Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (691)

Search Parameters:
Keywords = soil N dynamic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7997 KiB  
Article
Comparative Analysis of Habitat Expansion Mechanisms for Four Invasive Amaranthaceae Plants Under Current and Future Climates Using MaxEnt
by Mao Lin, Xingzhuang Ye, Zixin Zhao, Shipin Chen and Bao Liu
Plants 2025, 14(15), 2363; https://doi.org/10.3390/plants14152363 (registering DOI) - 1 Aug 2025
Abstract
As China’s first systematic assessment of high-risk Amaranthaceae invaders, this study addresses a critical knowledge gap identified in the National Invasive Species Inventory, in which four invasive Amaranthaceae species (Dysphania ambrosioides, Celosia argentea, Amaranthus palmeri, and Amaranthus spinosus) [...] Read more.
As China’s first systematic assessment of high-risk Amaranthaceae invaders, this study addresses a critical knowledge gap identified in the National Invasive Species Inventory, in which four invasive Amaranthaceae species (Dysphania ambrosioides, Celosia argentea, Amaranthus palmeri, and Amaranthus spinosus) are prioritized due to CNY 2.6 billion annual ecosystem damages in China. By coupling multi-species comparative analysis with a parameter-optimized Maximum Entropy (MaxEnt) model integrating climate, soil, and topographical variables in China under Shared Socioeconomic Pathways (SSP) 126/245/585 scenarios, we reveal divergent expansion mechanisms (e.g., 247 km faster northward shift in A. palmeri than D. ambrosioides) that redefine invasion corridors in the North China Plain. Under current conditions, the suitable habitats of these species span from 92° E to 129° E and 18° N to 49° N, with high-risk zones concentrated in central and southern China, including the Yunnan–Guizhou–Sichuan region and the North China Plain. Temperature variables (Bio: Bioclimatic Variables; Bio6, Bio11) were the primary contributors based on permutation importance (e.g., Bio11 explained 56.4% for C. argentea), while altitude (e.g., 27.3% for A. palmeri) and UV-B (e.g., 16.2% for A. palmeri) exerted lower influence. Model validation confirmed high accuracy (mean area under the curve (AUC) > 0.86 and true skill statistic (TSS) > 0.6). By the 2090s, all species showed net habitat expansion overall, although D. ambrosioides exhibited net total contractions during mid-century under the SSP126/245 scenarios, C. argentea experienced reduced total suitability during the 2050s–2070s despite high-suitability growth, and A. palmeri and A. spinosus expanded significantly in both total and highly suitable habitat. All species shifted their distribution centroids northward, aligning with warming trends. Overall, these findings highlight the critical role of temperature in driving range dynamics and underscore the need for latitude-specific monitoring strategies to mitigate invasion risks, providing a scientific basis for adaptive management under global climate change. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

18 pages, 4253 KiB  
Article
Testing Using the DCP Probe of a Subgrade Modeled from Difficult-to-Compact Sand in a Calibration Chamber
by Dariusz Tymosiak, Maria Jolanta Sulewska, Wanda Kokoszka, Marta Słowik, Ewa Błazik-Borowa, Dominik Ożóg and Monika Puchlik
Materials 2025, 18(15), 3548; https://doi.org/10.3390/ma18153548 - 29 Jul 2025
Viewed by 168
Abstract
The aim of the article is to analyze the possibilities of using a lightweight dynamic cone probe DCP to determine the quality of compaction of surface layers of embankments (from 0.10 m to approx. 0.80 m below ground level). For this purpose, comparative [...] Read more.
The aim of the article is to analyze the possibilities of using a lightweight dynamic cone probe DCP to determine the quality of compaction of surface layers of embankments (from 0.10 m to approx. 0.80 m below ground level). For this purpose, comparative tests of non-cohesive soil used for the construction of embankments were carried out using the DCP test and direct tests of the degree of compaction IS in a calibration chamber with the following dimensions: height 1.10 m and diameter 0.75 m. The subsoil was prepared from difficult-to-compact sand (Sa) with a uniformity coefficient of CU = 3.10 and curvature coefficient of CC = 0.99. The soil in the laboratory in the calibration chamber was compacted in layers using a vibratory plate compactor. A database for statistical analysis was obtained, n = 68 cases described by seven variables: z, ρ, w, ρd, IS, PI, N10(DCP). It was found that the DCP probe can be used to assess the degree of compaction of embankments made of non-cohesive soil, using the developed relationship IS = f(z, N10(DCP)). Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

