Field Validation of the DNDC-Rice Model for Crop Yield, Nitrous Oxide Emissions and Carbon Sequestration in a Soybean System with Rye Cover Crop Management
Abstract
1. Introduction
2. Materials and Methods
2.1. The DNDC-Rice Model
2.2. Modification and Initialization of the Model
2.3. Experiment Site
2.4. Experiment Design and Field Management
2.5. Soil and Crop Measurement
2.6. Greenhouse Gas Measurement
2.7. Statistical Analysis
3. Results
3.1. Soil Temperature and Water-Filled Pore Space
3.2. Crop Productivity
3.3. Soil Organic Carbon and Carbon Dioxide Emission
3.4. Soil Nitrous Oxide Emission
3.5. Global Warming Potential
4. Discussion
4.1. Simulation of Soil Temperature, Water-Filled Pore Space, and Crop Growth
4.2. Simulation of Greenhouse Gas Emission and Soil Organic Carbon Stock
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. IPCC Climate Change and Land: An IPCC Special Report. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; pp. 1–864. [Google Scholar]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Oertel, C.; Matschullat, J.; Zurba, K.; Zimmermann, F.; Erasmi, S. Greenhouse Gas Emissions from Soils—A Review. Chem. Der Erde 2016, 76, 327–352. [Google Scholar] [CrossRef]
- Adetunji, A.T.; Ncube, B.; Mulidzi, R.; Lewu, F.B. Management Impact and Benefit of Cover Crops on Soil Quality: A Review. Soil Tillage Res. 2020, 204, 104717. [Google Scholar] [CrossRef]
- Chen, L.; Rejesus, R.M.; Aglasan, S.; Hagen, S.C.; Salas, W. The Impact of Cover Crops on Soil Erosion in the US Midwest. J. Environ. Manag. 2022, 324, 116168. [Google Scholar] [CrossRef] [PubMed]
- Dai, W.; Feng, G.; Huang, Y.; Adeli, A.; Jenkins, J.N. Influence of Cover Crops on Soil Aggregate Stability, Size Distribution and Related Factors in a No-till Field. Soil Tillage Res. 2024, 244, 106197. [Google Scholar] [CrossRef]
- Haruna, S.I.; Nkongolo, N.V. Influence of Cover Crop, Tillage, and Crop Rotation Management on Soil Nutrients. Agriculture 2020, 10, 225. [Google Scholar] [CrossRef]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The Role of Cover Crops in Improving Soil Fertility and Plant Nutritional Status in Temperate Climates. A Review. Agron. Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Büchi, L.; Wendling, M.; Amossé, C.; Jeangros, B.; Charles, R. Cover Crops to Secure Weed Control Strategies in a Maize Crop with Reduced Tillage. Field Crops Res. 2020, 247, 107583. [Google Scholar] [CrossRef]
- Mennan, H.; Jabran, K.; Zandstra, B.H.; Pala, F. Non-chemical Weed Management in Vegetables by Using Cover Crops: A Review. Agronomy 2020, 10, 257. [Google Scholar] [CrossRef]
- Wulanningtyas, H.S.; Gong, Y.; Li, P.; Sakagami, N.; Nishiwaki, J.; Komatsuzaki, M. A Cover Crop and No-Tillage System for Enhancing Soil Health by Increasing Soil Organic Matter in Soybean Cultivation. Soil Tillage Res. 2021, 205, 104749. [Google Scholar] [CrossRef]
- Behnke, G.D.; Villamil, M.B. Cover Crop Rotations Affect Greenhouse Gas Emissions and Crop Production in Illinois, USA. Field Crops Res. 2019, 241, 107580. [Google Scholar] [CrossRef]
- Preza-Fontes, G.; Christianson, L.E.; Greer, K.; Bhattarai, R.; Pittelkow, C.M. In-Season Split Nitrogen Application and Cover Cropping Effects on Nitrous Oxide Emissions in Rainfed Maize. Agric. Ecosyst. Environ. 2022, 326, 107813. [Google Scholar] [CrossRef]
