Organic Nitrogen Substitution Enhances Carbon Sequestration but Increases Greenhouse Gas Emissions in Maize Cropping Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.2. Sampling and Analytical Methods
2.2.1. Soil Physicochemical Properties
2.2.2. CH4, CO2, and N2O Sampling and Measurement
2.3. Evaluation Metrics and Calculation Methods
2.3.1. System Boundaries
2.3.2. Global Warming Potential of Soil Carbon Emissions (GWPsoil)
2.3.3. Global Warming Potential of Agricultural Inputs (GWPinput)
2.3.4. Global Warming Potential of Changes in Soil Organic Carbon (GWPSOC)
2.3.5. Global Warming Potential of Net Primary Productivity (GWPNPP)
2.3.6. Net GHG Balance (NGHGB) and Carbon Footprint Calculation
2.4. Statistical Analysis
3. Results
3.1. Farmland Soil GHG Emissions
3.2. Soil Organic Carbon
3.3. Indirect Carbon Emissions from Agricultural Inputs
3.4. Net Primary Productivity Carbon Sequestration in Maize
3.5. Net GHG Balance and Carbon Footprint in Farmland
3.6. Relationships Between Net GHG Balance and Soil Properties
4. Discussion
4.1. Impact of Organic Nitrogen Fertilizer Substitution on Farmland Carbon Sequestration
4.2. Impact of Organic Nitrogen Fertilizer Substitution on Farmland Carbon Emissions
4.3. Impact of Organic Nitrogen Fertilizer Substitution on the NGHGB
4.4. Uncertainties and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2016 (SOFA): Climate Change, Agriculture and Food Security; FAO: Rome, Italy, 2016. [Google Scholar]
- FAO. The State of Food and Agriculture 2023. Revealing the True Cost of Food to Transform Agrifood Systems; FAO: Rome, Italy, 2023. [Google Scholar]
- Song, Y.; Wu, D.; Ju, X.; Dörsch, P.; Wang, M.; Wang, R.; Song, X.; Deng, L.; Wang, R.; Gao, Z.; et al. Nitrite Stimulates HONO and NOx but Not N2O Emissions in Chinese Agricultural Soils during Nitrification. Sci. Total Environ. 2023, 902, 166451. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Canarini, A.; Fujii, K.; Mmari, W.N.; Kilasara, M.M.; Funakawa, S. Cropland Intensification Mediates the Radiative Balance of Greenhouse Gas Emissions and Soil Carbon Sequestration in Maize Systems of sub-Saharan Africa. Glob. Change Biol. 2023, 29, 1514–1529. [Google Scholar] [CrossRef]
- Tang, Q.; Cotton, A.; Wei, Z.; Xia, Y.; Daniell, T.; Yan, X. How Does Partial Substitution of Chemical Fertiliser with Organic Forms Increase Sustainability of Agricultural Production? Sci. Total Environ. 2022, 803, 149933. [Google Scholar] [CrossRef] [PubMed]
- Tong, B.; Hou, Y.; Wang, S.; Ma, W. Partial Substitution of Urea Fertilizers by Manure Increases Crop Yield and Nitrogen Use Efficiency of a Wheat–Maize Double Cropping System. Nutr. Cycl. Agroecosyst. 2023, 127, 11–21. [Google Scholar] [CrossRef]
- Wang, B.; Wang, P.; He, H.; Zorn, C.; Guo, W.; Wu, J.; Yu, C.; Huang, X. Livestock–Cropland Re-Coupling and Intensive Farming: Strategies for Enhancing Greenhouse Gas Mitigation and Eco-Efficiency in Wheat–Maize Production in North China Plain. Environ. Res. Lett. 2025, 20, 014032. [Google Scholar] [CrossRef]
- Guo, S.; Pan, J.; Zhai, L.; Khoshnevisan, B.; Wu, S.; Wang, H.; Yang, B.; Liu, H.; Lei, B. The Reactive Nitrogen Loss and GHG Emissions from a Maize System after a Long-Term Livestock Manure Incorporation in the North China Plain. Sci. Total Environ. 2020, 720, 137558. [Google Scholar] [CrossRef]
- Bebber, D.P.; Richards, V.R. A Meta-Analysis of the Effect of Organic and Mineral Fertilizers on Soil Microbial Diversity. Appl. Soil Ecol. 2022, 175, 104450. [Google Scholar] [CrossRef]
