Influence of Soil Depth and Land Use Type on the Diversity of and Metabolic Restriction in the Soil Microbial Community of a Forest-Grass Ecotone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sample Collection
2.2. Analysis of the Physical and Chemical Properties of Soil
2.3. Analysis of Microbial Metabolic Restriction
2.4. Extraction of Soil Microbial DNA and High-Throughput Sequencing
2.5. Statistical Analyses
3. Results
3.1. Basic Physical and Chemical Properties of Soil
3.2. Composition and Diversity of Soil Bacterial and Fungal Communities
3.3. Stoichiometric Changes and Metabolic Limitations of Microbial Enzymes in Soil
3.4. Correlation of Soil Properties, Microbial Communities, and Their Metabolic Constraints
4. Discussion
4.1. Changes in the Composition and Diversity of the Soil Microbial Community
4.2. Differences in Soil Microbial Metabolism Limitations
4.3. Key Factors Affecting the Composition and Metabolic Limitation of Soil Microbial Communities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SWC | Soil Water Content |
SOC | Soil Organic Carbon |
TN | Total Nitrogen |
TP | Total Phosphorus |
References
- Leff, J.W.; Jones, S.E.; Prober, S.M.; Barberán, A.; Borer, E.T.; Firn, J.L.; Harpole, W.S.; Hobbie, S.E.; Hofmockel, K.S.; Knops, J.M.H.; et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl. Acad. Sci. USA 2015, 112, 10967–10972. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.D.; Vitousek, P.M. Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol. Biochem. 2005, 37, 937–944. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Manzoni, S.; Moorhead, D.L.; Richter, A. Carbon use efficiency of microbial communities: Stoichiometry, methodology and modelling. Ecol. Lett. 2013, 16, 930–939. [Google Scholar] [CrossRef]
- Cui, Y.; Fang, L.; Guo, X.; Han, F.; Ju, W.; Ye, L.; Wang, X.; Tan, W.; Zhang, X. Natural grassland as the optimal pattern of vegetation restoration in arid and semi-arid regions: Evidence from nutrient limitation of soil microbes. Sci. Total Environ. 2019, 648, 388–397. [Google Scholar] [CrossRef]
- Cao, X.; Shi, Z.; Chen, J.; Liu, S.; Zhang, M.; Chen, M.; Wu, J.; Xu, G.; Xing, H.; Li, F. Carbon and nutrient limitations of soil microbial metabolism in Quercus aquifolioides forest ecosystems along a precipitation gradient on the eastern Qinghai-Tibetan Plateau. Plant Soil. 2023, 488, 291–304. [Google Scholar] [CrossRef]
- Sinsabaugh, L.R.; Lauber, L.C.; Weintraub, N.M.; Ahmed, B.; Allison, D.S.; Crenshaw, C.; Contosta, R.A.; Cusack, D.; Frey, S.; Gallo, E.M.; et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef]
- Sinsabaugh, L.R.; Hill, H.B.; Shah, J.J.F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 2009, 462, 795–798. [Google Scholar] [CrossRef]
- Sinsabaugh, L.R.; Shah, J.J.F. Ecoenzymatic stoichiometry and ecological theory. Annu. Rev. Ecol. Evol. Syst. 2012, 43, 313–343. [Google Scholar] [CrossRef]
- Sinsabaugh, L.R.; Gallo, E.M.; Lauber, C.; Waldrop, P.M.; Zak, R.D. Extracellular enzyme activities and soil organic matter dynamics for northern hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 2005, 75, 201–215. [Google Scholar] [CrossRef]