- Peng, Y.; Rieke, E.L.; Chahal, I.; Norris, C.E.; Janovicek, K.; Mitchell, J.P.; Roozeboom, K.L.; Hayden, Z.D.; Strock, J.S.; Machado, S.; et al. Maximizing Soil Organic Carbon Stocks under Cover Cropping: Insights from Long-Term Agricultural Experiments in North America. Agric. Ecosyst. Environ. 2023, 356, 108599. [Google Scholar] [CrossRef]
- Van Eerd, L.L.; Chahal, I.; Peng, Y.; Awrey, J.C. Influence of Cover Crops at the Four Spheres: A Review of Ecosystem Services, Potential Barriers, and Future Directions for North America. Sci. Total Environ. 2023, 858, 159990. [Google Scholar] [CrossRef] [PubMed]
- Basche, A.D.; Miguez, F.E.; Kaspar, T.C.; Castellano, M.J. Do Cover Crops Increase or Decrease Nitrous Oxide Emissions? A Meta-Analysis. J. Soil Water Conserv. 2014, 69, 471–482. [Google Scholar] [CrossRef]
- Singh, H.; Kandel, T.P.; Gowda, P.H.; Northup, B.K.; Kakani, V.G.; Baath, G.S. Soil N2O Emissions Following Termination of Grass Pea and Oat Cover Crop Residues with Different Maturity Levels. J. Plant Nutr. Soil Sci. 2020, 183, 734–744. [Google Scholar] [CrossRef]
- Guenet, B.; Gabrielle, B.; Chenu, C.; Arrouays, D.; Balesdent, J.; Bernoux, M.; Bruni, E.; Caliman, J.P.; Cardinael, R.; Chen, S.; et al. Can N2O Emissions Offset the Benefits from Soil Organic Carbon Storage? Glob. Chang. Biol. 2021, 27, 237–256. [Google Scholar] [CrossRef] [PubMed]
- Lugato, E.; Leip, A.; Jones, A. Mitigation Potential of Soil Carbon Management Overestimated by Neglecting N2O Emissions. Nat. Clim. Chang. 2018, 8, 219–223. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A Critical Review of the Impacts of Cover Crops on Nitrogen Leaching, Net Greenhouse Gas Balance and Crop Productivity. Glob. Chang. Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- Priya; Singh, S.P. Assessing and Comparing the Sustainability of Organic and Conventional Wheat Farming in India: An Indicator-Based Approach. J. Clean. Prod. 2023, 423, 138652. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, H. The Development of the DNDC Plant Growth Sub-Model and the Application of DNDC in Agriculture: A Review. Agric. Ecosyst. Environ. 2016, 230, 271–282. [Google Scholar] [CrossRef]
- Abdalla, M.; Song, X.; Ju, X.; Topp, C.F.E.; Smith, P. Calibration and Validation of the DNDC Model to Estimate Nitrous Oxide Emissions and Crop Productivity for a Summer Maize-Winter Wheat Double Cropping System in Hebei, China. Environ. Pollut. 2020, 262, 114199. [Google Scholar] [CrossRef] [PubMed]
- Foltz, M.E.; Kent, A.D.; Koloutsou-Vakakis, S.; Zilles, J.L. Influence of Rye Cover Cropping on Denitrification Potential and Year-Round Field N2O Emissions. Sci. Total Environ. 2021, 765, 144295. [Google Scholar] [CrossRef] [PubMed]
- Gilhespy, S.L.; Anthony, S.; Cardenas, L.; Chadwick, D.; del Prado, A.; Li, C.; Misselbrook, T.; Rees, R.M.; Salas, W.; Sanz-Cobena, A.; et al. First 20 Years of DNDC (DeNitrification DeComposition): Model Evolution. Ecol. Model. 2014, 292, 51–62. [Google Scholar] [CrossRef]
- Li, C. Modeling Trace Gas Emissions from Agricultural Ecosystems. Nutr. Cycl. Agroecosyst. 2000, 58, 259–276. [Google Scholar] [CrossRef]
- Chang, N.; Chen, D.; Cai, Y.; Li, J.; Zhang, M.; Li, H.; Wang, L. Enhancing Crop Yield and Carbon Sequestration and Greenhouse Gas Emission Mitigation through Different Organic Matter Input in the Bohai Rim Region: An Estimation Based on the DNDC-RF Framework. Field Crops Res. 2024, 319, 109624. [Google Scholar] [CrossRef]