- Wang, X.; Liu, M.; Ciampitti, I.A.; Cui, J.; Fang, K.; Zhao, S.; He, P.; Zhou, W. Benefits and Trade-Offs of Replacing Inorganic Fertilizer by Organic Substrate in Crop Production: A Global Meta-Analysis. Sci. Total Environ. 2024, 925, 171781. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Li, J.; Lin, J.-G.; Zhang, N.; Cao, W. Biogas Energy Generated from Livestock Manure in China: Current Situation and Future Trends. J. Environ. Manag. 2021, 297, 113324. [Google Scholar] [CrossRef]
- Amadou, A.; Song, A.; Tang, Z.-X.; Li, Y.; Wang, E.-Z.; Lu, Y.-Q.; Liu, X.-D.; Yi, K.; Zhang, B.; Fan, F. The Effects of Organic and Mineral Fertilization on Soil Enzyme Activities and Bacterial Community in the Below- and Above-Ground Parts of Wheat. Agronomy 2020, 10, 1452. [Google Scholar] [CrossRef]
- Li, K.; Wang, C.; Li, X.; Li, H.; Dong, M.; Jin, S.; Liu, L.; Zhu, C.; Xue, R. Long-Term Effect of Integrated Fertilization on Maize Yield and Soil Fertility in a Calcaric Fluvisol. Arch. Agron. Soil Sci. 2021, 67, 1400–1410. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, C.; Wang, Y.; Hu, Y.; Christie, P.; Zhang, J.; Li, X. Maize Yield and Soil Fertility with Combined Use of Compost and Inorganic Fertilizers on a Calcareous Soil on the North China Plain. Soil Tillage Res. 2016, 155, 85–94. [Google Scholar] [CrossRef]
- Gao, H.; Xi, Y.; Wu, X.; Pei, X.; Liang, G.; Bai, J.; Song, X.; Zhang, M.; Liu, X.; Han, Z.; et al. Partial Substitution of Manure Reduces Nitrous Oxide Emission with Maintained Yield in a Winter Wheat Crop. J. Environ. Manag. 2023, 326, 116794. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Song, F.; Yin, Z.; Chen, P.; Zhang, Z.; Qi, Z.; Wang, B.; Zheng, E. Organic Fertilizer Substitutions Maintain Maize Yield and Mitigate Ammonia Emissions but Increase Nitrous Oxide Emissions. Env. Sci. Pollut. Res. 2023, 30, 53115–53127. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, S.; Ouyang, Z.; Canadell, J.G.; Chang, J.; Conchedda, G.; Davidson, E.A.; Lu, F.; Pan, N.; Qin, X.; et al. Global Nitrous Oxide Emissions from Livestock Manure during 1890–2020: An IPCC Tier 2 Inventory. Glob. Change Biol. 2024, 30, e17303. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Du, X.; Li, Y.; Han, X.; Li, B.; Zhang, X.; Li, Q.; Liang, W. Organic Substitutions Improve Soil Quality and Maize Yield through Increasing Soil Microbial Diversity. J. Clean. Prod. 2022, 347, 131323. [Google Scholar] [CrossRef]
- Dai, X.; Song, D.; Zhou, W.; Liu, G.; Liang, G.; He, P.; Sun, G.; Yuan, F.; Liu, Z.; Yao, Y.; et al. Partial Substitution of Chemical Nitrogen with Organic Nitrogen Improves Rice Yield, Soil Biochemical Indictors and Microbial Composition in a Double Rice Cropping System in South China. Soil Tillage Res. 2021, 205, 104753. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Q.; Li, Z.; Qiao, Y.; Du, K.; Tian, C.; Zhu, N.; Leng, P.; Yue, Z.; Cheng, H.; et al. Effects of Straw Mulching and Nitrogen Application Rates on Crop Yields, Fertilizer Use Efficiency, and Greenhouse Gas Emissions of Summer Maize. Sci. Total Environ. 2022, 847, 157681. [Google Scholar] [CrossRef]