- Fatemi, R.; Fernandez, I.J.; Simon, K.S.; Dail, D.B. Nitrogen and phosphorus regulation of soil enzyme activities in acid forest soils. Soil Biol. Biochem. 2016, 98, 171–179. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.; Zhang, X.; Ju, W.; Duan, C.; Guo, X.; Wang, Y.; Fang, L. Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biol. Biochem. 2020, 147, 107814. [Google Scholar] [CrossRef]
- Xiao, H.; Rong, Y.; Li, P.; Liu, Y. Soil moisture drives the response of soil microbial nutrient limitation to N and P additions in an Inner Mongolian meadow steppe. Eur. J. Soil Biol. 2024, 120, 103601. [Google Scholar] [CrossRef]
- Liu, S.; Xu, G.; Chen, M.; Chen, J.; Feng, Q.; Shi, Z. Effects of slope aspect on soil enzyme activity and microbial nutrient limitation in subalpine region of western Sichuan, China. Ying Yong Sheng Tai Xue Bao 2023, 34, 2993–3002. [Google Scholar]
- Xu, H.; Qu, Q.; Wang, Z.; Xue, S.; Xu, Z. Plant-soil-enzyme C-N-P stoichiometry and microbial nutrient limitation responses to plant-soil feedbacks during community succession: A 3-year pot experiment in China. Front Plant Sci. 2022, 13, 1009886. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Sinsabaugh, R.L.; Hill, B.H.; Weintraub, M.N. Vector analysis of ecoenzyme activities reveal constraints on coupled C, N and P dynamics. Soil Biol. Biochem. 2016, 93, 1–7. [Google Scholar] [CrossRef]
- Sun, T.; Wang, Y.; Guo, Y.; Feng, W. Contrasting elevational patterns of microbial carbon and nutrient liitation in soil from alpine meadow to desert. Catena. 2023, 223, 106901. [Google Scholar] [CrossRef]
- Yan, B.; Li, J.; Xiao, N.; Qi, Y.; Fu, G.; Liu, G.; Qiao, M. Urban-Development-Induced Changes in the Diversity and Composition of the Soil Bacterial Community in Beijing. Sci. Rep. 2016, 6, 38811. [Google Scholar] [CrossRef] [PubMed]
- Angelo, C.M.; Amabel, C.; Ryan, S.D.; Sungwoo, B. Different types of land use influence soil physiochemical properties, the abundance of nitrifying bacteria, and microbial interactions in tropical urban soil. Sci. Total Environ. 2023, 869, 161722. [Google Scholar]
- Hu, X.; Wang, J.; Lv, Y.; Liu, X.; Zhong, J.; Cui, X.; Zhang, M.; Ma, D.; Yan, X. Effects of heavy metals/metalloids and soil properties on microbial communities in farmland in the vicinity of a metals smelter. Front. Microbiol. 2021, 12, 707786. [Google Scholar] [CrossRef]
- Li, J.; Prem, P.; Liu, G.; Chen, J. Reclamation of desert land to different land-use types changes soil bacterial community composition in a desert-oasis ecotone. Land Degrad. Dev. 2022, 32, 1389–1399. [Google Scholar] [CrossRef]
- Cui, Y.; Moorhead, D.L.; Peng, S.; Sinsabaugh, R.L. New insights into the patterns of ecoenzymatic stoichiometry in soil and sediment. Soil Biol. Biochem. 2023, 177, 107176. [Google Scholar] [CrossRef]
- Zhao, M.; Sun, Y.; Liu, S.; Li, Y.; Chen, Y. Effect of stand age on soil microbial metabolic limitation and enzyme activities in Robinia pseudoacacia L. plantations in the loess hilly-gully region, China. Land Degrad. Dev. 2024, 35, 2560–2571. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Wang, L.; Duan, Y.; Yao, B.; Chen, Y.; Cao, W. Soil extracellular enzyme stoichiometry reflects microbial metabolic limitations in different desert types of northwestern China. Sci. Total Environ. 2023, 874, 162504. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Tang, F.; Wang, C.; Wei, X.; Song, J. Divergent responses of soil microbial metabolic limitations to cropland revegetation at erosion and deposition topographies in the hilly-gully region of the northern Loess Plateau, China. Plant Soil. 2023, 487, 213–227. [Google Scholar] [CrossRef]
