Long-Term Fertilizer-Based Management Alters Soil N2O Emissions and Silicon Availability in Moso Bamboo Forests
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Soil Sampling
2.3. Intensive Management Practices
2.4. Soil Physicochemical Analysis
2.5. Nitrification and Denitrification Potential
2.6. Statistical Analysis
2.7. Data and Material Availability
2.8. Use of Generative Artificial Intelligence
3. Results
3.1. Soil Physicochemical Properties and Nitrogen Forms
3.1.1. Soil pH and Total Nitrogen
3.1.2. Nitrogen Speciation Dynamics
3.1.3. Correlations with Soil pH
3.2. Soil Nitrification and Denitrification Potential
3.2.1. Changes in Potential Rates
3.2.2. Correlations with Nitrogen Forms and pH
3.3. Soil Silicon Dynamics
3.3.1. Effects of Management on Silicon Pools
3.3.2. Correlations with Soil Parameters
4. Discussion
4.1. Effects of Intensive Management on Soil Nitrogen Accumulation and Transformation
4.2. Effects on Soil Nitrification and Denitrification Potential
4.3. Long-Term Effects on Soil Silicon and Its Regulatory Role
4.4. Implications and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Summary for Policymakers. In Climate Change 2021; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Bhatt, M.K.; Labanya, R.; Joshi, H.C. Influence of long-term chemical fertilizers and organic manures on soil fertility—A review. Univers. J. Agric. Res. 2019, 7, 177–188. [Google Scholar]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers, Vol 2: Ecofriendly Tools for Reclamation of Degraded Soil Environs; Springer: Cham, Switzerland, 2021; pp. 1–20. [Google Scholar]
- Scarlett, K.; Denman, S.; Clark, D.R.; Forster, J.; Vanguelova, E.; Brown, N.; Whitby, C. Relationships between nitrogen cycling microbial community abundance and composition reveal the indirect effect of soil pH on oak decline. ISME J. 2021, 15, 623–635. [Google Scholar] [CrossRef]
- Hu, X.; Gu, H.; Liu, J.; Wei, D.; Zhu, P.; Cui, X.; Zhou, B.; Chen, X.; Jin, J.; Liu, X.; et al. Metagenomics reveals divergent functional profiles of soil carbon and nitrogen cycling under long-term addition of chemical and organic fertilizers in the black soil region. Geoderma 2022, 418, 115846. [Google Scholar] [CrossRef]
- Yang, J.; Wang, K.; Liu, L.; Li, Y.; Wu, J.; Zhong, J.; Zheng, R.; Fan, L.; Huang, C.; Jiang, P. Effects of Exogenous Silicon Addition on Nitrification and Denitrification-Derived N2O Emissions from Moso Bamboo (Phyllostachys edulis) Forest Soil. Land 2025, 14, 1004. [Google Scholar] [CrossRef]
- Song, A.; Fan, F.; Yin, C.; Wen, S.; Zhang, Y.; Fan, X.; Liang, Y. The effects of silicon fertilizer on denitrification potential and associated genes abundance in paddy soil. Biol. Fertil. Soils 2017, 53, 627–638. [Google Scholar] [CrossRef]
- Singla, A.; Inubushi, K. Effect of slag-type fertilizers on N2O flux from komatsuna vegetated soil and CH4 flux from paddy vegetated soil. Paddy Water Environ. 2015, 13, 43–50. [Google Scholar] [CrossRef]
- Wang, W.; Lai, D.Y.F.; Wang, C.; Tong, C.; Zeng, C. Effects of inorganic amendments, rice cultivars and cultivation methods on greenhouse gas emissions and rice productivity in a subtropical paddy field. Ecol. Eng. 2016, 95, 770–778. [Google Scholar] [CrossRef]
- Yang, J. Phytolith-Occluded Carbon Sequestration of Important Monopodial Bamboo Ecosystem in China. Master’s Thesis, Zhejiang Agriculture and Forestry University, Hangzhou, China, 2016. [Google Scholar]