- Cui, P.; Fan, F.; Yin, C.; Song, A.; Huang, P.; Tang, Y.; Zhu, P.; Peng, C.; Li, T.; Wakelin, S.A.; et al. Long-Term Organic and Inorganic Fertilization Alters Temperature Sensitivity of Potential N2O Emissions and Associated Microbes. Soil Biol. Biochem. 2016, 93, 131–141. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Yan, X.; Chen, D. How Does Recycling of Livestock Manure in Agroecosystems Affect Crop Productivity, Reactive Nitrogen Losses, and Soil Carbon Balance? Environ. Sci. Technol. 2017, 51, 7450–7457. [Google Scholar] [CrossRef]
- Shao, G.; Zhou, J.; Liu, B.; Alharbi, S.A.; Liu, E.; Kuzyakov, Y. Carbon Footprint of Maize-Wheat Cropping System after 40-Year Fertilization. Sci. Total Environ. 2024, 926, 172082. [Google Scholar] [CrossRef] [PubMed]
- Qian, R.; Guo, R.; Naseer, M.A.; Zhang, P.; Chen, X.; Ren, X. Long-Term Straw Incorporation Regulates Greenhouse Gas Emissions from Biodegradable Film Farmland, Improves Ecosystem Carbon Budget and Sustainable Maize Productivity. Field Crops Res. 2023, 295, 108890. [Google Scholar] [CrossRef]
- Wu, G.; Ling, J.; Xu, Y.-P.; Zhao, D.-Q.; Liu, Z.-X.; Wen, Y.; Zhou, S.-L. Effects of Soil Warming and Straw Return on Soil Organic Matter and Greenhouse Gas Fluxes in Winter Wheat Seasons in the North China Plain. J. Clean. Prod. 2022, 356, 131810. [Google Scholar] [CrossRef]
- Pei, Y.; Chen, X.; Niu, Z.; Su, X.; Wang, Y.; Wang, X. Effects of Nitrogen Fertilizer Substitution by Cow Manure on Yield, Net GHG Emissions, Carbon and Nitrogen Footprints in Sweet Maize Farmland in the Pearl River Delta in China. J. Clean. Prod. 2023, 399, 136676. [Google Scholar] [CrossRef]
- Buol, S.W.; Southard, R.J.; Graham, R.C.; McDaniel, P.A. Soil Genesis and Classification, 1st ed.; Wiley: Hoboken, NJ, USA, 2011; ISBN 978-0-8138-0769-0. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In SSSA Book Series; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1996; pp. 961–1010. ISBN 978-0-89118-866-7. [Google Scholar]
- Zhang, Y.; Xu, A.; Shang, H. Determination Study of Total Nitrogen in Soil and Plant by Continuous Flow Analytical System. J. Northwest Sci.-Tech. Univ. Agric. For. 2006, 34, 128–132. [Google Scholar] [CrossRef]
- Lu, R. Analysis Methods of Soil and Agricultural Chemistry; Chinese Agriculture and Technology Press Publisher: Beijing, China, 1999. [Google Scholar]
- Cui, J.; Sui, P.; Wright, D.L.; Wang, D.; Sun, B.; Ran, M.; Shen, Y.; Li, C.; Chen, Y. Carbon Emission of Maize-Based Cropping Systems in the North China Plain. J. Clean. Prod. 2019, 213, 300–308. [Google Scholar] [CrossRef]
- IPCC Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2023; ISBN 978-1-009-15789-6.
- Lares-Orozco, M.F.; Robles-Morúa, A.; Yepez, E.A.; Handler, R.M. Global Warming Potential of Intensive Wheat Production in the Yaqui Valley, Mexico: A Resource for the Design of Localized Mitigation Strategies. J. Clean. Prod. 2016, 127, 522–532. [Google Scholar] [CrossRef]
- Chen, S.; Lu, F.; Wang, X.K. Estimation of greenhouse gases emission factors for China’s nitrogen, phosphate, and potash fertilizers. Acta Ecol. Sin. 2015, 35, 6371–6383. [Google Scholar] [CrossRef]
- Liu, X.; Xu, W.X.; Li, Z.J.; Chu, Q.Q.; Yang, X.L.; Chen, F. The Missteps, Improvement and Application of Carbon Footprint Methodology in Farmland Ecosystems with the Case Study of Analyzing the Carbon Efficiency of China’s Intensive Farming. Chin. J. Agric. Resour. Reg. Plan. 2013, 34, 1–11. [Google Scholar] [CrossRef]
- Gao, Y.; Shao, Y.; Wang, J.; Hu, B.; Feng, H.; Qu, Z.; Liu, Z.; Zhang, M.; Li, C.; Liu, Y. Effects of Straw Returning Combined with Blended Controlled-Release Urea Fertilizer on Crop Yields, Greenhouse Gas Emissions, and Net Ecosystem Economic Benefits: A Nine-Year Field Trial. J. Environ. Manag. 2024, 356, 120633. [Google Scholar] [CrossRef]
