Tree Canopies Drive δ13C and δ15N Patterns in Mediterranean Wood Pastures of the Iberian Peninsula
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Experimental Design
2.2. Determination of Carbon and Nitrogen Content and Isotopic Natural Abundance
2.3. Data Analysis
3. Results
4. Discussion
4.1. The Canopy Effect on Plant Functional Types of the Herbaceous Layer
4.2. The Canopy Effect in Representative Mediterranean Wood Pastures: Quercus vs. Pinus pinea Canopies
4.3. The Canopy Effect Along an Altitudinal/Climatic Gradient
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibañez, M.; Leiva, M.J.; Chocarro, C.; Aljazairi, S.; Ribas, À.; Sebastià, M.-T. Tree—Open Grassland Structure and Composition Drive Greenhouse Gas Exchange in Holm Oak Meadows of the Iberian Peninsula. Agronomy 2021, 11, 50. [Google Scholar] [CrossRef]
- Eichhorn, M.P.; Paris, P.; Herzog, F.; Incoll, L.D.; Liagre, F.; Mantzanas, K.; Mayus, M.; Moreno, G.; Papanastasis, V.P.; Pilbeam, D.J.; et al. Silvoarable systems in Europe—Past, present and future prospects. Agrofor. Syst. 2006, 67, 29–50. [Google Scholar] [CrossRef]
- Olea, L.; López-Bellido, R.J.; Poblaciones, M. Europe types of silvopastoral systems in the Mediterranean area: Dehesa. In Silvopastoralism and Sustainable Land Management. Proceedings of an International Congress on Silvopastoralism and Sustainable Management Held in Lugo, Spain, April 2004; Mosquera-Losada, M.R., Rigueiro-Rodríguez, A., McAdam, J., Eds.; CABI Publishing: Wallingford, UK, 2005; pp. 30–35. [Google Scholar]
- Huntsinger, L.; Campos, P.; Starrs, P.F.; Oviedo, J.L.; Díaz, M.; Standiford, R.B.; Gregorio, M. Working Landscapes of the Spanish Dehesa and California Oak Woodlands: An Introduction. In Mediterranean Oak Woodland Working Landscapes. Dehesas of Spain and Ranchlands of California; Campos, P., Huntsinger, L., Oviedo, J.L., Starrs, P.F., Diaz, M., Standiford, R.B., Montero, G., Eds.; Springer: New York, NY, USA, 2013; pp. 3–23. ISBN 978-94-007-6706-5. [Google Scholar]
- Marañón, T.; Pugnaire, F.I.; Callaway, R.M. Mediterranean-climate oak savannas: The interplay between abiotic environment and species interactions. Web Ecol. 2009, 9, 30–43. [Google Scholar] [CrossRef]
- Gaman, T.; Firman, J. Oaks 2040. The Status and Future of Oaks in California; California Oak Foundation: Oakland, CA, USA, 2006. [Google Scholar]
- Costa, A.; Madeira, M.; Lima Santos, J.; Oliveira, Â. Change and dynamics in Mediterranean evergreen oak woodlands landscapes of Southwestern Iberian Peninsula. Landsc. Urban Plan. 2011, 102, 164–176. [Google Scholar] [CrossRef]
- Costa Pérez, J.C.; Martín Vicente, Á.; Fernández Alés, R.; Estirado Oliet, M. Dehesas de Andalucía. Caracterización Ambiental; Consejería de Medio Ambiente, Junta de Andalucía: Sevilla, Spain, 2006; ISBN 849632981X. [Google Scholar]
- Rolo, V.; Moreno, G. Shrub encroachment and climate change increase the exposure to drought of Mediterranean wood-pastures. Sci. Total Environ. 2019, 660, 550–558. [Google Scholar] [CrossRef]
- Lobo-do-Vale, R.; Haberstroh, S.; Werner, C.; Nogueira, C.; Bugalho, M.N.; Caldeira, M.C. Effects of Shrub Encroachment on Carbon Assimilation and Growth of Mediterranean Cork Oak Trees Depend on Shrub Cover Density. Forests 2023, 14, 960. [Google Scholar] [CrossRef]
