Aboveground and Belowground Input Effects on Soil Health in Urban Camphor Tree Forests
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Soil Sampling Collection
2.3. Determination of Soil Carbon and Nitrogen
2.4. Determination of Soil Enzyme Activity
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Brien, L.E.; Urbanek, R.E.; Gregory, J.D. Ecological functions and human benefits of urban forests. Urban For. Urban Green. 2022, 75, 127707. [Google Scholar] [CrossRef]
- Zhang, F.; Qian, H. A comprehensive review of the environmental benefits of urban green spaces. Environ. Res. 2024, 252, 118837. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Kotze, D.J.; Setälä, H.M. Evergreen trees stimulate carbon accumulation in urban soils via high root production and slow litter decomposition. Sci. Total Environ. 2021, 774, 145129. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Jin, T.; Fu, Y.; Chen, B.; Crotty, F.; Murray, P.J.; Yu, S.; Xu, C.; Liu, W. Spatial change in glomalin-related soil protein and its relationships with soil enzyme activities and microbial community structures during urbanization in Nanchang, China. Geoderma 2023, 434, 116476. [Google Scholar] [CrossRef]
- Pereira, M.C.; O’Riordan, R.; Stevens, C. Urban soil microbial community and microbial-related carbon storage are severely limited by sealing. J. Soils Sediments 2021, 21, 1455–1465. [Google Scholar] [CrossRef]
- Nugent, A.; Allison, S.D. A framework for soil microbial ecology in urban ecosystems. Ecosphere 2022, 13, e3968. [Google Scholar] [CrossRef]
- Liu, X.; Huang, Z.; Havrilla, C.A.; Liu, Y.; Wu, G.-L. Plant litter crust role in nutrients cycling potentials by bacterial communities in a sandy land ecosystem. Land Degrad. Dev. 2021, 32, 3194–3203. [Google Scholar] [CrossRef]
- Prescott, C.E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 2010, 101, 133–149. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Kotroczó, Z.; Makádi, M.; Kocsis, T.; Béni, Á.; Várbíró, G.; Fekete, I. Long-term changes in organic matter content and soil moisture determine the degree of root and soil respiration. Plants 2023, 12, 251. [Google Scholar] [CrossRef]
- Datta, R.; Kelkar, A.; Baraniya, D.; Molaei, A.; Moulick, A.; Meena, R.S.; Formanek, P. Enzymatic Degradation of Lignin in Soil: A Review. Sustainability 2017, 9, 1163. [Google Scholar] [CrossRef]
- Chio, C.; Sain, M.; Qin, W. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 2019, 107, 232–249. [Google Scholar] [CrossRef]
- Clemmensen, K.E.; Finlay, R.D.; Dahlberg, A.; Stenlid, J.; Wardle, D.A.; Lindahl, B.D. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 2015, 205, 1525–1536. [Google Scholar] [CrossRef]
- Fung, T.K.; Richards, D.R.; Leong, R.A.; Ghosh, S.; Tan, C.W.; Drillet, Z.; Leong, K.L.; Edwards, P.J. Litter decomposition and infiltration capacities in soils of different tropical urban land covers. Urban Ecosyst. 2022, 25, 21–34. [Google Scholar] [CrossRef]
- Canarini, A.; Kaiser, C.; Merchant, A.; Richter, A.; Wanek, W. Root exudation of primary metabolites: Mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 2019, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Kuzyakov, Y.; Blagodatskaya, E. Microbial hotspots and hot moments in soil: Concept & review. Soil Biol. Biochem. 2015, 83, 184–199. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, S.; Zhang, B.; Ma, X.; Liu, X.; Huang, Y.; Zhang, Y. Divergent decomposition patterns of leaf litter and fine roots from an urban forest in Mid-Subtropical China. Forests 2023, 14, 1741. [Google Scholar] [CrossRef]
- Keiluweit, M.; Bougoure, J.J.; Nico, P.S.; Pett-Ridge, J.; Weber, P.K.; Kleber, M. Mineral protection of soil carbon counteracted by root exudates. Nat. Clim. Change 2015, 5, 588–595. [Google Scholar] [CrossRef]