- Haque, M.M.; Kim, G.W.; Kim, P.J.; Kim, S.Y. Comparison of Net Global Warming Potential between Continuous Flooding and Midseason Drainage in Monsoon Region Paddy during Rice Cropping. Field Crops Res. 2016, 193, 133–142. [Google Scholar] [CrossRef]
- Qi, W.-Z.; Liu, H.-H.; Liu, P.; Dong, S.-T.; Zhao, B.-Q.; So, H.B.; Li, G.; Liu, H.-D.; Zhang, J.-W.; Zhao, B. Morphological and Physiological Characteristics of Corn (Zea mays L.) Roots from Cultivars with Different Yield Potentials. Eur. J. Agron. 2012, 38, 54–63. [Google Scholar] [CrossRef]
- Zhang, X.; Fang, Q.; Zhang, T.; Ma, W.; Velthof, G.L.; Hou, Y.; Oenema, O.; Zhang, F. Benefits and Trade-offs of Replacing Synthetic Fertilizers by Animal Manures in Crop Production in China: A Meta-analysis. Glob. Change Biol. 2020, 26, 888–900. [Google Scholar] [CrossRef]
- Wu, G.; Yang, S.; Luan, C.; Wu, Q.; Lin, L.; Li, X.; Che, Z.; Zhou, D.; Dong, Z.; Song, H. Partial Organic Substitution for Synthetic Fertilizer Improves Soil Fertility and Crop Yields While Mitigating N2O Emissions in Wheat-Maize Rotation System. Eur. J. Agron. 2024, 154, 127077. [Google Scholar] [CrossRef]
- Zhang, M.; Yao, Y.; Tian, Y.; Ceng, K.; Zhao, M.; Zhao, M.; Yin, B. Increasing Yield and N Use Efficiency with Organic Fertilizer in Chinese Intensive Rice Cropping Systems. Field Crops Res. 2018, 227, 102–109. [Google Scholar] [CrossRef]
- Xiong, J.; Zhang, C.; Zhang, J. Soil Respiration and Carbon Balance under Different Nitrogen Application Levels in Maize Field. Chin. Agric. Sci. Bull. 2017, 2017, 89–95. [Google Scholar]
- Shu, X.; He, J.; Zhou, Z.; Xia, L.; Hu, Y.; Zhang, Y.; Zhang, Y.; Luo, Y.; Chu, H.; Liu, W.; et al. Organic Amendments Enhance Soil Microbial Diversity, Microbial Functionality and Crop Yields: A Meta-Analysis. Sci. Total Environ. 2022, 829, 154627. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, K.; Feng, T.; Miao, P.; Zheng, Z.; Zhang, X.; Zheng, W.; Li, Z.; Zhai, B. Optimizing Combination of Chemical Nitrogen Fertilizer and Manure Can Increase Yield and Economic Benefits of Dryland Wheat While Reduce Environmental Risks. Eur. J. Agron. 2024, 159, 127272. [Google Scholar] [CrossRef]
- Maillard, É.; Angers, D.A. Animal Manure Application and Soil Organic Carbon Stocks: A Meta-Analysis. Glob. Change Biol. 2014, 20, 666–679. [Google Scholar] [CrossRef]
- Ning, L.; Xu, X.; Zhang, Y.; Zhao, S.; Qiu, S.; Ding, W.; Zou, G.; He, P. Effects of Chicken Manure Substitution for Mineral Nitrogen Fertilizer on Crop Yield and Soil Fertility in a Reduced Nitrogen Input Regime of North-Central China. Front. Plant Sci. 2022, 13, 1050179. [Google Scholar] [CrossRef]
- Li, B.; Song, H.; Cao, W.; Wang, Y.; Chen, J.; Guo, J. Responses of Soil Organic Carbon Stock to Animal Manure Application: A New Global Synthesis Integrating the Impacts of Agricultural Managements and Environmental Conditions. Glob. Change Biol. 2021, 27, 5356–5367. [Google Scholar] [CrossRef]
- He, H.; Peng, M.; Hou, Z.; Li, J. Organic Substitution Contrasting Direct Fertilizer Reduction Increases Wheat Productivity, Soil Quality, Microbial Diversity and Network Complexity. Environ. Technol. Innov. 2024, 36, 103784. [Google Scholar] [CrossRef]