- Aljazairi, S.; Arias, C.; Nogués, S. Carbon and nitrogen allocation and partitioning in traditional and modern wheat genotypes under pre-industrial and future CO2 conditions. Plant Biol. 2015, 17, 647–659. [Google Scholar] [CrossRef]
- Craine, J.M.; Brookshire, E.N.J.; Cramer, M.D.; Hasselquist, N.J.; Koba, K.; Marin-Spiotta, E.; Wang, L. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 2015, 396, 1–26. [Google Scholar] [CrossRef]
- Hobbie, E.A.; Högberg, P. Nitrogen isotopes link mycorrhizal fungi and plants to nitrogen dynamics. New Phytol. 2012, 196, 367–382. [Google Scholar] [CrossRef]
- Kahmen, A.; Buchmann, N. Addressing the Functional Value of Biodiversity for Ecosystem Functioning Using Stable Isotopes. Terr. Ecol. 2007, 1, 345–359. [Google Scholar]
- Andivia, E.; Fernández, M.; Alejano, R.; Vázquez-Piqué, J. Tree patch distribution drives spatial heterogeneity of soil traits in cork oak woodlands. Ann. For. Sci. 2015, 72, 549–559. [Google Scholar] [CrossRef]
- Gómez-Rey, M.X.; Madeira, M.; Gonzalez-Prieto, S.J.; Coutinho, J. Soil C and N dynamics in a Mediterranean oak woodland with shrub encroachment. Plant Soil 2013, 371, 339–354. [Google Scholar] [CrossRef]
- Kalcsits, L.A.; Buschhaus, H.A.; Guy, R.D. Nitrogen isotope discrimination as an integrated measure of nitrogen fluxes, assimilation and allocation in plants. Physiol. Plant. 2014, 151, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, T.; Matsumaru, T.; Usui, K.; Engelaar, W.M.H.G. Discrimination of nitrogen isotopes during absorption of ammonium and nitrate at different nitrogen concentrations by rice (Oryza sativa L.) plants. Plant Cell Environ. 2001, 24, 133–139. [Google Scholar] [CrossRef]
- Ehleringer, J.; White, J.; Johnson, D.A.; Brick, M. Carbon isotope discrimination, photosynthetic gas exchange, and transpiration efficiency in beans and range grasses. Acta Oecologica 1990, 11, 611–625. [Google Scholar]
- Bonafini, M.; Pellegrini, M.; Ditchfield, P.; Pollard, A.M. Investigation of the “canopy effect” in the isotope ecology of temperate woodlands. J. Archaeol. Sci. 2013, 40, 3926–3935. [Google Scholar] [CrossRef]
- Buchmann, N.; Kao, W.Y.; Ehleringer, J. Influence of stand structure on carbon-13 of vegetation, soils, and canopy air within deciduous and evergreen forests in Utah, United States. Oecologia 1997, 110, 109–119. [Google Scholar] [CrossRef]
- van der Merwe, N.J.; Medina, E. The canopy effect, carbon isotope ratios and foodwebs in amazonia. J. Archaeol. Sci. 1991, 18, 249–259. [Google Scholar] [CrossRef]
- Della Coletta, L.; Bielefeld Nardoto, G.; Ribeiro Latansio-Aidar, S.; Ribeiro da Rocha, H. Isotopic view of vegetation and carbon and nitrogen cycles in a cerrado ecosystem, southeastern Brazil. Sci. Agric. 2009, 66, 467–475. [Google Scholar] [CrossRef]
- Fioretto, A.; Papa, S.; Pellegrino, A.; Fuggi, A. Leaf litter decomposition dynamics in Mediteranean area. In Soil Ecology Research Developements; Liu, T.-X., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2008. [Google Scholar]
- Quer, E.; Pereira, S.; Michel, T.; Santonja, M.; Gauquelin, T.; Simioni, G.; Ourcival, J.M.; Joffre, R.; Limousin, J.M.; Aupic-Samain, A.; et al. Amplified Drought Alters Leaf Litter Metabolome, Slows Down Litter Decomposition, and Modifies Home Field (Dis)Advantage in Three Mediterranean Forests. Plants 2022, 11, 2582. [Google Scholar] [CrossRef]