20 pages, 2984 KiB  
Article
Influence of Rice–Crayfish Co-Culture Systems on Soil Properties and Microbial Communities in Paddy Fields
by Dingyu Duan, Dingxuan He, Liangjie Zhao, Chenxi Tan, Donghui Yang, Wende Yan, Guangjun Wang and Xiaoyong Chen
Plants 2025, 14(15), 2320; https://doi.org/10.3390/plants14152320 - 27 Jul 2025
Viewed by 313
Abstract
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects [...] Read more.
Integrated rice–crayfish (Oryza sativaProcambarus clarkii) co-culture (RC) systems have gained prominence due to their economic benefits and ecological sustainability; however, the interactions between soil properties and microbial communities in such systems remain poorly understood. This study evaluated the effects of the RC systems on soil physicochemical characteristics and microbial dynamics in paddy fields of southern Henan Province, China, over the 2023 growing season and subsequent fallow period. Using a randomized complete design, rice monoculture (RM, as the control) and RC treatments were compared across replicated plots. Soil and water samples were collected post-harvest and pre-transplanting to assess soil properties, extracellular enzyme activity, and microbial community structure. Results showed that RC significantly enhanced soil moisture by up to 30.2%, increased soil porosity by 9.6%, and nearly tripled soil organic carbon compared to RM. The RC system consistently elevated nitrogen (N), phosphorus (P), and potassium (K) throughout both the rice growth and fallow stages, indicating improved nutrient availability and retention. Elevated extracellular enzyme activities linked to carbon, N, and P cycling were observed under RC, with enzymatic stoichiometry revealing increased microbial nutrient limitation intensity and a shift toward P limitation. Microbial community composition was significantly altered under RC, showing increased biomass, a higher fungi-to-bacteria ratio, and greater relative abundance of Gram-positive bacteria, reflecting enhanced soil biodiversity and ecosystem resilience. Further analyses using the Mantel test and Random Forest identified extracellular enzyme activities, PLFAs, soil moisture, and bulk density as major factors shaping microbial communities. Redundancy analysis (RDA) confirmed that total potassium (TK), vector length (VL), soil pH, and total nitrogen (TN) were the strongest environmental predictors of microbial variation, jointly explaining 74.57% of the total variation. Our findings indicated that RC improves soil physicochemical conditions and microbial function, thereby supporting sustainable nutrient cycling and offering a promising, environmentally sound strategy for enhancing productivity and soil health in rice-based agro-ecosystems. Full article
Show Figures

Figure 1

16 pages, 2713 KiB  
Article
Change in C, N, and P Characteristics of Hypericum kouytchense Organs in Response to Altitude Gradients in Karst Regions of SW China
by Yage Li, Chunyan Zhao, Jiajun Wu, Suyan Ba, Shuo Liu and Panfeng Dai
Plants 2025, 14(15), 2307; https://doi.org/10.3390/plants14152307 - 26 Jul 2025
Viewed by 141
Abstract
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in [...] Read more.
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in China’s unique karst regions. Therefore, we analyzed the carbon (C), nitrogen (N), and phosphorus (P) contents and their ratios in flowers, leaves, branches, fine roots, and surface soil of Hypericum kouytchense shrubs across 2200–2700 m altitudinal range in southwestern China’s karst areas, where this species is widely distributed and grows well. The results show that H. kouytchense organs had higher N content than both global and Chinese plant averages. The order of C:N:P value across plant organs was branches > fine roots > flowers > leaves. Altitude significantly affected the nutrient dynamics in plant organs and soil. With increasing altitude, P content in plant organs exhibited a significant concave pattern, leading to unimodal trends in the C:P of plant organs, as well as the N:P of leaves and fine roots. Meanwhile, plant organs except branches displayed significant homeostasis coefficients in C:P and fine root P, indicating a shift in H. kouytchense’s P utilization strategy from acquisitive-type to conservative-type. Strong positive relationships between plant organs and soil P and available P revealed that P was the key driver of nutrient cycling in H. kouytchense shrubs, enhancing plant organ–soil coupling relationships. In conclusion, H. kouytchense demonstrates flexible adaptability, suggesting that future vegetation restoration and conservation management projects in karst ecosystems should consider the nutrient adaptation strategies of different species, paying particular attention to P utilization. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