- Jia, X.; Liu, T.; Zhao, Y.; He, Y.; Yang, M. Elevated atmospheric CO2 affected photosynthetic products in wheat seedlings and biological activity in rhizosphere soil under cadmium stress. Environ. Sci. Pollut. Res. 2016, 23, 514–526. [Google Scholar] [CrossRef] [PubMed]
- Jansson, J.K.; Hofmockel, K.S. The soil microbiome—From metagenomics to metaphenomics. Curr. Opin. Microbiol. 2018, 43, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Ge, Y.; Luo, B.; Chen, Z.; Min, Y.; Schmid, B.; Gu, B.; Chang, J. Plant diversity increases N removal in constructed wetlands when multiple rather than single N processes are considered. Ecol. Appl. 2019, 29, e01965. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Yan, W. Conservation and applications of camphor tree (Cinnamomum camphora) in China: Ethnobotany and genetic resources. Genet. Resour. Crop Evol. 2016, 63, 1049–1061. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Q.; Peng, Y.; Lei, J.; Liu, S.; Mao, C.; Liu, X.; Wang, J.; Yan, W.; Chen, X. Diurnal, seasonal, and vertical changes in photosynthetic rates in Cinamomum camphora forests in subtropical China. Forests 2024, 15, 183. [Google Scholar] [CrossRef]
- Sun, L.; Li, G.; Zhao, J.; Zhang, T.; Liu, J.; Zhang, J. Core microbiota drive multi-functionality of the soil microbiome in the Cinnamomum camphora coppice planting. BMC Microbiol. 2024, 24, 18. [Google Scholar] [CrossRef] [PubMed]
- Farooq, T.H.; Li, Z.W.; Yan, W.D.; Shakoor, A.; Kumar, U.; Shabbir, R.; Peng, Y.Y.; Gayathiri, E.; Alotaibi, S.S.; Wrobel, J.; et al. Variations in litterfall dynamics, C:N:P stoichiometry and associated nutrient return in pure and mixed stands of camphor tree and masson pine forests. Front. Environ. Sci. 2022, 10, 903039. [Google Scholar] [CrossRef]
- Arneth, A.; Olsson, L.; Cowie, A.; Erb, K.H.; Hurlbert, M.; Kurz, W.A.; Mirzabaev, A.; Rounsevell, M.D. Restoring degraded lands. Annu. Rev. Environ. Resour. 2021, 46, 569–599. [Google Scholar] [CrossRef]
- Covey, K.; Soper, F.; Pangala, S.; Bernardino, A.; Pagliaro, Z.; Basso, L.; Cassol, H.; Fearnside, P.; Navarrete, D.; Novoa, S.; et al. Carbon and beyond: The biogeochemistry of climate in a rapidly changing Amazon. Front. For. Glob. Change 2021, 4, 618401. [Google Scholar] [CrossRef]
- Lajtha, K.; Bowden, R.D.; Crow, S.; Fekete, I.; Kotroczó, Z.; Plante, A.; Simpson, M.J.; Nadelhoffer, K.J. 2018. The detrital input and removal treatment (DIRT) network: Insights into soil carbon stabilization. Sci. Total Environ. 2018, 640, 1112–1120. [Google Scholar] [CrossRef]
- Siegel, K.; Dee, L.E. Foundations and future directions for causal inference in ecological research. Ecol. Lett. 2025, 28, e70053. [Google Scholar] [CrossRef]
- Nadelhoffer, K.J.; Boone, R.D.; Bowden, R.D.; Canary, J.D.; Kaye, J.P.; McFarlane, K.J.; Melillo, J.M. The DIRT experiment: Litter and root influences on forest soil organic matter stocks and function. For. Ecol. Manag. 2004, 201, 19–34. [Google Scholar]
- Fahey, T.J.; Hughes, J.W.; Siccama, T.G.; Driscoll, C.T. Root exclusion and soil moisture effects on soil respiration in a northern hardwood forest. Soil Biol. Biochem. 2005, 37, 2037–2043. [Google Scholar]
- Zhou, X.Y.; Wang, Z.; Shi, P. Effects of root exclusion and litter removal on soil respiration and microbial biomass in a subtropical forest. Pedosphere 2006, 16, 327–334. [Google Scholar]
- Tan, B.; Yin, R.; Zhang, J.; Xu, Z.; Liu, Y.; He, S.; Zhang, L.; Li, H.; Wang, L.; Liu, S.; et al. Temperature and moisture modulate the contribution of soil fauna to litter decomposition via different pathways. Ecosystems 2021, 24, 1142–1156. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H. (Eds.) Methods of Soil Analysis, Part 3: Chemical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- ISO 20130:2018; Soil Quality—Measurement of Enzyme Activity Patterns in Soil Samples Using Fluorometric and Colorimetric Substrates in Micro-Well Plates. International Organization for Standardization: Geneva, Switzerland, 2018.