- Katayanagi, N.; Fumoto, T.; Hayano, M.; Shirato, Y.; Takata, Y.; Leon, A.; Yagi, K. Estimation of Total CH4 Emission from Japanese Rice Paddies Using a New Estimation Method Based on the DNDC-Rice Simulation Model. Sci. Total Environ. 2017, 601–602, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Fumoto, T.; Kobayashi, K.; Li, C.; Yagi, K.; Hasegawa, T. Revising a Process-Based Biogeochemistry Model (DNDC) to Simulate Methane Emission from Rice Paddy Fields under Various Residue Management and Fertilizer Regimes. Glob. Chang. Biol. 2008, 14, 382–402. [Google Scholar] [CrossRef]
- Fumoto, T.; Yanagihara, T.; Saito, T.; Yagi, K. Assessment of the Methane Mitigation Potentials of Alternative Water Regimes in Rice Fields Using a Process-Based Biogeochemistry Model. Glob. Chang. Biol. 2010, 16, 1847–1859. [Google Scholar] [CrossRef]
- Oo, A.Z.; Sudo, S.; Fumoto, T.; Inubushi, K.; Ono, K.; Yamamoto, A.; Bellingrath-Kimura, S.D.; Win, K.T.; Umamageswari, C.; Bama, K.S.; et al. Field Validation of the Dndc-Rice Model for Methane and Nitrous Oxide Emissions from Double-Cropping Paddy Rice under Different Irrigation Practices in Tamil Nadu, India. Agriculture 2020, 10, 355. [Google Scholar] [CrossRef]
- Minamikawa, K.; Fumoto, T.; Iizumi, T.; Cha-un, N.; Pimple, U.; Nishimori, M.; Ishigooka, Y.; Kuwagata, T. Prediction of Future Methane Emission from Irrigated Rice Paddies in Central Thailand under Different Water Management Practices. Sci. Total Environ. 2016, 566–567, 641–651. [Google Scholar] [CrossRef] [PubMed]
- He, D.C.; Ma, Y.L.; Li, Z.Z.; Zhong, C.S.; Cheng, Z.B.; Zhan, J. Crop Rotation Enhances Agricultural Sustainability: From an Empirical Evaluation of Eco-Economic Benefits in Rice Production. Agriculture 2021, 11, 91. [Google Scholar] [CrossRef]
- Minamikawa, K.; Fumoto, T.; Itoh, M.; Hayano, M.; Sudo, S.; Yagi, K. Potential of Prolonged Midseason Drainage for Reducing Methane Emission from Rice Paddies in Japan: A Long-Term Simulation Using the DNDC-Rice Model. Biol. Fertil. Soils 2014, 50, 879–889. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Harriss, R. Modeling Carbon Biogeochemistry in Agricultural Soils. Glob. Biogeochem. Cycles 1994, 8, 237–254. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Frolking, T.A. A Model of Nitrous Oxide Evolution from Soil Driven by Rainfall Events: 2. Model Applications. J. Geophys. Res. 1992, 97, 9777–9783. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Curran, W.S.; Mortensen, D.A.; Ryan, M.R.; Shumway, D.L. Control of Cereal Rye with a Roller/Crimper as Influenced by Cover Crop Phenology. Agron. J. 2009, 101, 1589–1596. [Google Scholar] [CrossRef]
- Higashi, T.; Yunghui, M.; Komatsuzaki, M.; Miura, S.; Hirata, T.; Araki, H.; Kaneko, N.; Ohta, H. Tillage and Cover Crop Species Affect Soil Organic Carbon in Andosol, Kanto, Japan. Soil Tillage Res. 2014, 138, 64–72. [Google Scholar] [CrossRef]
- Gong, Y.; Li, P.; Sakagami, N.; Komatsuzaki, M. No-Tillage with Rye Cover Crop Can Reduce Net Global Warming Potential and Yield-Scaled Global Warming Potential in the Long-Term Organic Soybean Field. Soil Tillage Res. 2021, 205, 104747. [Google Scholar] [CrossRef]
- Huang, Q.; Gong, Y.; Dewi, R.K.; Li, P.; Wang, X.; Hashimi, R.; Komatsuzaki, M. Enhancing Energy Efficiency and Reducing Carbon Footprint in Organic Soybean Production through No-Tillage and Rye Cover Crop Integration. J. Clean. Prod. 2023, 419, 138247. [Google Scholar] [CrossRef]