12 pages, 1736 KiB  
Article
Contrasting Effects of Moso Bamboo Expansion into Broad-Leaved and Coniferous Forests on Soil Microbial Communities
by Rong Lin, Wenjie Long, Fanqian Kong, Juanjuan Zhu, Miaomiao Wang, Juan Liu, Rui Li and Songze Wan
Forests 2025, 16(7), 1188; https://doi.org/10.3390/f16071188 - 18 Jul 2025
Viewed by 204
Abstract
Soil microbes play a crucial role in driving biogeochemical cycles and are closely linked with aboveground plants during forest succession. Moso bamboo (Phyllostachys edulis) encroachment into adjacent forests of varying composition is known to alter plant diversity in subtropical and tropical [...] Read more.
Soil microbes play a crucial role in driving biogeochemical cycles and are closely linked with aboveground plants during forest succession. Moso bamboo (Phyllostachys edulis) encroachment into adjacent forests of varying composition is known to alter plant diversity in subtropical and tropical regions. However, how soil microbial communities respond to this vegetation type transformation has not fully explored. To address this knowledge gap, a time-alternative spatial method was employed in the present study, and we investigated the effect of Moso bamboo expansion into subtropical broad-leaved forest and coniferous forest on soil microbial phospholipid fatty acids (PLFAs). We also measured the dynamics of key soil properties during the Moso bamboo expansion processes. Our results showed that Moso bamboo encroachment into subtropical broad-leaved forest induced an elevation in soil bacterial PLFAs (24.78%) and total microbial PLFAs (22.70%), while decreasing the fungal-to-bacterial (F:B) ratio. This trend was attributed to declines in soil NO3-N (18.63%) and soil organic carbon (SOC) concentrations (28.83%). Conversely, expansion into coniferous forests promoted soil fungal PLFAs (40.41%) and F:B ratio, primarily driven by increases in soil pH (4.83%) and decreases in SOC (36.18%). These results provide mechanistic insights into how contrasting expansion trajectories of Moso bamboo restructure soil microbial communities and highlight the need to consider vegetation context-dependency when evaluating the ecological consequences of Moso bamboo expansion. Full article
(This article belongs to the Special Issue Forest Soil Microbiology and Biogeochemistry)
Show Figures

Figure 1

20 pages, 2457 KiB  
Article
Leaf Chemistry Patterns in Populations of a Key Lithophyte Tree Species in Brazil’s Atlantic Forest Inselbergs
by Roberto Antônio da Costa Jerônimo Júnior, Ranieri Ribeiro Paula, Talitha Mayumi Francisco, Dayvid Rodrigues Couto, João Mário Comper Covre and Dora Maria Villela
Forests 2025, 16(7), 1186; https://doi.org/10.3390/f16071186 - 18 Jul 2025
Viewed by 325
Abstract
Inselbergs are rocky outcrops with specialized vegetation, including woody species growing in poorly developed soils. We investigated whether populations of the lithophytic tree Pseudobombax petropolitanum A. Robyns (Malvaceae), a key species endemic to Atlantic Forest inselbergs, have convergent or divergent patterns of functional [...] Read more.
Inselbergs are rocky outcrops with specialized vegetation, including woody species growing in poorly developed soils. We investigated whether populations of the lithophytic tree Pseudobombax petropolitanum A. Robyns (Malvaceae), a key species endemic to Atlantic Forest inselbergs, have convergent or divergent patterns of functional traits related to leaf chemistry. This study was carried out on three inselbergs located in southeastern Brazil. Green and senescent leaves from nine healthy trees and soil samples were collected in each inselberg. The carbon, nitrogen, phosphorus, potassium, calcium, and magnesium concentrations, and the natural abundances of δ13C and δ15N, were measured in leaves and soil, and the C/N, C/P, and N/P ratios were calculated. The specific leaf area (SLA) was measured, and the nutrient retranslocation rate between green and senescent leaves was estimated. Divergences between populations were observed in the concentrations of potassium and magnesium in the green and senescent leaves, as well as in the C/P and N/P ratios in senescent leaves. Our results suggest that nutrient and water dynamics may differ in some inselbergs due to specific nutrients or their relationships, even though there were convergences in most functional traits related to leaf chemistry among the Pseudobombax populations. The divergences among the populations could have important implications for species selection in the ecological restoration context. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Graphical abstract