- Pan, W.; Li, Z.; Tu, W.; Hu, X.; Yang, J.; Gao, Y.; Yang, H.; Ritzoulisa, C.; Niu, F.; Wu, L. Characterizations of protein extracted from Moso bamboo shoot. Int. J. Biol. Macromol. 2025, 304, 140897. [Google Scholar] [CrossRef]
- Lei, Z.; Sun, H.; Li, Q.; Zhang, J.; Song, X. Effects of Nitrogen Deposition on Soil Dissolved Organic Carbon and Nitrogen in Moso Bamboo Plantations Strongly Depend on Management Practices. Forests 2017, 8, 452. [Google Scholar] [CrossRef]
- Qian, X. Seasonal soil CO2 efflux dynamics after land use change from a natural forest to Moso bamboo plantations in subtropical China. For. Ecol. Manag. 2011, 262, 1131–1137. [Google Scholar]
- Huang, S.; Pu, L.; He, G.; Wang, X.; Chen, D.; Xie, X.; Qie, L.; Dan, Y.; Zhang, R.; Gong, Z.; et al. Silicon in soil and its interaction with nitrogen, phosphorus, and potassium nutrients on rice yield: A case study of paddy fields in the Taihu Lake region, China, without a history of silicon fertilization. Soil Tillage Res. 2024, 238, 106027. [Google Scholar] [CrossRef]
- lan, F.; Mo, Q.; Li, R.; Liang, F.; Chen, P.; Ye, S. A Preliminary Study on the Desilicification and Allitization of Soils on the Islands of Guangxi. Guangxi Sci. 1995, 2, 28–34. [Google Scholar]
- Zhang, S.; Zhu, Q.; Vries, W.; Ros, G.H.; Chen, X.; Muneer, M.A.; Zhang, F.; Wu, L. Effects of soil amendments on soil acidity and crop yields in acidic soils: A world-wide meta-analysis. J. Environ. Manage. 2023, 345, 118531. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Su, W.H.; Fan, S.H.; Cai, C.; Zhu, X.; Peng, C.; Tang, X. Effects of various fertilization depths on ammonia volatilization in Moso bamboo (Phyllostachys edulis) forests. Plant Soil Environ. 2016, 62, 128–134. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Agrochemical Analytical Methods; China Agricultural Science and Technology Press: Beijing, China, 2000. [Google Scholar]
- GB/T 41223-2021; Soil Quality—Determination of Potential Nitrification and Inhibition of Nitrification—Rapid Test by Ammonium Oxidation. Standards Press of China: Beijin, China, 2021.
- Hayashi, K. Nitrogen cycling and management focusing on the central role of soils: A review. Soil Sci. Plant Nutr. 2022, 68, 514–525. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, G.; Lu, C.; Xu, H.; Wu, J.; Zhou, Z.; Song, Y.; Guo, J. Insight into the enhancing mechanism of silica nanoparticles on denitrification: Effect on electron transfer and microbial metabolism. Chemosphere 2022, 300, 134510. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Huygens, D.; Boeckx, P.; Kuyper, T.W.; Lubbers, I.M.; Rütting, T.; Groffman, P.M. The soil N cycle: New insights and key challenges. Soil 2015, 1, 235–256. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, J.; Chen, J.; Ge, T.; Cai, Y.; Yu, B.; Wang, H.; White, J.C.; Li, Y. Changes in soil CO2 and N2O emissions in response to urea and biochar-based urea in a subtropical Moso bamboo forest. Soil Tillage Res. 2023, 228, 105625. [Google Scholar] [CrossRef]
- Cao, L.H. Effects of Intensive Management Practice on the Nitrifying and Denitrifying Microorganisms in the Soil of Moso Bamboo. Master’s Thesis, Zhejiang A&F University, Hangzhou, China, 2020. [Google Scholar]