- Ellert, B.H.; Bettany, J.R. Calculation of Organic Matter and Nutrients Stored in Soils under Contrasting Management Regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef]
- Dewi, R.K.; Gong, Y.; Huang, Q.; Li, P.; Hashimi, R.; Komatsuzaki, M. Addition of Biochar Decreased Soil Respiration in a Permanent No-till Cover Crop System for Organic Soybean Production. Soil Tillage Res. 2024, 237, 105977. [Google Scholar] [CrossRef]
- IPCC. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment. In IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Onwuka, B. Effects of Soil Temperature on Some Soil Properties and Plant Growth. Adv. Plants Agric. Res. 2018, 8, 89–93. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Sauer, T.J.; Prueger, J.H. Managing Soils to Achieve Greater Water Use Efficiency: A Review. Agron. J. 2001, 93, 271–280. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous Oxide Emissions from Soils: How Well Do We Understand the Processes and Their Controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 122. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Shi, Z.; Li, D.; Rey, A.; Ruan, H.; Craine, J.M.; Liang, J.; Zhou, J.; Luo, Y. Soil Properties Control Decomposition of Soil Organic Carbon: Results from Data-Assimilation Analysis. Geoderma 2016, 262, 235–242. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.Y.; Drury, C.F.; Yang, X.M.; Reynolds, W.D.; Li, X.; Hu, C. Evaluation of the DNDC Model for Simulating Soil Temperature, Moisture and Respiration from Monoculture and Rotational Corn, Soybean and Winter Wheat in Canada. Ecol. Model. 2017, 360, 230–243. [Google Scholar] [CrossRef]
- Abdalla, M.; Song, X.; Ju, X.; Smith, P. Evaluation of the DNDC Model to Estimate Soil Parameters, Crop Yield and Nitrous Oxide Emissions for Alternative Long-Term Multi-Cropping Systems in the North China Plain. Agronomy 2022, 12, 109. [Google Scholar] [CrossRef]
- Nisar, S.; Benbi, D.K.; Toor, A.S. Energy Budgeting and Carbon Footprints of Three Tillage Systems in Maize-Wheat Sequence of North-Western Indo-Gangetic Plains. Energy 2021, 229, 120661. [Google Scholar] [CrossRef]
- Shen, J.; Treu, R.; Wang, J.; Thorman, R.; Nicholson, F.; Bhogal, A. Modeling Nitrous Oxide Emissions from Three United Kingdom Farms Following Application of Farmyard Manure and Green Compost. Sci. Total Environ. 2018, 637–638, 1566–1577. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Treu, R.; Wang, J.; Hao, X.; Thomas, B.W. Modeling Growing Season and Annual Cumulative Nitrous Oxide Emissions and Emission Factors from Organically Fertilized Soils Planted with Barley in Lethbridge, Alberta, Canada. Agric. Syst. 2019, 176, 102654. [Google Scholar] [CrossRef]
- Katayanagi, N.; Furukawa, Y.; Fumoto, T.; Hosen, Y. Validation of the DNDC-Rice Model by Using CH4 and N2O Flux Data from Rice Cultivated in Pots under Alternate Wetting and Drying Irrigation Management. Soil Sci. Plant Nutr. 2012, 58, 360–372. [Google Scholar] [CrossRef]
- Katayanagi, N.; Ono, K.; Fumoto, T.; Mano, M.; Miyata, A.; Hayashi, K. Validation of the DNDC-Rice Model to Discover Problems in Evaluating the Nitrogen Balance at a Paddy-Field Scale for Single-Cropping of Rice. Nutr. Cycl. Agroecosyst. 2013, 95, 255–268. [Google Scholar] [CrossRef]
