosphorus content was significantly correlated with multiple factors, including land use types, soil parent material, distance from settlements, slope, and soil pH. Based on these findings, we employed ANOVA to analyze the impacts of various fac-tors. The results indicated that soil total phosphorus content showed significant differences under the influence of different factors. Subsequently, we further explored in depth the action paths through which these factors affect soil total phosphorus us-ing SEM. The SEM results showed that the absolute values of the total effects of the influencing factors on soil total phosphorus, ranked from highest to lowest, were as follows: land use types (0.499) > soil parent material (0.240) > distance from settle-ments (0.178) > slope (0.161) > elevation (0.127) > soil pH (0.114) > normalized differ-ence vegetation index (0.103). These findings provide a scientific foundation for the effective management of soil total phosphorus in similar study areas. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

Back to TopTop