- Liao, X.; Tang, T.; Li, J.; Wang, J.; Neher, D.A.; Zhang, W.; Xiao, J.; Xiao, D.; Hu, P.; Wang, K.; et al. Nitrogen fertilization increases the niche breadth of soil nitrogen-cycling microbes and stabilizes their co-occurrence network in a karst agroecosystem. Agric. Ecosyst. Environ. 2024, 374, 109177. [Google Scholar] [CrossRef]
- Cao, L.; Liu, C.; Liu, M.; Fang, W.; Liang, C.; Qin, H.; Chen, J.; Xu, Q. Effects of Intensive Management Practice on Functional Gene Abundance of Denitrifying Bacteria in the Soil of Moso Bamboo (Phyllostachys heterocycle) Plantation. Acta Pedol. Sin. 2020, 57, 710–720. [Google Scholar]
- Azam, F.; Müller, C.; Weiske, A.; Benckiser, G.; Ottow, J. Nitrification and denitrification as sources of atmospheric nitrous oxide–role of oxidizable carbon and applied nitrogen. Biol. Fertil. Soils 2002, 35, 54–61. [Google Scholar]
- Ma, B.L.; Dwyer, L.M.; Gregorich, E.G. Soil nitrogen amendment effects on seasonal nitrogen mineralization and nitrogen cycling in maize production. Agron. J. 1999, 91, 1003–1009. [Google Scholar] [CrossRef]
- Ni, H.; Su, W.; Fan, S.; Chu, H. Effects of intensive management practices on rhizosphere soil properties, root growth, and nutrient uptake in Moso bamboo plantations in subtropical China. For. Ecol. Manage. 2021, 493, 119083. [Google Scholar] [CrossRef]
- Ye, L.; Chen, S.; Guo, Z. Research on nitrogen circulation and management of bamboo: A review. J. Zhejiang A F Univ. 2015, 32, 635–642. [Google Scholar]
- Lu, R.; Wang, Y.; Wu, J.; Jiang, P. Effect of management intensity on runoff losses of nitrogen and phosphorus in bamboo forests in Zhejiang province. J. Nat. Resour. 2019, 34, 1296–1305. [Google Scholar] [CrossRef]
- Lou, Y.; Ren, L.; Zhao, S.; Shi, Y.; Zhang, Y.; Zhu, H. Effects of silicate application on CH4 and N2O emissions and global warming potentials in paddy soil under enhanced UV-B radiation. Energy Sci. Eng. 2019, 7, 1784–1794. [Google Scholar] [CrossRef]
- Meyer, S.; Grüning, M.M.; Beule, L.; Karlovsky, P.; Joergensen, R.G.; Sundrum, A. Soil N2O flux and nitrification and denitrification gene responses to feed-induced differences in the composition of dairy cow faeces. Biol. Fertil. Soils 2021, 57, 767–779. [Google Scholar] [CrossRef]
- Martin, T.; Sprunger, C.D. Belowground dynamics influence nitrogen cycling and crop productivity in diversified corn systems. Front. Sustain. Food Syst. 2021, 5, 705577. [Google Scholar] [CrossRef]
- Storch, L.C.; Schulz, K.; Rißmann, C.; Cerull, E.; Plakias, A.; Schlichting, I.; Prochnow, A.; Ruess, L.; Trost, B.; Theuerl, S. Nitrogen fertilization and irrigation types do not affect the overall N2O production potential of a sandy soil, but the microbial community structure and the quantity of functional genes related to the N cycle. Appl. Soil Ecol. 2023, 192, 105083. [Google Scholar] [CrossRef]
- Zhou, J. The Characteristic and Parametric Estimation of Soil Nitrogen Mineralization, Nitrification and Denitrification Kinetic for Various Land Uses in Subtropical Central China. Master’s Thesis, Central South University of Forestry & Technology, Changsha, China, 2015. [Google Scholar]
- Kiese, R.; Hewett, B.; Butterbach, K. Seasonal dynamic of gross nitrification and N2O emission at two tropical rainforest sites in Queensland, Australia. Plant Soil. 2008, 309, 105–117. [Google Scholar] [CrossRef]
- Zhou, H.; Shi, H.; Zhang, W.; Wang, W.; Su, Y.; Yan, Y. Effects of Combination of Organic and Inorganic Nitrogen on Nitrification and Denitrification in Two Salinized Soils. Environ. Sci. 2021, 42, 5010–5020. [Google Scholar]