22 pages, 5031 KiB  
Article
Numerical Simulation and Analysis of Micropile-Raft Joint Jacking Technology for Rectifying Inclined Buildings Due to Uneven Settlement
by Ming Xie, Li’e Yin, Zhangdong Wang, Fangbo Xu, Xiangdong Wu and Mengqi Xu
Buildings 2025, 15(14), 2485; https://doi.org/10.3390/buildings15142485 - 15 Jul 2025
Viewed by 230
Abstract
To address the issue of structural tilting caused by uneven foundation settlement in soft soil areas, this study combined a specific engineering case to conduct numerical simulations of the rectification process for an inclined reinforced concrete building using ABAQUS finite element software. Micropile-raft [...] Read more.
To address the issue of structural tilting caused by uneven foundation settlement in soft soil areas, this study combined a specific engineering case to conduct numerical simulations of the rectification process for an inclined reinforced concrete building using ABAQUS finite element software. Micropile-raft combined jacking technology was employed, applying staged jacking forces (2400 kN for Axis A, 2200 kN for Axis B, and 1700 kN for Axis C) with precise control through 20 incremental steps. The results demonstrate that this technology effectively halted structural tilting, reducing the maximum inclination rate from 0.51% to 0.05%, significantly below the standard limit. Post-rectification, the peak structural stress decreased by 42%, and displacements were markedly reduced. However, the jacking process led to a notable increase in the column axial forces and directional changes in beam bending moments, reflecting the dynamic redistribution of internal forces. The study confirms that micropile-raft combined jacking technology offers both controllability and safety, while optimized counterforce pile layouts enhance the long-term stability of the rectification system. Based on stress and displacement cloud analysis, a monitoring scheme is proposed, forming an integrated “rectification-monitoring-reinforcement” solution, which provides a technical framework for building rectification in soft soil regions. Full article
Show Figures

Figure 1

18 pages, 1414 KiB  
Article
Field Validation of the DNDC-Rice Model for Crop Yield, Nitrous Oxide Emissions and Carbon Sequestration in a Soybean System with Rye Cover Crop Management
by Qiliang Huang, Nobuko Katayanagi, Masakazu Komatsuzaki and Tamon Fumoto
Agriculture 2025, 15(14), 1525; https://doi.org/10.3390/agriculture15141525 - 15 Jul 2025
Viewed by 374
Abstract
The DNDC-Rice model effectively simulates yield and greenhouse gas emissions within a paddy system, while its performance under upland conditions remains unclear. Using data from a long-term cover crop experiment (fallow [FA] vs. rye [RY]) in a soybean field, this study validated the [...] Read more.
The DNDC-Rice model effectively simulates yield and greenhouse gas emissions within a paddy system, while its performance under upland conditions remains unclear. Using data from a long-term cover crop experiment (fallow [FA] vs. rye [RY]) in a soybean field, this study validated the DNDC-Rice model’s performance in simulating soil dynamics, crop growth, and C-N cycling processes in upland systems through various indicators, including soil temperature, water-filled pore space (WFPS), soybean biomass and yield, CO2 and N2O fluxes, and soil organic carbon (SOC). Based on simulated results, the underestimation of cumulative N2O flux (25.6% in FA and 5.1% in RY) was attributed to both underestimated WFPS and the algorithm’s limitations in simulating N2O emission pulses. Overestimated soybean growth increased respiration, leading to the overestimation of CO2 flux. Although the model captured trends in SOC stock, the simulated annual values differed from observations (−9.9% to +10.1%), potentially due to sampling errors. These findings indicate that the DNDC-Rice model requires improvements in its N cycling algorithm and crop growth sub-models to improve predictions for upland systems. This study provides validation evidence for applying DNDC-Rice to upland systems and offers direction for improving model simulation in paddy-upland rotation systems, thereby enhancing its applicability in such contexts. Full article
(This article belongs to the Special Issue Detection and Management of Agricultural Non-Point Source Pollution)
Show Figures