- Elsas, J.D.V. Methods of soil analysis. Part 2—Microbiological and biochemical properties. Sci. Hortic. 1995, 63, 131–133. [Google Scholar] [CrossRef]
- Murray, J.; Hagan, D.; Hiesl, P.; Baldwin, R. The influence of slash management practices on water and nutrient dynamics in longleaf pine forests. Forests 2022, 13, 1449. [Google Scholar] [CrossRef]
- Kotroczó, Z.; Fekete, I.; Juhos, K.; Prettl, N.; Nugroho, P.A.; Várbíró, G.; Biró, B.; Kocsis, T. Characterisation of Luvisols based on wide-scale biological properties in a long-term organic matter experiment. Biology 2023, 12, 909. [Google Scholar] [CrossRef]
- Wrightson, I.; Anaraki, M.T.; Fekete, I.; Kotroczó, Z.; Lajtha, K.; Simpson, M.J. Ecological properties uniquely dictate molecular-level soil organic matter composition in a temperate forest in Central Europe with variation in litter deposition. Environ. Sci. Process. Impacts 2025, 27, 763–778. [Google Scholar] [CrossRef]
- Wan, X.; Li, X.; Sang, C.; Xu, Z.; Huang, Z. Effect of organic matter manipulation on the seasonal variations in microbial composition and enzyme activities in a subtropical forest of China. J. Soils Sediments 2019, 19, 2231–2239. [Google Scholar] [CrossRef]
- Berhongaray, G.; Cotrufo, F.M.; Janssens, I.A.; Ceulemans, R. Below-ground carbon inputs contribute more than above-ground inputs to soil carbon accrual in a bioenergy poplar plantation. Plant Soil 2019, 434, 363–378. [Google Scholar] [CrossRef]
- Li, Z.; Tian, D.; Wang, B.; Wang, J.; Wang, S.; Chen, H.Y.; Xu, X.; Wang, C.; He, N.; Niu, S. Microbes drive global soil nitrogen mineralization and availability. Glob. Change Biol. 2019, 25, 1078–1088. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, D.; Chen, Q.; Feng, J.; Li, Q.; Yang, F.; Zhang, Q.; Cheng, X. Shifts in soil organic carbon dynamics under detritus input manipulations in a coniferous forest ecosystem in subtropical China. Soil Biol. Biochem. 2018, 126, 1–10. [Google Scholar] [CrossRef]
- Bastida, F.; Jindo, K.; Luis Moreno, J.; Hernandez, T.; Garcia, C. Effects of organic amendments on soil carbon fractions, enzyme activity and humus-enzyme complexes under semi-arid conditions. Eur. J. Soil Biol. 2012, 53, 94–102. [Google Scholar] [CrossRef]
- Veum, K.S.; Goyne, K.W.; Nolan, S.H.; Motavalli, P.P. Assessment of soil organic carbon and total nitrogen under conservation management practices in the Central Claypan Region, Missouri, USA. Geoderma 2011, 167–168, 188–196. [Google Scholar] [CrossRef]
- Zagyvai-Kiss, K.A.; Kalicz, P.; Szilagyi, J.; Gribovszki, Z. On the specific water holding capacity of litter for three forest ecosystems in the eastern foothills of the Alps. Agric. For. Meteorol. 2019, 278, 107656. [Google Scholar] [CrossRef]
- Sayer, E.J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol. Rev. Camb. Philos. Soc. 2006, 81, 1–31. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q.; Zhang, D.; Jia, W.; Chen, J.; Liu, G.; Cheng, X. The ratio of ligninase to cellulase increased with the reduction of plant detritus input in a coniferous forest in subtropical China. Appl. Soil Ecol. 2022, 170, 104269. [Google Scholar] [CrossRef]
- Liu, L.; Gundersen, P.; Zhang, W.; Zhang, T.; Chen, H.; Mo, J. Effects of nitrogen and phosphorus additions on soil microbial biomass and community structure in two reforested tropical forests. Sci. Rep. 2015, 5, 14378. [Google Scholar] [CrossRef]
- Liu, M.; Gan, B.; Li, Q.; Xiao, W.; Song, X. Effects of nitrogen and phosphorus addition on soil extracellular enzyme activity and stoichiometry in Chinese fir (Cunninghamia lanceolata) forests. Front. Plant Sci. 2022, 13, 834184. [Google Scholar] [CrossRef]
- Islam, M.R.; Singh, B.; Dijkstra, F.A. Stabilisation of soil organic matter: Interactions between clay and microbes. Biogeochemistry 2022, 160, 145–158. [Google Scholar] [CrossRef]
- Lu, X.; Mao, Q.; Wang, Z.; Mori, T.; Mo, J.; Su, F.; Pang, Z. Long-term nitrogen addition decreases soil carbon mineralization in an N-rich primary tropical forest. Forests 2021, 12, 734. [Google Scholar] [CrossRef]