- Luo, G.; Li, L.; Friman, V.-P.; Guo, J.; Guo, S.; Shen, Q.; Ling, N. Organic Amendments Increase Crop Yields by Improving Microbe-Mediated Soil Functioning of Agroecosystems: A Meta-Analysis. Soil Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Stewart, C.E.; Paustian, K.; Conant, R.T.; Plante, A.F.; Six, J. Soil Carbon Saturation: Evaluation and Corroboration by Long-Term Incubations. Soil Biol. Biochem. 2008, 40, 1741–1750. [Google Scholar] [CrossRef]
- Liu, C.; Lu, M.; Cui, J.; Li, B.; Fang, C. Effects of Straw Carbon Input on Carbon Dynamics in Agricultural Soils: A Meta-analysis. Glob. Change Biol. 2014, 20, 1366–1381. [Google Scholar] [CrossRef]
- Berhane, M.; Xu, M.; Liang, Z.; Shi, J.; Wei, G.; Tian, X. Effects of Long-term Straw Return on Soil Organic Carbon Storage and Sequestration Rate in North China Upland Crops: A Meta-analysis. Glob. Change Biol. 2020, 26, 2686–2701. [Google Scholar] [CrossRef] [PubMed]
- Aronson, E.L.; Helliker, B.R. Methane Flux in Non-Wetland Soils in Response to Nitrogen Addition: A Meta-Analysis. Ecology 2010, 91, 3242–3251. [Google Scholar] [CrossRef]
- Kalyuzhnaya, M.G.; Puri, A.W.; Lidstrom, M.E. Metabolic Engineering in Methanotrophic Bacteria. Metab. Eng. 2015, 29, 142–152. [Google Scholar] [CrossRef]
- Shakoor, A.; Shakoor, S.; Rehman, A.; Ashraf, F.; Abdullah, M.; Shahzad, S.M.; Farooq, T.H.; Ashraf, M.; Manzoor, M.A.; Altaf, M.M.; et al. Effect of Animal Manure, Crop Type, Climate Zone, and Soil Attributes on Greenhouse Gas Emissions from Agricultural Soils—A Global Meta-Analysis. J. Clean. Prod. 2021, 278, 124019. [Google Scholar] [CrossRef]
- Pausch, J.; Kuzyakov, Y. Soil Organic Carbon Decomposition from Recently Added and Older Sources Estimated by δ13C Values of CO2 and Organic Matter. Soil Biol. Biochem. 2012, 55, 40–47. [Google Scholar] [CrossRef]
- Zhou, J.; Shao, G.; Kumar, A.; Shi, L.; Kuzyakov, Y.; Pausch, J. Carbon Fluxes Within Tree-Crop-Grass Agroforestry System: 13C Field Labeling and Tracing. Biol. Fertil. Soils 2022, 58, 733–743. [Google Scholar] [CrossRef]
- Wei, Z.; Ying, H.; Guo, X.; Zhuang, M.; Cui, Z.; Zhang, F. Substitution of Mineral Fertilizer with Organic Fertilizer in Maize Systems: A Meta-Analysis of Reduced Nitrogen and Carbon Emissions. Agronomy 2020, 10, 1149. [Google Scholar] [CrossRef]
- Bouwman, A.F. Nitrogen Oxides and Tropical Agriculture. Nature 1998, 392, 866–867. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Ma, L.; Chadwick, D.; Chen, X. Combined Applications of Organic and Synthetic Nitrogen Fertilizers for Improving Crop Yield and Reducing Reactive Nitrogen Losses from China’s Vegetable Systems: A Meta-Analysis. Environ. Pollut. 2021, 269, 116143. [Google Scholar] [CrossRef]
- Wang, J.; Hussain, S.; Sun, X.; Chen, X.; Ma, Z.; Zhang, Q.; Yu, X.; Zhang, P.; Ren, X.; Saqib, M.; et al. Nitrogen Application at a Lower Rate Reduce Net Field Global Warming Potential and Greenhouse Gas Intensity in Winter Wheat Grown in Semi-Arid Region of the Loess Plateau. Field Crops Res. 2022, 280, 108475. [Google Scholar] [CrossRef]
- Meijide, A.; Díez, J.A.; Sánchez-Martín, L.; López-Fernández, S.; Vallejo, A. Nitrogen Oxide Emissions from an Irrigated Maize Crop Amended with Treated Pig Slurries and Composts in a Mediterranean Climate. Agric. Ecosyst. Environ. 2007, 121, 383–394. [Google Scholar] [CrossRef]
- Nan, W.; Yue, S.; Li, S.; Huang, H.; Shen, Y. Characteristics of N2O Production and Transport Within Soil Profiles Subjected to Different Nitrogen Application Rates in China. Sci. Total Environ. 2016, 542, 864–875. [Google Scholar] [CrossRef]