Figure 1

20 pages, 2217 KiB  
Article
Organic Nitrogen Substitution Enhances Carbon Sequestration but Increases Greenhouse Gas Emissions in Maize Cropping Systems
by Yanan Liu, Xiaoqing Zhao, Yuchen Cheng, Rui Xie, Tiantian Meng, Liyu Chen, Yongfeng Ren, Chunlei Xue, Kun Zhao, Shuli Wei, Jing Fang, Xiangqian Zhang, Fengcheng Sun and Zhanyuan Lu
Agronomy 2025, 15(7), 1703; https://doi.org/10.3390/agronomy15071703 - 15 Jul 2025
Viewed by 332
Abstract
Excessive chemical fertilizers degrade soil and increase greenhouse gas (GHG) emissions. Organic substitution of nitrogen fertilizers is recognized as a sustainable agricultural-management practice, yet its dual role in carbon sequestration and emissions renders the net GHG balance (NGHGB) uncertain. To assess the GHG [...] Read more.
Excessive chemical fertilizers degrade soil and increase greenhouse gas (GHG) emissions. Organic substitution of nitrogen fertilizers is recognized as a sustainable agricultural-management practice, yet its dual role in carbon sequestration and emissions renders the net GHG balance (NGHGB) uncertain. To assess the GHG mitigation potential of organic substitution strategies, this study analyzed GHG fluxes, soil organic carbon (SOC) dynamics, indirect GHG emissions, and Net Primary Productivity (NPP) based on a long-term field positioning experiment initiated in 2016. Six fertilizer regimes were systematically compared: no fertilizer control (CK); only phosphorus and potassium fertilizer (PK); total chemical fertilizer (NPK); 1/3 chemical N substituted with sheep manure (OF1); dual substitution protocol with 1/6 chemical N substituted by sheep manure and 1/6 substituted by straw-derived N (OF2); complete chemical N substitution with sheep manure (OF3). The results showed that OF1 and OF2 maintained crop yields similar to those under NPK, whereas OF3 reduced yield by over 10%; relative to NPK, OF1, OF2, and OF3 significantly increased SOC sequestration rates by 50.70–149.20%, reduced CH4 uptake by 7.9–70.63%, increased CO2 emissions by 1.4–23.9%, decreased N2O fluxes by 3.6–56.2%, and mitigated indirect GHG emissions from farm inputs by 24.02–63.95%. The NGHGB was highest under OF1, 9.44–23.99% greater than under NPK. These findings demonstrate that partial organic substitution increased carbon sequestration, maintained crop yields, whereas high substitution rates increase the risk of carbon emissions. The study results indicate that substituting 1/3 of chemical nitrogen with sheep manure in maize cropping systems represents an effective fertilizer management approach to simultaneously balance productivity and ecological sustainability. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