- Elrys, A.S.; Uwiragiye, Y.; Zhang, Y.; Abdel-Fattah, M.K.; Chen, Z.; Zhang, H.; Meng, L.; Wang, J.; Zhu, T.; Zhang, J.; et al. Expanding agroforestry can increase nitrate retention and mitigate the global impact of a leaky nitrogen cycle in croplands. Nat. Food 2023, 4, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, Q.; Li, Y.; Tu, X.; Chen, Z.; Elrys, A.S.; Cheng, Y.; Ma, L. A shift from nitrification to denitrification-dominated N2O emission in an acidic soil following organic amendment. Biol. Fertil. Soils 2023, 59, 117–122. [Google Scholar] [CrossRef]
- Xing, X.; Xu, H.; Zhang, W.; Hou, H.; Qin, H.; Liu, Y.; Zhang, L.; Fang, Y.; Wei, W.; Sheng, R. The characteristics of the community structure of typical nitrous oxide-reducing denitrifiers in agricultural soils derived from different parent materials. Appl. Soil Ecol. 2019, 142, 8–17. [Google Scholar] [CrossRef]
- Klotzbücher, T.; Marxen, A.; Vetterlein, D.; Schneiker, J.; Türke, M.; Sinh, N.; Manh, N.H.; Chien, H.; Marquez, L.; Villareal, S.; et al. Plant-available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia. Basic Appl. Ecol. 2015, 16, 665–673. [Google Scholar] [CrossRef]
- Wang, B.; Gao, Y.; Lai, X.; Luo, L.; Zhang, X.; Hu, D.; Shen, Z.; Hu, S.; Zhang, L. The effects of biochar derived from feedstock with different Si and Al concentration on soil N2O and CO2 emissions. Environ. Pollut. 2023, 317, 120731. [Google Scholar] [CrossRef]
Treatment | pH | Total N (g kg−1) | Alkali-Hydrolysable N (mg kg−1) | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) | NO2−-N (mg kg−1) |
---|---|---|---|---|---|---|
TK | 4.95 ± 0.02 bc | 0.97 ± 0.05 b | 67.11 ± 6.97 d | 3.06 ± 0.16 d | 5.33 ± 0.87 c | 0.79 ± 0.04 b |
M0 | 5.10 ± 0.03 a | 0.95 ± 0.04 b | 73.42 ± 1.18 d | 3.87 ± 0.83 d | 4.27 ± 0.69 c | 0.82 ± 0.03 b |
M6 | 5.00 ± 0.03 b | 1.05 ± 0.03 b | 106.62 ± 1.84 c | 11.18 ± 0.89 c | 6.11 ± 1.40 c | 0.88 ± 0.08 b |
M11 | 4.88 ± 0.04 cd | 1.36 ± 0.10 a | 147.90 ± 1.82 b | 15.93 ± 2.70 b | 16.35 ± 0.76 b | 0.91 ± 0.02 b |
M20 | 4.80 ± 0.04 d | 1.48 ± 0.11 a | 160.06 ± 3.05 ab | 21.40 ± 0.54 a | 25.28 ± 0.84 a | 1.06 ± 0.05 a |
M39 | 4.79 ± 0.02 d | 1.31 ± 0.11 a | 160.83 ± 5.43 a | 21.23 ± 0.55 a | 28.18 ± 1.96 a | 1.08 ± 0.03 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wang, K.; Chen, J.; Fan, L.; Jiang, P.; Zheng, R. Long-Term Fertilizer-Based Management Alters Soil N2O Emissions and Silicon Availability in Moso Bamboo Forests. Agronomy 2025, 15, 1647. https://doi.org/10.3390/agronomy15071647
Yang J, Wang K, Chen J, Fan L, Jiang P, Zheng R. Long-Term Fertilizer-Based Management Alters Soil N2O Emissions and Silicon Availability in Moso Bamboo Forests. Agronomy. 2025; 15(7):1647. https://doi.org/10.3390/agronomy15071647
Chicago/Turabian StyleYang, Jie, Kecheng Wang, Jiamei Chen, Lili Fan, Peikun Jiang, and Rong Zheng. 2025. "Long-Term Fertilizer-Based Management Alters Soil N2O Emissions and Silicon Availability in Moso Bamboo Forests" Agronomy 15, no. 7: 1647. https://doi.org/10.3390/agronomy15071647
APA StyleYang, J., Wang, K., Chen, J., Fan, L., Jiang, P., & Zheng, R. (2025). Long-Term Fertilizer-Based Management Alters Soil N2O Emissions and Silicon Availability in Moso Bamboo Forests. Agronomy, 15(7), 1647. https://doi.org/10.3390/agronomy15071647