- Forte, A.; Fagnano, M.; Fierro, A. Potential Role of Compost and Green Manure Amendment to Mitigate Soil GHGs Emissions in Mediterranean Drip Irrigated Maize Production Systems. J. Environ. Manag. 2017, 192, 68–78. [Google Scholar] [CrossRef]
- Wang, X.; Wang, S.; Zang, H.; Nie, J.; Zhao, J.; Wang, P.; Peixoto, L.; Yang, Y.; Olesen, J.E.; Zeng, Z. Replacing Chemical Fertilizer with Manure Reduces N2O Emissions in Winter Wheat—Summer Maize Cropping System under Limited Irrigation. J. Environ. Manag. 2023, 336, 117677. [Google Scholar] [CrossRef]
- Aguilera, E.; Lassaletta, L.; Sanz-Cobena, A.; Garnier, J.; Vallejo, A. The Potential of Organic Fertilizers and Water Management to Reduce N2O Emissions in Mediterranean Climate Cropping Systems. A Review. Agric. Ecosyst. Environ. 2013, 164, 32–52. [Google Scholar] [CrossRef]
- Xie, L.; Li, L.; Xie, J.; Wang, J.; Mumtaz, M.Z.; Effah, Z.; Fudjoe, S.K.; Khaskheli, M.A.; Luo, Z.; Li, L. Optimal Substitution of Inorganic Fertilizer with Organic Amendment Sustains Rainfed Maize Production and Decreases Soil N2O Emissions by Modifying Denitrifying Bacterial Communities in Northern China. Eur. J. Agron. 2024, 160, 127287. [Google Scholar] [CrossRef]
- Han, Z.; Hou, H.; Yao, X.; Qian, X.; Zhou, M. Substituting Partial Chemical Fertilizers with Bio-Organic Fertilizers to Reduce Greenhouse Gas Emissions in Water-Saving Irrigated Rice Fields. Agronomy 2024, 14, 544. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Xia, X.; Mei, X. Dynamics of Soil Respiration and Carbon Balance of Summer-Maize Field under Different Nitrogen Addition. Ecol. Environ. Sci. 2013, 22, 18–24. [Google Scholar] [CrossRef]
- Angst, G.; Mueller, K.E.; Castellano, M.J.; Vogel, C.; Wiesmeier, M.; Mueller, C.W. Unlocking Complex Soil Systems as Carbon Sinks: Multi-Pool Management as the Key. Nat. Commun. 2023, 14, 2967. [Google Scholar] [CrossRef] [PubMed]
Year | SOC (g·kg−1) | Total N (g·kg−1) | Total Phosphorus (g·kg−1) | Total Potassium (g·kg−1) | Available Phosphorus (mg·kg−1) | Available Potassium (mg·kg−1) | pH |
---|---|---|---|---|---|---|---|
2016 | 14.57 | 1.18 | 0.91 | 23.21 | 15.70 | 163.00 | 7.58 |
Year | Sheep Manure | Maize Straw | |||||
---|---|---|---|---|---|---|---|
Moisture Content (%) | Total N (g·kg−1) | Total P (g·kg−1) | Total K (g·kg−1) | Total N (g·kg−1) | Total P (g·kg−1) | Total K (g·kg−1) | |
2021 | 35.75 | 13.6 | 15.1 | 16.2 | 7.1 | 3.9 | 13.4 |
2022 | 42.61 | 15.1 | 14.4 | 17.6 | 8.3 | 3.1 | 12.2 |
Year | Treatment | Organic Fertilizer | Chemical Fertilizer | ||||
---|---|---|---|---|---|---|---|
N | P | K | N | P | K | ||
2021 | CK | 0 | 0 | 0 | 0 | 0 | 0 |
NPK | 0 | 0 | 0 | 240 | 150 | 112.5 | |
OF1 | 80 | 87.1 | 94.1 | 160 | 62.9 | 18.39 | |
OF2 | 80 | 65.5 | 122.5 | 160 | 84.5 | 0 | |
OF3 | 240 | 266.5 | 285.9 | 0 | 0 | 0 | |
PK | 0 | 0 | 0 | 0 | 150 | 112.5 | |
2022 | CK | 0 | 0 | 0 | 0 | 0 | 0 |
NPK | 0 | 0 | 0 | 240 | 150 | 112.5 | |
OF1 | 80 | 76.3 | 93.2 | 160 | 73.7 | 19.3 | |
OF2 | 80 | 53 | 105.4 | 160 | 97 | 7.1 | |
OF3 | 240 | 228.9 | 279.7 | 0 | 0 | 0 | |
PK | 0 | 0 | 0 | 0 | 150 | 112.5 |
Items | Factors | Units | Reference |
---|---|---|---|
N fertilizer (N) | 7.76 | kg CO2-eq kg−1 | Chen et al., 2015 [34] |
P fertilizer (P2O5) | 2.33 | kg CO2-eq kg−1 | Chen et al., 2015 [34] |
Potash fertilizer (K2O) | 0.66 | kg CO2-eq kg−1 | Chen et al., 2015 [34] |
Diesel fuel | 3.32 | kg CO2-eq kg−1 | Liu et al., 2013 [35] |