- Liu, J.; Fang, L.; Qiu, T.; Bing, H.; Cui, Y.; Sardans, J.; Du, E.; Chen, J.; Tan, W.; Delgado-Baquerizo, M.; et al. Disconnection between plant–microbial nutrient limitation across forest biomes. Funct. Ecol. 2023, 37, 2271–2281. [Google Scholar] [CrossRef]
- Nottingham, T.A.; Turner, L.B.; Whitaker, J.; Ostle, J.N.; McNamara, P.N.; Bardgett, D.R.; Salinas, N.; Meir, P. Soil microbial nutrient constraints along a tropical forest elevation gradient: A belowground test of a biogeochemical paradigm. Biogeosciences 2015, 12, 6071–6083. [Google Scholar] [CrossRef]
- Xu, T.; Chen, X.; Hou, Y.; Zhu, B. Changes in microbial biomass, community composition and diversity, and functioning with soil depth in two alpineecosystems on the tibetan plateau. Plant Soil. 2021, 459, 137–153. [Google Scholar] [CrossRef]
- Chu, H.; Sun, H.; Tripathi, B.M.; Adams, J.M.; Huang, R.; Zhang, Y.; Shi, Y. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau. Environ. Microbiol. 2016, 18, 1523–1533. [Google Scholar] [CrossRef]
- Xu, Z.; Hu, Z.; Jiao, S.; Bell, M.S.; Xu, Q.; Ma, L.; Chen, J. Depth-dependent effects of tree species identity on soil microbial community characteristics and multifunctionality. Sci. Total Environ. 2023, 878, 162972. [Google Scholar] [CrossRef]
- Jing, X.; Chen, X.; Fang, J.; Ji, C.; Shen, H.; Zheng, C.; Zhu, B. Soil microbial carbon and nutrient constraints are driven more by climate and soil physicochemical properties than by nutrient addition in forest ecosystems. Soil Biol. Biochem. 2020, 141, 107657. [Google Scholar] [CrossRef]
- Munroe, S.J. Physical, Chemical, and Thermal Properties of Soils across a Forest-Meadow Ecotone in the Uinta Mountains. Arct. Antarct. Alp. Res. 2018, 44, 95–106. [Google Scholar] [CrossRef]
- Bao, S. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Somenahally, A.C.; McLawrence, J.; Chaganti, V.N.; Ganjegunte, G.K.; Obayomi, O.; Brady, J.A. Response of Soil Microbial Communities, Inorganic and Organic Soil Carbon Pools in Arid Saline Soils to Alternative Land Use Practices. Ecol. Indic. 2023, 150, 110227. [Google Scholar] [CrossRef]
- Wang, X.; Yang, J.; Xie, X.; Chen, X.; Pu, L.; Zhang, X. Soil Microbial Succession with Soil Development since Costal Reclamation. Catena 2020, 187, 104393. [Google Scholar] [CrossRef]
- Han, C.; Zhou, W.; Gu, Y.; Wang, J.; Zhou, Y.; Xue, Y.; Shi, Z.; Siddique, K.H.M. Effects of tillage regime on soil aggregate-associated carbon, enzyme activity, and microbial community structure in a semiarid agroecosystem. Plant Soil. 2024, 498, 543–559. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Z.; Yin, S. Response of Soil Physicochemical Properties and Microbial Community Composition in Larix-olgensis Plantations to Disturbance by a Large Outbreak of Bark Beetle. Forests 2024, 15, 677. [Google Scholar] [CrossRef]
- He, Z.; Yuan, C.; Chen, P.; Rong, Z.; Peng, T.; Farooq, H.T.; Wang, G.; Yan, W.; Wang, J. Soil Microbial Community Composition and Diversity Analysis under Different Land Use Patterns in Taojia River Basin. Forests 2023, 14, 1004. [Google Scholar] [CrossRef]