20 pages, 1340 KiB  
Article
Assessment of Soil and Plant Nutrient Status, Spectral Reflectance, and Growth Performance of Various Dragon Fruit (Pitaya) Species Cultivated Under High Tunnel Systems
by Priyanka Belbase, Krishnaswamy Jayachandran and Maruthi Sridhar Balaji Bhaskar
Soil Syst. 2025, 9(3), 75; https://doi.org/10.3390/soilsystems9030075 - 14 Jul 2025
Viewed by 284
Abstract
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized [...] Read more.
Dragon fruit or pitaya (Hylocereus sp.) is an exotic tropical plant gaining popularity in the United States as it is a nutrient-rich fruit with mildly sweet flavor and a good source of fiber. Although high tunnels are being used to produce specialized crops, little is known about how pitaya growth, physiology and nutrient uptake change throughout the production period. This study aims to evaluate the impact of high tunnels and varying rates of vermicompost on three varieties of pitaya, White Pitaya (WP), Yellow Pitaya (YP), and Red Pitaya (RP), to assess the soil and plant nutrient dynamics, spectral reflectance changes and plant growth. Plants were assessed at 120 and 365 DAP (Days After Plantation). YP thrived in a high tunnel compared to an open environment in terms of survival before 120 DAP, with no diseased incidence and higher nutrient retention. The nutrient accumulation in the RP, WP, and YP shoot samples 120 DAP were ranked in the following order, K > N > Ca > Mg > P > Fe > Zn > B > Mn, while 365 DAP, they were ranked as K > Ca > N > Mg > P > S > Fe > Zn > B > Mn. The nutrient accumulation in the RP, WP, and YP, soil samples 120 and 365 DAP were ranked in the following order: N > Ca > Mg > P > K > Na > Zn. Soil nutrients showed a higher concentration of Na and K grown inside the high tunnels in all three pitaya species due to the increased concentration of soluble salts. Spectral reflectance analysis showed that RP and WP had higher reflectance in the visible and NIR region compared to YP due to their higher plant biomass and canopy cover. This study emphasizes the importance of environmental conditions, nutrition strategies, and plant physiology in the different pitaya plant species. The results suggest that high tunnels with appropriate vermicompost can enhance pitaya growth and development. Full article
Show Figures

Figure 1

16 pages, 2439 KiB  
Article
Unraveling Carbon and Nitrogen Dynamics in Cattle Manure: New Insights from Litterbag Incubation
by Thierry Morvan, Françoise Watteau and Paul Robin
Nitrogen 2025, 6(3), 56; https://doi.org/10.3390/nitrogen6030056 - 11 Jul 2025
Viewed by 216
Abstract
Management of livestock manure is a major concern due to its environmental impacts; consequently, laboratory-based incubations aim to quantify the C and N mineralization of organic matter (OM) to assess its potential to supply OM to soils. However, they can be limited by [...] Read more.
Management of livestock manure is a major concern due to its environmental impacts; consequently, laboratory-based incubations aim to quantify the C and N mineralization of organic matter (OM) to assess its potential to supply OM to soils. However, they can be limited by methodological constraints, notably the drying process of organic products. While litterbag experiments allow in situ decomposition of OM to be monitored, they often focus only on mass loss on a dry matter basis, which may overestimate biodegradation rates. To address these limitations, we designed an experiment that combined the measurement of material fluxes with the characterization of OM using transmission electron microscopy. Raw and dried farmyard cattle manure were incorporated into the soil and incubated in litterbags (200 µm mesh) for 301 days. The results demonstrated that drying significantly altered the biochemical composition of the cattle manure and influenced its microbial dynamics at the beginning of the incubation. However, this alteration did not influence the C mineralization rate at the end of incubation. Biodegradation alone could not explain C losses from litterbags after day 112 of incubation, which supports the assertion that physical and biological processes transferred large amounts of matter from the litterbags to the soil. These results highlight the importance of conditioning samples before laboratory incubations. Full article
Show Figures