- Marañon, A. Diversidad floristica y heterogenidad ambiental en una dehesa de Sierra Morena. An. Edafol. Agrobiol. 1985, 44, 1183–1197. [Google Scholar]
- Ibañez, M.; Altimir, N.; Ribas, À.; Eugster, W.; Sebastià, M.-T. Phenology and plant functional type dominance drive CO2 exchange in seminatural grasslands in the Pyrenees. J. Agric. Sci. 2020, 1–12. [Google Scholar] [CrossRef]
- Lavorel, S.; Díaz, S.; Cornelissen, J.H.C.; Garnier, E.; Harrison, S.P.; Mcintyre, S.; Pausas, J.G.; Catherine, N.P.; Carlos, R. Plant Functional Types: Are We Getting Any Closer to the Holy Grail? In Terrestrial Ecosystems in a Changing World. Global Change—The IGBP Series; Canadel, J.G., Pataki, D.E., Pitelka, L.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 149–164. [Google Scholar]
- Sebastià, M.T. Plant guilds drive biomass response to global warming and water availability in subalpine grassland. J. Appl. Ecol. 2007, 44, 158–167. [Google Scholar] [CrossRef]
- Symstad, A.J. A Test of the Effects of Functional Group Richness and Composition on Grassland Invasibility. Ecology 2000, 81, 99–109. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Coplen, T.B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef] [PubMed]
- Brooks, P.D.; Geilmann, H.; Werner, R.A.; Brand, W.A. Improved precision of coupled δ13C and δ15N measurements from single samples using an elemental analyzer/isotope ratio mass spectrometer combination with a post-column six-port valve and selective CO2 trapping; improved ha. Rapid Commun. Mass Spectrom. 2003, 17, 1924–1926. [Google Scholar] [CrossRef]
- Werner, R.A.; Bruch, B.A.; Brand, W.A. ConFlo III—An—Interface for High Precision d13C and d15N Analysis with an Extended Dynamic Range. Rapid Commun. Mass Spectrom. 1999, 13, 1237–1241. [Google Scholar] [CrossRef]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 978-0-387-21706-2. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing (Version 4.4.1); R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.r-project.org/ (accessed on 14 June 2024).
- Carranca, C.; Castro, I.V.; Figueiredo, N.; Redondo, R.; Rodrigues, A.R.F.; Saraiva, I.; Maricato, R.; Madeira, M.A.V. Influence of tree canopy on N2 fixation by pasture legumes and soil rhizobial abundance in Mediterranean oak woodlands. Sci. Total Environ. 2015, 506–507, 86–94. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Montero, G.; Cañellas, I. Changes in limiting resources determine spatio-temporal variability in tree-grass interactions. Agrofor. Syst. 2009, 76, 375–387. [Google Scholar] [CrossRef]
- Lopez-Carrasco, C.; Lopez-Sanchez, A.; San Miguel, A.; Roig, S. The effect of tree cover on the biomass and diversity of the herbaceous layer in a Mediterranean dehesa. Grass Forage Sci. 2015, 70, 639–650. [Google Scholar] [CrossRef]
- Aljazairi, S.; Ribas, A.; Llurba, R.; Ferrio, J.P.; Voltas, J.; Nogués, S.; Sebastiá, M.T. Sown Diversity Effects on the C and N Cycle and Interactions with Fertilization. Agronomy 2025, 15, 287. [Google Scholar] [CrossRef]
- Pirhofer-Walzl, K.; Rasmussen, J.; Høgh-Jensen, H.; Eriksen, J.; Søegaard, K.; Rasmussen, J. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland. Plant Soil 2012, 350, 71–84. [Google Scholar] [CrossRef]
- Schenk, H.J.; Jackson, R.B. Rooting depths, lateral root spreads and below-ground/allometries of plants in water-limited ecosystems. J. Ecol. 2002, 90, 480–494. [Google Scholar] [CrossRef]