- Chen, T.; Hu, R.; Zheng, Z.; Yang, J.; Fan, H.; Deng, X.; Yao, W.; Wang, Q.; Peng, S.; Li, J. Soil Bacterial Community in the Multiple Cropping System Increased Grain Yield within 40 Cultivation Years. Front. Plant Sci. 2021, 12, 804527. [Google Scholar] [CrossRef]
- Zhang, L.; Xue, T.; Yuan, L.; Gao, F.; Hao, X.; Yang, C.; Wang, L.; Han, Y.; Li, H.; Wang, H. The effect of vineyard reclamation on soil properties and microbial communities in desertified land in Hongsibu, Ningxia. Catena 2022, 211, 106002. [Google Scholar] [CrossRef]
- Zhong, F.; Fan, X.; Ji, W.; Hai, Z.; Hu, N.; Li, X.; Liu, G.; Yu, C.; Chen, Y.; Lian, B.; et al. Soil Fungal Community Composition and Diversity of Culturable Endophytic Fungi from Plant Roots in the Reclaimed Area of the Eastern Coast of China. J. Fungi 2022, 8, 124. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Yu, X.; Jia, G. Soil microorganism regulated aggregate stability and rill erosion resistance under different land uses. Catena 2023, 228, 107176. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Z.N.; He, C.H.; Zhang, Y.H.; Dong, F.F.; Huang, W.J. Effect of soil microbial community structure on the chemical compositions of different soil organic matter fractions in land uses of the Pearl River Estuary. Appl. Soil Ecol. 2024, 193, 105126. [Google Scholar] [CrossRef]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global Effects of Land Use on Local Terrestrial Biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Zhang, Z.; Zhao, Y.; Yang, J.; Zhu, Y. Species Diversity and Drivers of Arbuscular Mycorrhizal Fungal Communities in a Semi-Arid Mountain in China. PeerJ 2017, 5, e4155. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xiong, J.; Du, T.; Ju, X.; Gan, Y.; Li, S.; Xia, L.; Shen, Y.; Pacenka, S.; Steenhuis, T.S.; et al. Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health. Nat. Commun. 2024, 15, 198. [Google Scholar] [CrossRef]
- Griffin, J.S.; Haug, L.A.; Rivera, V.A.; Gonzalez, L.M.H.; Kelly, J.J.; Miller, W.M.; Wells, G.F.; Packman, A.I. Soil hydrology drives ecological niche differentiation in a native prairie microbiome. FEMS Microbiol. Ecol. 2020, 96, fiz163. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Lin, D.; Chen, D.; Guo, Y.; Lu, Y.; Han, Q.; Li, N.; Su, Y.; Li, J.; Wang, J.; et al. Soil microbial communities response to different fertilization regimes in young Catalpa bungei plantation. Front. Microbiol. 2022, 13, 948875. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Kuzyakov, Y.; Zheng, Y.; Li, P.; Li, G.; Liu, M.; Alharbi, H.A.; Li, Z. Depth effects on bacterial community assembly processes in paddy soils. Soil Biol. Biochem. 2022, 165, 108517. [Google Scholar] [CrossRef]
- Stone, M.M.; DeForest, J.L.; Plante, A.F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biol. Biochem. 2014, 75, 237–247. [Google Scholar] [CrossRef]
- Eilers, K.G.; Debenport, S.; Anderson, S.; Fierer, N. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem. 2012, 50, 58–65. [Google Scholar] [CrossRef]