Figure 1

15 pages, 2128 KiB  
Article
Subsurface Drainage and Biochar Amendment Alter Coastal Soil Nitrogen Cycling: Evidence from 15N Isotope Tracing—A Case Study in Eastern China
by Hong Xiong, Jinxiu Liu, Shunshen Huang, Chengzhu Li, Yaohua Li, Lieyi Xu, Zhaowang Huang, Qiang Li, Hiba Shaghaleh, Yousef Alhaj Hamoud and Qiuke Su
Water 2025, 17(14), 2071; https://doi.org/10.3390/w17142071 - 11 Jul 2025
Viewed by 380
Abstract
Subsurface drainage and biochar application are conventional measures for improving saline–alkali soils. However, their combined effects on the fate of nitrogen (N) fertilizers remain unclear. This study investigated the combined effects of subsurface drainage and biochar amendment on the fate of nitrogen (N) [...] Read more.
Subsurface drainage and biochar application are conventional measures for improving saline–alkali soils. However, their combined effects on the fate of nitrogen (N) fertilizers remain unclear. This study investigated the combined effects of subsurface drainage and biochar amendment on the fate of nitrogen (N) in coastal saline–alkali soils, where these conventional remediation measures’ combined impacts on fertilizer N dynamics remain seldom studied. Using 15N-labeled urea tracing in an alfalfa–soil system, we examined how different drainage spacings (0, 6, 12, and 18 m) and biochar application rates (5, 10, and 15 t/ha) influenced N distribution patterns. Results demonstrated decreasing in drainage spacing and increasing in biochar application; these treatments enhanced 15N use efficiency on three harvested crops. Drainage showed more sustained effects than biochar. Notably, the combination of 6 m drainage spacing with 15 t/ha biochar application achieved optimal performance of 15N use, showing N utilization efficiency of 46.0% that significantly compared with most other treatments (p < 0.05). 15N mass balance analysis revealed that the plant absorption, the soil residual and the loss of applied N accounted for 21.6–46.0%, 38.6–67.5% and 8.5–18.1%, respectively. These findings provide important insights for optimizing nitrogen management in coastal saline–alkali agriculture, demonstrating that strategic integration of subsurface drainage (6 m spacing) with biochar amendment (15 t/ha) can maximize N use efficiency, although potential N losses warrant consideration in field applications. Full article
(This article belongs to the Special Issue Biochar-Based Systems for Agricultural Water Management)
Show Figures

Figure 1

11 pages, 1463 KiB  
Article
Intestinal Microbial Eukaryotes at the Human, Animal and Environment Interface in Rural Iraq
by Yaseen Majid Salman Al-Adilee, Maulood M. Shather, Dalia A. Kalef, Sadiya Maxamhud, Eylem Akdur Öztürk, Eleni Gentekaki and Anastasios D. Tsaousis
Parasitologia 2025, 5(3), 34; https://doi.org/10.3390/parasitologia5030034 - 9 Jul 2025
Viewed by 321
Abstract
Intestinal microbial eukaryotic parasites represent a significant public and veterinary health burden, especially in low- and middle-income countries, yet their transmission dynamics at the human–animal–environment interface remain poorly characterized in certain countries. This study investigated the prevalence and genetic diversity of key microbial [...] Read more.
Intestinal microbial eukaryotic parasites represent a significant public and veterinary health burden, especially in low- and middle-income countries, yet their transmission dynamics at the human–animal–environment interface remain poorly characterized in certain countries. This study investigated the prevalence and genetic diversity of key microbial eukaryotes, including Cryptosporidium spp., Giardia duodenalis, Blastocystis spp., Entamoeba histolytica, and Enterocytozoon bieneusi, in a rural village in Iraq. Samples collected from humans (n = 50), livestock (sheep and goats, n = 50), water (n = 20), and soil (n = 20) were analysed using microscopy and molecular methods (qPCR and nested PCR). Blastocystis spp. (78% animals, 16% humans, 45% soil, 5% water) and Cryptosporidium spp. (26% animals, 12% humans, 5% soil, 15% water) were the most frequently found microeukaryotes using either microscopy and/or molecular detection. Molecular methods identified Cryptosporidium parvum in humans and sheep, hinting at zoonotic transmission potential. Enterocytozoon bieneusi and Giardia were also found. Cryptosporidium ubiquitum and E. bieneusi genotypes BEB6 and COS-I, respectively, were detected exclusively in sheep, suggesting roles as potential reservoirs. Blastocystis ST1 was detected in humans, while ST4 and ST10 occurred in sheep. Notably, molecular detection rates of Blastocystis were much lower than those of microscopy. Entamoeba histolytica was not detected. The detection of the same organisms in humans, animals and the environment suggest zoonotic and environmental transmission pathways, which warrant further investigation using the One Health approach. Full article
(This article belongs to the Special Issue Parasites Circulation Between the Three Domains of One Health)
Show Figures