- Weaver, J.E. Classification of Root Systems of Forbs of Grassland and a Consideration of Their Significance. Ecology 1958, 39, 393–401. [Google Scholar] [CrossRef]
- Song, L.; Bao, X.; Liu, X.; Zhang, Y.; Christie, P.; Fangmeier, A.; Zhang, F. Nitrogen enrichment enhances the dominance of grasses over forbs in a temperate steppe ecosystem. Biogeosciences 2011, 8, 2341–2350. [Google Scholar] [CrossRef]
- Vázquez, E.; Schleuss, P.M.; Borer, E.T.; Bugalho, M.N.; Caldeira, M.C.; Eisenhauer, N.; Eskelinen, A.; Fay, P.A.; Haider, S.; Jentsch, A.; et al. Nitrogen but not phosphorus addition affects symbiotic N2 fixation by legumes in natural and semi-natural grasslands located on four continents. Plant Soil 2022, 478, 689–707. [Google Scholar] [CrossRef]
- Ledo, A.; Paul, K.I.; Burslem, D.F.R.P.; Ewel, J.J.; Barton, C.; Battaglia, M.; Brooksbank, K.; Carter, J.; Eid, T.H.; England, J.R.; et al. Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytol. 2018, 217, 8–11. [Google Scholar] [CrossRef]
- Sheffer, E.; Canham, C.D.; Kigel, J.; Perevolotsky, A. Countervailing effects on pine and oak leaf litter decomposition in human-altered Mediterranean ecosystems. Oecologia 2015, 177, 1039–1051. [Google Scholar] [CrossRef]
- Valera-Burgos, J.; Díaz-Barradas, M.C.; Zunzunegui, M. Effects of Pinus pinea litter on seed germination and seedling performance of three Mediterranean shrub species. Plant Growth Regul. 2012, 66, 285–292. [Google Scholar] [CrossRef]
- Rai, A.K.; Bhardwaj, R.; Sureja, A.K. Effect of Mixing Pine Needles Litters on Soil Biological Properties and Phosphorus Availability in Soil Amended with Fertilizers and Manures. Commun. Soil Sci. Plant Anal. 2017, 48, 1052–1058. [Google Scholar] [CrossRef]
- Ibañez, M. Vegetation Drives Greenhouse Gas Exchange, and Carbon and Nitrogen Cycling in Grassland Ecosystems. Ph.D. Thesis, Department of Horticulture, Botany and Gardening (HBJ), Universitat de Lleida, Lleida, Spain, 2019; p. 226. [Google Scholar]
- van Diest, A. Plant and soil interface and intreactions. In Proceedings of the International Symposium: Plant and Soil: Interfaces and Interactions, Wageningen, The Netherlands, 6–8 August 1986, 1st ed.; van Diest, A., Houwers, A., Eds.; Springer: Dordrecht, The Netherlands, 1987; ISBN 978-90-247-3535-8. [Google Scholar]
- Ågren, G.I.; Ingestad, T. Root: Shoot ratio as a balance between nitrogen productivity and photosynthesis. Plant Cell Environ. 1987, 10, 579–586. [Google Scholar] [CrossRef]
- Gargallo-Garriga, A.; Sardans, J.; Pérez-Trujillo, M.; Rivas-Ubach, A.; Oravec, M.; Vecerova, K.; Urban, O.; Jentsch, A.; Kreyling, J.; Beierkuhnlein, C.; et al. Opposite metabolic responses of shoots and roots to drought. Sci. Rep. 2014, 4, 6829. [Google Scholar] [CrossRef]
- García-Barrios, L.; González-Espinosa, M. Change in oak to pine dominance in secondary forests may reduce shifting agriculture yields: Experimental evidence from Chiapas, Mexico. Agric. Ecosyst. Environ. 2004, 102, 389–401. [Google Scholar] [CrossRef]
- Ma, S.; Eichelmann, E.; Wolf, S.; Rey-Sanchez, C.; Baldocchi, D.D. Transpiration and evaporation in a Californian oak-grass savanna: Field measurements and partitioning model results. Agric. For. Meteorol. 2020, 295, 108204. [Google Scholar] [CrossRef]
- Ding, J.; Eldridge, D.J. The fertile island effect varies with aridity and plant patch type across an extensive continental gradient. Plant Soil 2021, 459, 173–183. [Google Scholar] [CrossRef]