Electricity for irrigation | 0.92 | kg CO2-eq kW·h−1 | Liu et al., 2013 [35] |
Pesticide | 6.58 | kg CO2-eq kg−1 | Liu et al., 2013 [35] |
Labor | 0.68 | kg CO2-eq person−1 d−1 | Liu et al., 2013 [35] |
Seeds: Maize | 1.22 | kg CO2-eq kg−1 | Liu et al., 2013 [35] |
Time | Treatment | Yield (t·ha−1) | N2O (kg CO2-eq·ha−1) | CH4 (kg CO2-eq·ha−1) | CO2 (t CO2-eq·ha−1) | GWPsoil (t CO2-eq·ha−1) | GWPsoil Intensity (t CO2-eq·t−1) |
---|---|---|---|---|---|---|---|
2021 | CK | 10.72 ± 0.25 c | 285.52 ± 17.15 d | −16.57 ± 0.84 b | 23.44 ± 1.59 d | 23.71 ± 1.6 c | 2.21 ± 0.31 ab |
NPK | 14.95 ± 0.26 a | 1403.45 ± 113.9 a | −24.92 ± 1.84 a | 27.1 ± 0.39 c | 28.48 ± 0.5 b | 1.91 ± 0.24 c | |
OF1 | 15.29 ± 0.89 a | 1352.61 ± 140.6 ab | −16.31 ± 1.72 b | 29.72 ± 2.86 ab | 31.06 ± 1.87 ab | 2.07 ± 0.18 b | |
OF2 | 14.82 ± 0.21 a | 1053.05 ± 80.61 c | −12.85 ± 1.44 bc | 27.35 ± 0.97 bc | 28.4 ± 1.05 b | 1.92 ± 0.26 c | |
OF3 | 13.29 ± 0.62 b | 1121.76 ± 132.9 b | −4.57 ± 0.56 d | 33.58 ± 2.81 a | 34.7 ± 2.14 a | 2.61 ± 0.22 a | |
PK | 11.05 ± 0.67 c | 234.05 ± 52.89 d | −9.15 ± 0.84 cd | 22.55 ± 0.96 d | 22.7 ± 1.01 c | 2.05 ± 0.15 b | |
F-values | 45.04 | 39.72 | 16.41 | 11.79 | 11.80 | 6.67 | |
2022 | CK | 10.32 ± 0.5 c | 262.8 ± 71.13 d | −14.61 ± 0.44 b | 20.66 ± 1.48 c | 20.91 ± 0.88 c | 2.03 ± 0.17 a |
NPK | 14.19 ± 1.22 a | 1433.37 ± 129.9 a | −19.39 ± 1.4 a | 24.06 ± 0.68 b | 25.46 ± 1.21 b | 1.80 ± 0.22 b | |
OF1 | 14.5 ± 0.24 a | 882.31 ± 126.4 b | −18.27 ± 0.6 a | 24.47 ± 0.75 b | 25.33 ± 0.87 b | 1.75 ± 0.2 b | |
OF2 | 13.98 ± 1.24 a | 627.06 ± 74.3 c | −18.47 ± 0.96 a | 24.41 ± 1.16 b | 25.02 ± 1.43 b | 1.79 ± 0.19 b | |
OF3 | 12.69 ± 0.88 b | 1152.37 ± 103.2 b | −13.29 ± 0.48 b | 27.12 ± 1.22 a | 28.27 ± 1.19 a | 2.23 ± 0.23 a | |
PK | 10.73 ± 0.14 c | 319.8 ± 164.5 d | −9.4 ± 0.56 c | 19.99 ± 1.12 c | 20.97 ± 1.28 c | 1.95 ± 0.29 ab | |
F-values | 28.43 | 50.78 | 10.27 | 19.11 | 19.04 | 3.49 |
Year | Item | SOC (g/kg) | BD (g/cm3) | Carbon Sequestration Rate | ||||||
---|---|---|---|---|---|---|---|---|---|---|
(kg·CO2·ha−1·yr−1) | ||||||||||
0–10 cm | 10–20 cm | 20–40 cm | 40–60 cm | 0–10 cm | 10–20 cm | 20–40 cm | 40–60 cm | 0–60 cm | ||
2016 | Basic data | 14.57 ± 0.75 | 14.25 ± 0.62 | 12.44 ± 0.22 | 10.15 ± 0.82 | 1.36 ± 0.07 | 1.39 ± 0.12 | 1.52 ± 0.17 | 1.43 ± 0.12 | --- |
2021 | CK | 13.96 ± 0.62 c | 14.09 ± 1.01 b | 12.35 ± 0.41 b | 9.67 ± 0.52 a | 1.34 ± 0.10 a | 1.40 ± 0.13 a | 1.51 ± 0.12 a | 1.41 ± 0.14 a | −0.20 ± 0.03 d |
NPK | 14.67 ± 0.54 bc | 14.46 ± 0.47 b | 12.47 ± 0.54 ab | 10.72 ± 0.34 a | 1.40 ± 0.09 a | 1.42 ± 0.14 a | 1.52 ± 0.11 a | 1.34 ± 0.15 a | 0.63 ± 0.12 c | |
OF1 | 15.38 ± 0.91 ab | 15.15 ± 0.68 ab | 13.25 ± 0.64 ab | 10.47 ± 0.36 a | 1.34 ± 0.11 a | 1.46 ± 0.11 a | 1.51 ± 0.14 a | 1.41 ± 0.17 a | 1.15 ± 0.14 b | |
OF2 | 15.27 ± 1.14 ab | 15.08 ± 0.72 ab | 13.03 ± 0.82 ab | 10.54 ± 0.28 a | 1.33 ± 0.139 a | 1.35 ± 0.12 a | 1.53 ± 0.16 | 1.45 ± 0.17 a | 1.13 ± 0.09 b | |
OF3 | 16.55 ± 1.26 a | 16.35 ± 0.94 a | 13.29 ± 0.37 a | 10.61 ± 0.66 a | 1.29 ± 0.12 a | 1.33 ± 0.12 a | 1.47 ± 0.13 a | 1.33 ± 0.14 a | 1.57 ± 0.13 a | |
PK | 13.79 ± 0.64 c | 13.57 ± 0.75 b | 12.26 ± 0.31 b | 10.22 ± 0.32 a | 1.41 ± 0.13 a | 1.43 ± 0.14 a | 1.53 ± 0.17 a | 1.39 ± 0.11 a | −0.09 ± 0.02 d | |
2022 | CK | 14.26 ± 0.51 c | 14.01 ± 0.83 b | 12.11 ± 0.34 b | 10.20 ± 0.47 a | 1.34 ± 0.12 a | 1.41 ± 0.08 a | 1.56 ± 0.22 a | 1.41 ± 0.16 a | −0.40 ± 0.05 c |