- Ciampitti, I.A.; de Borja Reis, A.F.; Córdova, S.C.; Castellano, M.J.; Archontoulis, S.V.; Correndo, A.A.; Antunes De Almeida, L.F.; Moro Rosso, L.H. Revisiting Biological Nitrogen Fixation Dynamics in Soybeans. Front. Plant Sci. 2021, 12, 727021. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.E.; Calderon, F.J.; Steenwerth, K.L.; Scow, K.M.; Rolston, D.E. Responses of Soil Microbial Processes and Community Structure to Tillage Events and Implications for Soil Quality. Geoderma 2003, 114, 305–317. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Larionova, A.A. Root and Rhizomicrobial Respiration: A Review of Approaches to Estimate Respiration by Autotrophic and Heterotrophic Organisms in Soil. J. Plant Nutr. Soil Sci. 2005, 168, 503–520. [Google Scholar] [CrossRef]
- Navarro-Pedreño, J.; Almendro-Candel, M.B.; Zorpas, A.A. The Increase of Soil Organic Matter Reduces Global Warming, Myth or Reality? Sci 2021, 3, 18. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A. Carbon Sequestration in Agricultural Soils via Cultivation of Cover Crops—A Meta-Analysis. Agric. Ecosyst. Environ. 2015, 200, 33–41. [Google Scholar] [CrossRef]
- Repullo-Ruibérriz de Torres, M.A.; Moreno-García, M.; Ordóñez-Fernández, R.; Rodríguez-Lizana, A.; Rodríguez, B.C.; García-Tejero, I.F.; Zuazo, V.H.D.; Carbonell-Bojollo, R.M. Cover Crop Contributions to Improve the Soil Nitrogen and Carbon Sequestration in Almond Orchards (Sw Spain). Agronomy 2021, 11, 387. [Google Scholar] [CrossRef]
- Mendes, I.C.; Bandick, A.K.; Dick, R.P.; Bottomley, P.J. Microbial Biomass and Activities in Soil Aggregates Affected by Winter Cover Crops. Soil Sci. Soc. Am. J. 1999, 63, 873–881. [Google Scholar] [CrossRef]
- Hastings, A.F.; Wattenbach, M.; Eugster, W.; Li, C.; Buchmann, N.; Smith, P. Uncertainty Propagation in Soil Greenhouse Gas Emission Models: An Experiment Using the DNDC Model and at the Oensingen Cropland Site. Agric. Ecosyst. Environ. 2010, 136, 97–110. [Google Scholar] [CrossRef]
- Bell, M.J.; Jones, E.; Smith, J.; Smith, P.; Yeluripati, J.; Augustin, J.; Juszczak, R.; Olejnik, J.; Sommer, M. Simulation of Soil Nitrogen, Nitrous Oxide Emissions and Mitigation Scenarios at 3 European Cropland Sites Using the ECOSSE Model. Nutr. Cycl. Agroecosyst. 2012, 92, 161–181. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Helmy, M.; Prescher, A.; Osborne, B.; Lanigan, G.; Forristal, D.; Killi, D.; Maratha, P.; Williams, M.; et al. Assessing the Combined Use of Reduced Tillage and Cover Crops for Mitigating Greenhouse Gas Emissions from Arable Ecosystem. Geoderma 2014, 223–225, 9–20. [Google Scholar] [CrossRef]
- Wolf, B.; Zheng, X.; Brüggemann, N.; Chen, W.; Dannenmann, M.; Han, X.; Sutton, M.A.; Wu, H.; Yao, Z.; Butterbach-Bahl, K. Grazing-Induced Reduction of Natural Nitrous Oxide Release from Continental Steppe. Nature 2010, 464, 881–884. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhuang, Y.; Cao, M.; Crill, P.; Dai, Z.; Frolking, S.; Moore, B.; Salas, W.; Song, W.; Wang, X. Comparing a Process-Based Agro-Ecosystem Model to the IPCC Methodology for Developing a National Inventory of N2O Emissions from Arable Lands in China. Nutr. Cycl. Agroecosyst. 2001, 60, 159–175. [Google Scholar] [CrossRef]
Management | 2020 | 2021 |
---|---|---|
Summer tillage | 2020/6/8 | 2021/6/14 |
Soybean sowing | 2020/6/30 | 2021/7/20 |
Soybean harvest | 2020/11/5 | 2021/11/2 |
Autumn tillage | 2020/11/6 | 2021/11/3 |
Cover crop sowing | 2020/11/9 | 2021/11/3 |
Cover crop harvesting | 2021/6/8 | 2022/5/30 |
Variables | Units | Treatment | n | Observed Value | Simulated Value | nRMSE (%) | ||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||||