- Camara, A. Do woody plants create ‘fertile islands’ in dryland New Zealand? N. Z. J. Ecol. 2021, 45, 3419. [Google Scholar] [CrossRef]
- Moustakas, A.; Kunin, W.E.; Cameron, T.C.; Sankaran, M. Facilitation or Competition? Tree Effects on Grass Biomass across a Precipitation Gradient. PLoS ONE 2013, 8, e57025. [Google Scholar] [CrossRef]
Forb δ13C (‰) | Forb N Content (%) | |||||||
---|---|---|---|---|---|---|---|---|
Est. | SE | t | p | Est. | SE | t | p | |
(Intercept) | −28.2 | 0.2 | −154.92 | <0.001 | 2.2 | 0.2 | 10.70 | <0.001 |
Location (DN-mixed) | −0.5 | 0.2 | −2.34 | 0.02 | −0.8 | 0.2 | −3.14 | 0.002 |
Location (DN-suber) | −0.2 | 0.2 | −0.79 | 0.4 | −0.9 | 0.3 | −3.43 | <0.001 |
Location (DN-pinea) | −0.4 | 0.2 | −1.69 | 0.09 | −0.6 | 0.3 | −2.33 | 0.02 |
Canopy | −0.5 | 0.1 | −3.72 | <0.001 | 0.0 | 0.3 | 0.17 | 0.9 |
DN-mixed × canopy | 0.9 | 0.3 | 2.48 | 0.01 | ||||
DN-suber × canopy | 0.4 | 0.4 | 1.07 | 0.3 | ||||
DN-pinea × canopy | 0.9 | 0.4 | 2.24 | 0.03 | ||||
R2Adj | 0.15 | <0.001 | 0.34 | <0.001 |
BGB C Content (%) | ||||
---|---|---|---|---|
Est. | SE | t | p | |
(Intercept) | 30 | 1 | 20.12 | <0.001 |
Location (DN-mixed) | 2 | 2 | 1.03 | 0.3 |
Location (DN-suber) | 4 | 2 | 2.04 | 0.05 |
Location (DN-pinea) | 9 | 2 | 4.07 | <0.001 |
Canopy | 4 | 3 | 1.37 | 0.2 |
Location (DN-mixed) × canopy | 2 | 3 | 0.55 | 0.6 |
Location (DN-suber) × canopy | −1 | 3 | −0.25 | 0.8 |
Location (DN-pinea) × canopy | −8 | 3 | −2.23 | 0.03 |
R2Adj | 0.41 | 0.001 |
Soil C Content (%) | Soil N Content (%) | |||||||
---|---|---|---|---|---|---|---|---|
Est. | SE | t | p | Est. | SE | t | p | |
(Intercept) | 2.1 | 0.4 | 5.73 | <0.001 | 0.18 | 0.03 | 6.77 | <0.001 |
Location (DN-mixed) | −1.1 | 0.4 | −2.65 | 0.01 | −0.10 | 0.03 | −3.31 | 0.002 |
Location (DN-suber) | −0.2 | 0.5 | −0.43 | 0.7 | −0.02 | 0.03 | −0.68 | 0.5 |
Location (DN-pinea) | −0.8 | 0.5 | −1.73 | 0.09 | −0.09 | 0.03 | −2.63 | 0.01 |
Canopy | 1.8 | 0.3 | 6.20 | <0.001 | 0.11 | 0.02 | 5.39 | <0.001 |
Location (DN-mixed) × canopy | ||||||||
Location (DN-suber) × canopy | ||||||||
Location (DN-pinea) × canopy | ||||||||
R2Adj | 0.53 | <0.001 | 0.51 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibañez, M.; Aljazairi, S.; Leiva, M.J.; Chocarro, C.; Werner, R.A.; Ghashghaie, J.; Sebastià, M.-T. Tree Canopies Drive δ13C and δ15N Patterns in Mediterranean Wood Pastures of the Iberian Peninsula. Land 2025, 14, 1135. https://doi.org/10.3390/land14061135
Ibañez M, Aljazairi S, Leiva MJ, Chocarro C, Werner RA, Ghashghaie J, Sebastià M-T. Tree Canopies Drive δ13C and δ15N Patterns in Mediterranean Wood Pastures of the Iberian Peninsula. Land. 2025; 14(6):1135. https://doi.org/10.3390/land14061135
Chicago/Turabian StyleIbañez, Mercedes, Salvador Aljazairi, María José Leiva, Cristina Chocarro, Roland A. Werner, Jaleh Ghashghaie, and Maria-Teresa Sebastià. 2025. "Tree Canopies Drive δ13C and δ15N Patterns in Mediterranean Wood Pastures of the Iberian Peninsula" Land 14, no. 6: 1135. https://doi.org/10.3390/land14061135
APA StyleIbañez, M., Aljazairi, S., Leiva, M. J., Chocarro, C., Werner, R. A., Ghashghaie, J., & Sebastià, M.-T. (2025). Tree Canopies Drive δ13C and δ15N Patterns in Mediterranean Wood Pastures of the Iberian Peninsula. Land, 14(6), 1135. https://doi.org/10.3390/land14061135