Figure 1

13 pages, 3859 KiB  
Article
Long-Term Fertilizer-Based Management Alters Soil N2O Emissions and Silicon Availability in Moso Bamboo Forests
by Jie Yang, Kecheng Wang, Jiamei Chen, Lili Fan, Peikun Jiang and Rong Zheng
Agronomy 2025, 15(7), 1647; https://doi.org/10.3390/agronomy15071647 - 7 Jul 2025
Viewed by 363
Abstract
Long-term intensive management practices in Moso bamboo (Phyllostachys edulis) forests, primarily characterized by repeated fertilizer application, tillage, and biomass harvesting, can alter soil nutrient cycling and ecosystem stability. This study aimed to assess how such fertilizer-based management affects soil N2 [...] Read more.
Long-term intensive management practices in Moso bamboo (Phyllostachys edulis) forests, primarily characterized by repeated fertilizer application, tillage, and biomass harvesting, can alter soil nutrient cycling and ecosystem stability. This study aimed to assess how such fertilizer-based management affects soil N2O emission potential and silicon (Si) availability. We collected soil samples (0–20 cm) from bamboo stands subjected to 0–39 years of intensive management and from adjacent natural broad-leaved forests as a reference. The Soil pH, nitrogen forms, nitrification and denitrification potential, and Si concentrations were measured. The results showed significant nitrogen accumulation and progressive soil acidification with increasing management duration. The nitrification and denitrification potentials were 5.7 and 6.0 times higher in the 39-year-old stand compared to unmanaged bamboo. Meanwhile, the available Si decreased by 20.1%, despite stable total Si levels. The available Si showed strong positive correlations with nitrogen forms and transformation rates. These findings highlight the long-term impact of fertilizer-driven bamboo management on soil biogeochemistry and emphasize the need to consider Si dynamics in sustainable nutrient strategies. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

14 pages, 2200 KiB  
Article
Evaluation of Major Soil Nutrients After the Application of Microbial-Inoculated Acidified Biochar Pellets Using a Sigmoid Function
by JooHee Nam, JoungDu Shin, Jae-Yee Choi, SangWon Park, JaeWook Chung and Changyoon Jeong
Agronomy 2025, 15(7), 1607; https://doi.org/10.3390/agronomy15071607 - 30 Jun 2025
Viewed by 248
Abstract
This experiment aimed to investigate nutrient dynamics in soil and compare plant growth responses after treatment with acidified biochar pellets inoculated with microorganisms during Kimchi cabbage cultivation, using a sigmoid function model. The treatments included the following: Control–only guano application; ABPM 27 ( [...] Read more.
This experiment aimed to investigate nutrient dynamics in soil and compare plant growth responses after treatment with acidified biochar pellets inoculated with microorganisms during Kimchi cabbage cultivation, using a sigmoid function model. The treatments included the following: Control–only guano application; ABPM 27 (Pseudomonas fluorescens 22BCO027); and ABPM 86 (Bacillus megaterium 22BCO086). Guano and biochar pellets were applied at 320 kg ha−1, based on the recommended nitrogen application rate for cabbage cultivation. The results showed that the cumulative NO3-N and P2O5 in the ABPM 27 treatment were 27.7% and 12.1% higher, respectively, compared with the control. The maximum cumulative K was not significantly different (p > 0.05) between the treatments. The cumulative NH4-N and NO3-N were well fitted (R2 > 0.824) to the sigmoid curves, while the cumulative P2O5 and K were well described with the linear function (R2 > 0.970) regardless of treatment. The highest yield was 77.4 tonnes ha−1 under the ABPM 27 treatment. Therefore, the ABPM 27 treatment is strongly recommended for enhancing cabbage yield in organic farming due to its high capacity for accumulating NO3-N and P2O5. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

Back to TopTop