Soil temperature | °C | FA | 678 | 14.98 | 0.34 | 15.29 | 0.31 | 10.69 |
RY | 682 | 15.24 | 0.34 | 15.48 | 0.31 | 11.39 | ||
WFPS | % | FA | 63 | 32.15 | 1.39 | 30.17 | 0.98 | 42.67 |
RY | 63 | 33.37 | 1.18 | 32.56 | 1.13 | 41.90 | ||
Daily N2O emission | kg N ha−1 | FA | 62 | 1.28 | 0.17 | 0.91 | 0.06 | 105.16 |
RY | 63 | 1.69 | 0.21 | 1.63 | 0.13 | 94.93 | ||
Daily CO2 emission | kg C ha−1 | FA | 61 | 9.07 | 0.77 | 10.07 | 0.99 | 60.16 |
RY | 61 | 14.55 | 1.26 | 25.77 | 1.90 | 101.31 |
Variables | Units | Treatment | n | Observed Value | Simulated Value | nRMSE (%) | ||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | |||||
Soybean biomass | Mg C ha−1 | FA | 13 | 3.23 | 0.23 | 3.72 | 0.16 | 25.52 |
RY | 13 | 3.13 | 0.18 | 3.70 | 0.16 | 23.52 | ||
Soybean yield | Mg C ha−1 | FA | 13 | 1.35 | 0.11 | 1.39 | 0.06 | 17.44 |
RY | 13 | 1.24 | 0.10 | 1.38 | 0.06 | 17.21 | ||
SOC stock | Mg C ha−1 | FA | 13 | 80.41 | 0.88 | 78.76 | 0.05 | 5.38 |
RY | 13 | 88.48 | 1.38 | 90.43 | 1.34 | 4.95 |
Variable | Treatment | Observed | Simulated |
---|---|---|---|
kg C ha−1 | |||
2020 Soybean season | FA | 1701.37 | 2422.93 |
RY | 2869.44 | 4979.66 | |
2020 Cover crop season | FA | 951.51 | 748.77 |
RY | 1485.84 | 3133.97 | |
2021 Soybean season | FA | 1421.41 | 1809.51 |
RY | 1841.09 | 3999.32 | |
2021 Cover crop season | FA | 1554.02 | 730.55 |
RY | 2360.57 | 2905.00 | |
Total cumulation | FA | 5628.32 | 5711.76 |
RY | 8556.94 | 15,017.95 |
Variable | Treatment | Observed | Simulated |
---|---|---|---|
kg N ha−1 | |||
2020 Soybean season | FA | 231.73 | 142.80 |
RY | 335.18 | 300.30 | |
2020 Cover crop season | FA | 150.08 | 152.20 |
RY | 126.26 | 166.90 | |
2021 Soybean season | FA | 165.64 | 92.60 |
RY | 255.25 | 267.30 | |
2021 Cover crop season | FA | 164.90 | 142.70 |
RY | 224.70 | 158.70 | |
Total cumulation | FA | 712.36 | 530.30 |
RY | 941.38 | 893.20 |
Variable | Treatment | Observed | Simulated |
---|---|---|---|
kg C ha−1 year−1 | |||
N2O GWP | FA | 162.33 | 128.86 |
RY | 220.53 | 215.52 | |
ΔSOC | FA | −7895.25 | 168.82 |
RY | −2833.60 | 901.60 | |
Net GWP | FA | 8057.58 | −39.96 |
RY | 3054.14 | −686.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Katayanagi, N.; Komatsuzaki, M.; Fumoto, T. Field Validation of the DNDC-Rice Model for Crop Yield, Nitrous Oxide Emissions and Carbon Sequestration in a Soybean System with Rye Cover Crop Management. Agriculture 2025, 15, 1525. https://doi.org/10.3390/agriculture15141525
Huang Q, Katayanagi N, Komatsuzaki M, Fumoto T. Field Validation of the DNDC-Rice Model for Crop Yield, Nitrous Oxide Emissions and Carbon Sequestration in a Soybean System with Rye Cover Crop Management. Agriculture. 2025; 15(14):1525. https://doi.org/10.3390/agriculture15141525
Chicago/Turabian StyleHuang, Qiliang, Nobuko Katayanagi, Masakazu Komatsuzaki, and Tamon Fumoto. 2025. "Field Validation of the DNDC-Rice Model for Crop Yield, Nitrous Oxide Emissions and Carbon Sequestration in a Soybean System with Rye Cover Crop Management" Agriculture 15, no. 14: 1525. https://doi.org/10.3390/agriculture15141525
APA StyleHuang, Q., Katayanagi, N., Komatsuzaki, M., & Fumoto, T. (2025). Field Validation of the DNDC-Rice Model for Crop Yield, Nitrous Oxide Emissions and Carbon Sequestration in a Soybean System with Rye Cover Crop Management. Agriculture, 15(14), 1525. https://doi.org/10.3390/agriculture15141525