- Yu, P.; Tang, X.; Zhang, A.; Fan, G.; Liu, S. Responses ofsoil specific enzyme activities to short-term land useconversions in a salt-affected region, northeastern China. Sci. Total Environ. 2019, 687, 939–945. [Google Scholar] [CrossRef]
- García-Franco, N.; Martínez-Mena, M.; Goberna, M.; Albaladejo, J. Changes in soil aggregation and micrbial communitystructure control carbon sequestration after afforestaion of semiaridshrublands. Soil Biol. Biochem. 2015, 87, 110–121. [Google Scholar] [CrossRef]
- Liu, D.; Huang, Y.; An, S.; Sun, H.; Bhople, P.; Chen, Z. Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gcadients. Catena 2018, 162, 345–353. [Google Scholar] [CrossRef]
- Feng, J.; Wu, J.; Zhang, Q.; Zhang, D.; Li, Q.; Long, C.; Yang, F.; Chen, Q.; Cheng, X. Stimulation of nitrogen-hydrolyzing enzymes in soil aggregates mitigates nitrogen constraint for carbon sequestration following afforestation in subtropical China. Soil Biol. Biochem. 2018, 123, 136–144. [Google Scholar] [CrossRef]
- Jiang, C.; Zhu, B.; Zeng, H. Soil extracellular enzymestoichiometry reflects the unique habitat of karst tiankeng and helpsto alleviate the P limitation of soil microbes. Ecol. Indic. 2022, 144, 109552. [Google Scholar] [CrossRef]
- Gong, S.; Feng, Z.; Qu, A.; Sun, J.; Xu, X.; Lai, Y.; Kong, Y. Effects of land-use types on the temporal dynamics of soil active carbon and nitrogen in the rocky mountainous of North China. Soil Sci. Plant Nutr. 2022, 68, 72–80. [Google Scholar] [CrossRef]
- Kong, Y.; Qu, A.; Feng, E.; Chen, R.; Yang, X.; Lai, Y. Seasonal Dynamics of Soil Enzymatic Activity under Different Land-Use Types in Rocky Mountainous Region of North China. Forests 2023, 14, 536. [Google Scholar] [CrossRef]
- Cui, Y.; Bing, H.; Moorhead, D.L.; Delgado-Baquerizo, M.; Ye, L.; Yu, J.; Zhang, S.; Wang, X.; Peng, S.; Guo, X.; et al. Ecoenzymatic stoichiometry reveals widespread soil phosphorus limitation to microbial metabolism across Chinese forests. Commun. Earth Environ. 2022, 3, 184. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Belnap, J.; Findlay, S.G.; Shah, J.J.F.; Hill, B.H.; Kuehn, K.A.; Kuske, C.R.; Litvak, M.E.; Martinez, N.G.; Moorhead, D.L. Extracellular enzyme kinetics scale with resource availability. Biogeochemistry 2014, 121, 287–304. [Google Scholar] [CrossRef]
- Li, X.; Wang, A.; Wan, W.; Luo, X.; Zheng, L.; He, G.; Huang, D.; Chen, W.; Huang, Q. High Salinity Inhibits Soil Bacterial Community Mediating Nitrogen Cycling. Appl. Environ. Microbiol. 2021, 87, e01366-21. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, Y.; Janssens, A.I.; Deng, Y.; He, X.; Liu, L.; Yi, Y.; Xiao, N.; Wang, X.; Li, C.; et al. Divergent rhizosphere and non-rhizosphere soil microbial structure and function in long-term warmed steppe due to altered root exudation. Glob. Chang. Biol. 2024, 30, e17111. [Google Scholar] [CrossRef]
- Yang, Y.; Li, T.; Wang, Y.; Cheng, H.; Chang, S.X.; Liang, C.; An, S. Negative effects of multiple global change factors on soil microbial diversity. Soil Biol. Biochem. 2021, 156, 108229. [Google Scholar] [CrossRef]
- Yan, K.; Dong, Y.; Gong, Y.; Zhu, Q.; Wang, y. Climatic and edaphic factors affecting soil bacterial community biodiversity in different forests of China. Catena 2021, 207, 105675. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Y.; Chen, W.; Zhang, W.; Lu, X. Shifts in bacterial diversity, interactions and microbial elemental cycling genes under cadmium contamination in paddy soil: Implications for altered ecological function. J. Hazard. Mater. 2024, 461, 132544. [Google Scholar] [CrossRef]