NPK | 14.71 ± 0.63 bc | 14.55 ± 0.32 b | 12.56 ± 0.63 ab | 10.22 ± 0.19 a | 1.39 ± 0.11 a | 1.40 ± 0.15 a | 1.51 ± 0.09 a | 1.42 ± 0.21 a | 0.71 ± 0.16 b | |
OF1 | 15.20 ± 1.1 b | 14.66 ± 0.38 b | 12.68 ± 0.46 ab | 10.23 ± 0.28 a | 1.38 ± 0.14 a | 1.44 ± 0.12 a | 1.49 ± 0.16 a | 1.42 ± 0.24 a | 1.27 ± 0.11 b | |
OF2 | 15.36 ± 0.55 b | 14.85 ± 0.38 ab | 12.72 ± 0.74 ab | 10.12 ± 0.16 a | 1.36 ± 0.09 a | 1.39 ± 0.11 a | 1.51 ± 0.12 a | 1.46 ± 0.19 a | 1.07 ± 0.08 b | |
OF3 | 16.79 ± 0.58 a | 15.45 ± 0.52 a | 13.01 ± 0.43 a | 10.57 ± 0.26 a | 1.30 ± 0.11 a | 1.40 ± 0.17 a | 1.48 ± 0.15 a | 1.38 ± 0.14 a | 1.41 ± 0.12 a | |
PK | 13.54 ± 0.88 c | 13.86 ± 1.06 b | 12.34 ± 0.27 b | 10.17 ± 0.28 a | 1.38 ± 0.12 a | 1.43 ± 0.06 a | 1.51 ± 0.11 a | 1.41 ± 0.06 a | −0.57 ± 0.04 c |
Year | Treatment | GWPNPP (t CO2-eq.ha−1) | GWPSOC (t CO2-eq.ha−1) | GWPSoil (t CO2-eq.ha−1) | GWPinput (t CO2-eq.ha−1) | NGHGB (t CO2-eq.ha−1) | CF (kgCO2-eq.kg−1) |
---|---|---|---|---|---|---|---|
2021 | CK | 36.59 ± 2.56 c | −0.74 ± 0.10 c | 23.71 ± 1.6 cd | 1.25 | 10.89 ± 2.01 b | 0.21 ± 0.02 a |
NPK | 50.86 ± 3.12 a | 2.33 ± 0.15 b | 28.48 ± 0.5 cd | 3.65 | 21.06 ± 2.3 a | 0.18 ± 0.01 a | |
OF1 | 52.62 ± 3.96 a | 4.23 ± 0.31 b | 31.66 ± 3 ab | 2.74 | 23.05 ± 2.08 a | −0.01 ± 0.00 b | |
OF2 | 49.84 ± 2.96 ab | 4.16 ± 0.24 b | 28.4 ± 1.05 bc | 2.77 | 22.84 ± 2.06 a | −0.02 ± 0.00 b | |
OF3 | 45.2 ± 2.53 b | 5.78 ± 0.63 a | 34.7 ± 3.94 a | 1.32 | 14.96 ± 1.15 b | −0.25 ± 0.02 c | |
PK | 36.86 ± 2.68 c | −0.35 ± 0.07 c | 22.7 ± 1.01 d | 1.74 | 12.08 ± 1.74 b | 0.20 ± 0.01 a | |
2022 | CK | 30.87 ± 3.01 c | −1.45 ± 0.12 c | 20.91 ± 1.55 b | 1.25 | 7.26 ± 1.51 c | 0.28 ± 0.02 a |
NPK | 42.13 ± 2.92 a | 3.11 ± 0.19 b | 25.46 ± 2.21 ab | 3.65 | 16.13 ± 1.79 ab | 0.14 ± 0.01 b | |
OF1 | 44.12 ± 3.67 a | 3.95 ± 0.24 b | 25.33 ± 2.54 ab | 2.74 | 20.00 ± 2.25 a | −0.02 ± 0.00 c | |
OF2 | 41.23 ± 3.21 a | 3.93 ± 0.29 b | 25.02 ± 2.43 ab | 2.77 | 17.37 ± 1.93 ab | −0.04 ± 0.00 c | |
OF3 | 37.57 ± 2.67 b | 5.17 ± 0.47 a | 28.27 ± 2.92 a | 1.32 | 13.15 ± 1.78 b | −0.21 ± 0.01 d | |
PK | 31.51 ± 3.44 c | −2.08 ± 0.12 c | 20.97 ± 2.28 b | 1.74 | 6.73 ± 1.23 c | 0.38 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, X.; Cheng, Y.; Xie, R.; Meng, T.; Chen, L.; Ren, Y.; Xue, C.; Zhao, K.; Wei, S.; et al. Organic Nitrogen Substitution Enhances Carbon Sequestration but Increases Greenhouse Gas Emissions in Maize Cropping Systems. Agronomy 2025, 15, 1703. https://doi.org/10.3390/agronomy15071703
Liu Y, Zhao X, Cheng Y, Xie R, Meng T, Chen L, Ren Y, Xue C, Zhao K, Wei S, et al. Organic Nitrogen Substitution Enhances Carbon Sequestration but Increases Greenhouse Gas Emissions in Maize Cropping Systems. Agronomy. 2025; 15(7):1703. https://doi.org/10.3390/agronomy15071703
Chicago/Turabian StyleLiu, Yanan, Xiaoqing Zhao, Yuchen Cheng, Rui Xie, Tiantian Meng, Liyu Chen, Yongfeng Ren, Chunlei Xue, Kun Zhao, Shuli Wei, and et al. 2025. "Organic Nitrogen Substitution Enhances Carbon Sequestration but Increases Greenhouse Gas Emissions in Maize Cropping Systems" Agronomy 15, no. 7: 1703. https://doi.org/10.3390/agronomy15071703
APA StyleLiu, Y., Zhao, X., Cheng, Y., Xie, R., Meng, T., Chen, L., Ren, Y., Xue, C., Zhao, K., Wei, S., Fang, J., Zhang, X., Sun, F., & Lu, Z. (2025). Organic Nitrogen Substitution Enhances Carbon Sequestration but Increases Greenhouse Gas Emissions in Maize Cropping Systems. Agronomy, 15(7), 1703. https://doi.org/10.3390/agronomy15071703