- Fekete, I.; Francioso, O.; Simpson, M.J.; Gioacchini, P.; Montecchio, D.; Berki, I.; Móricz, N.; Juhos, K.; Béni, Á.; Kotroczó, Z. Qualitative and quantitative changes in soil organic compounds in central European oak forests with different annual average precipitation. Environments 2023, 10, 48. [Google Scholar] [CrossRef]
- Schaap, K.J.; Fuchslueger, L.; Hoosbeek, M.R.; Hofhansl, F.; Martins, N.P.; Valverde-Barrantes, O.J.; Hartley, I.P.; Lugli, L.F.; Quesada, C.A. Litter inputs and phosphatase activity affect the temporal variability of organic phosphorus in a tropical forest soil in the Central Amazon. Plant Soil 2021, 469, 423–441. [Google Scholar] [CrossRef]
- Asadishad, B.; Chahal, S.; Akbari, A.; Cianciarelli, V.; Azodi, M.; Ghoshal, S.; Tufenkji, N. Amendment of agricultural soil with metal nanoparticles: Effects on soil enzyme activity and microbial community composition. Environ. Sci. Technol. 2018, 52, 1908–1918. [Google Scholar] [CrossRef]
- Srivastava, P.; Singh, R.; Bhadouria, R.; Tripathi, S.; Raghubanshi, A.S. Temporal change in soil physicochemical, microbial, aggregate and available C characteristic in dry tropical ecosystem. Catena 2020, 190, 104553. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, Y.; Hu, X.-F.; Wan, S.; Wang, H.; Liang, C.; Chen, F.-S. Litter manipulation effects on microbial communities and enzymatic activities vary with soil depth in a subtropical Chinese fir plantation. For. Ecol. Manag. 2021, 480, 118641. [Google Scholar] [CrossRef]
- Dahar, D.; Arifin, S.; Nuraini, R.; Mardikaningsih, R. Urban Forest: The role of improving the quality of the urban environment. Bull. Sci. Technol. Soc. 2022, 1, 25–29. [Google Scholar]
- Ahn, Y.J.; Koriyev, M.; Juraev, Z. Urban Soil Dynamics: The Relationship Between Soil Health and Urbanization. J. Asian Geogr. 2024, 3, 62–69. [Google Scholar] [CrossRef]
- Howard, J.L. Urban anthropogenic soils-A review. Adv. Agron. 2021, 165, 1–57. [Google Scholar]
Treatment | SOC (g kg−1) | TN (g kg−1) | C:N | SWC% |
---|---|---|---|---|
LC | 15.28 (1.51) c | 1.49 (0.03) b | 10.2 b | 22.46 (0.95) a |
LR | 22.13 (2.78) a | 2.03 (0.12) a | 10.93 b | 17.64 (0.91) c |
LA | 23.94 (2.11) a | 1.92 (0.13) a | 12.69 a | 20.63 (0.75) b |
RE | 13.85 (2.82) c | 1.57 (0.13) b | 8.64 c | 20.34 (0.31) b |
LR + RE | 19.09 (1.63) a | 2.1 (0.15) a | 9.52 b | 17.08 (1.23) c |
LA + RE | 17.17 (1.44) b | 1.77 (0.01) b | 9.62 b | 23.16 (1.33) a |
Factor 1 | Factor 2 | Correlation Coefficient | p-Value |
---|---|---|---|
SOC | Protease activity | 0.85 | <0.01 |
SOC | C:N ratio | −0.56 | <0.05 |
SOC | TN | 0.78 | <0.01 |
C:N ratio | Protease activity | −0.70 | <0.05 |
SWC | SOC | 0.65 | <0.05 |
SWC | Protease activity | 0.72 | <0.01 |
Principal Component | Variance Explained (%) | Associated Variables |
---|---|---|
PC1 | 45% | SOC, TN, C:N ratio |
PC2 | 30% | Protease activity, Urease activity, SWC |
PC3 | 25% | Other enzyme activity |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Peng, Y.; Yan, W.; Yan, T.; Liang, X.; Lei, J.; Chen, X.; Qi, Y. Aboveground and Belowground Input Effects on Soil Health in Urban Camphor Tree Forests. Sustainability 2025, 17, 6358. https://doi.org/10.3390/su17146358
Huang X, Peng Y, Yan W, Yan T, Liang X, Lei J, Chen X, Qi Y. Aboveground and Belowground Input Effects on Soil Health in Urban Camphor Tree Forests. Sustainability. 2025; 17(14):6358. https://doi.org/10.3390/su17146358
Chicago/Turabian StyleHuang, Xuejia, Yuanying Peng, Wende Yan, Tianyi Yan, Xiaocui Liang, Junjie Lei, Xiaoyong Chen, and Yaqin Qi. 2025. "Aboveground and Belowground Input Effects on Soil Health in Urban Camphor Tree Forests" Sustainability 17, no. 14: 6358. https://doi.org/10.3390/su17146358
APA StyleHuang, X., Peng, Y., Yan, W., Yan, T., Liang, X., Lei, J., Chen, X., & Qi, Y. (2025). Aboveground and Belowground Input Effects on Soil Health in Urban Camphor Tree Forests. Sustainability, 17(14), 6358. https://doi.org/10.3390/su17146358