- Keeler, B.L.; Hobbie, S.E.; Kellogg, L.E. Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: Implications for litter and soil organic matter decomposition. Ecosystems 2009, 12, 1–15. [Google Scholar] [CrossRef]
- Yuan, X.B.; Niu, D.C.; Weber-Grullon, L.; Fu, H. Nitrogen deposition enhances plant-microbe interactions in a semiarid grassland: The role of soil physicochemical properties. Geoderma 2020, 373, 114446. [Google Scholar] [CrossRef]
- Hao, Y.Q.; Xie, L.; Chen, Y.M.; Tang, C.D.; Liu, X.F.; Lin, W.S.; Xiong, D.C.; Yang, Y.S. Effects of nitrogen deposition on diversity and composition of soil bacterial community in a subtropical Cunninghamia lanceolata plantation. Ying Yong Sheng Tai Xue Bao 2018, 29, 53–58. [Google Scholar] [PubMed]
- Cregger, M.A.; Schadt, C.W.; McDowell, N.G.; Pockman, W.T.; Classen, A.T. Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl. Environ. Microbiol. 2012, 78, 8587–8594. [Google Scholar] [CrossRef]
- Deng, L.; Peng, C.; Huang, C.; Wang, K.; Liu, Q.; Liu, Y.; Hai, X.; Shangguan, Z. Drivers of soil microbial metabolic limitation changes along a vegetation restoration gradient on the Loess Plateau, China. Geoderma 2019, 353, 188–200. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Liu, G.; Wang, G.; Wu, Y.; Zhang, C. Fencing as an effective approach for restoration of alpine meadows: Evidence from nutrient limitation of soil microbes. Geoderma 2020, 363, 114148. [Google Scholar] [CrossRef]
Land Use Types | Elevation (m) | Mean BDH (cm) | Mean Tree Height (m) | Crown Density | Cover Degree % |
---|---|---|---|---|---|
Farmland | 1357 | / | / | / | 80 |
Grassland | 1375 | / | / | / | 77 |
Secondary forest | 1402 | 14.44 | 11.2 | 0.70 | / |
Planted forest | 1406 | 13.75 | 10.8 | 0.53 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Li, X.; Meng, Y.; Liu, J.; Wang, J.; Yu, X.; Wang, W.; Xu, X. Influence of Soil Depth and Land Use Type on the Diversity of and Metabolic Restriction in the Soil Microbial Community of a Forest-Grass Ecotone. Microorganisms 2025, 13, 1450. https://doi.org/10.3390/microorganisms13071450
Ma X, Li X, Meng Y, Liu J, Wang J, Yu X, Wang W, Xu X. Influence of Soil Depth and Land Use Type on the Diversity of and Metabolic Restriction in the Soil Microbial Community of a Forest-Grass Ecotone. Microorganisms. 2025; 13(7):1450. https://doi.org/10.3390/microorganisms13071450
Chicago/Turabian StyleMa, Xuman, Xiaogang Li, Yaxin Meng, Jinhua Liu, Jinxin Wang, Xiaomeng Yu, Weipeng Wang, and Xuehua Xu. 2025. "Influence of Soil Depth and Land Use Type on the Diversity of and Metabolic Restriction in the Soil Microbial Community of a Forest-Grass Ecotone" Microorganisms 13, no. 7: 1450. https://doi.org/10.3390/microorganisms13071450
APA StyleMa, X., Li, X., Meng, Y., Liu, J., Wang, J., Yu, X., Wang, W., & Xu, X. (2025). Influence of Soil Depth and Land Use Type on the Diversity of and Metabolic Restriction in the Soil Microbial Community of a Forest-Grass Ecotone. Microorganisms, 13(7), 1450. https://doi.org/10.3390/microorganisms13071450