Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,347)

Search Parameters:
Keywords = sodium metal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1984 KiB  
Article
The Effect of Copper Adsorption on Iron Oxide Magnetic Nanoparticles Embedded in a Sodium Alginate Bead
by Michele Modestino, Armando Galluzzi, Marco Barozzi, Sabrina Copelli, Francesco Daniele, Eleonora Russo, Elisabetta Sieni, Paolo Sgarbossa, Patrizia Lamberti and Massimiliano Polichetti
Nanomaterials 2025, 15(15), 1196; https://doi.org/10.3390/nano15151196 - 5 Aug 2025
Abstract
The preparation and use of iron oxide magnetic nanoparticles for water remediation is a widely investigated research field. To improve the efficacy of such nanomaterials, different synthetic processes and functionalization methods have been developed in the framework of green chemistry to exploit their [...] Read more.
The preparation and use of iron oxide magnetic nanoparticles for water remediation is a widely investigated research field. To improve the efficacy of such nanomaterials, different synthetic processes and functionalization methods have been developed in the framework of green chemistry to exploit their magnetic properties and adsorption capacity in a sustainable way. In this work, iron oxide magnetic nanoparticles embedded in cross-linked sodium alginate beads designed to clean water from metal ions were magnetically characterized. In particular, the effect of copper adsorption on their magnetic properties was investigated. The magnetic characterization in a DC field of the beads before adsorption showed the presence of a superparamagnetic state at 300 K—a state that was also preserved after copper adsorption. The main differences in terms of magnetic properties before and after Cu2+ adsorption were the reduction of the magnetic signal (observed by comparing the saturation magnetization) and a different shape of the blocking temperature distribution obtained by magnetization versus temperature measurements. The evaluation of the reduction in magnetization can be important from the application perspective since it can affect the efficiency of the beads’ removal from the water medium after treatment. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Figure 1

12 pages, 4237 KiB  
Article
Ultra-Stable Anode-Free Na Metal Batteries Enabled by Al2O3-Functionalized Separators
by Han Wang, Yiheng Zhao, Jiaqi Huang, Lu Wang, Canglong Li and Yuejiao Chen
Batteries 2025, 11(8), 297; https://doi.org/10.3390/batteries11080297 - 4 Aug 2025
Abstract
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is [...] Read more.
The development of anode-free sodium metal batteries (AFSMBs) offers a promising pathway to achieve ultrahigh energy density and cost efficiency inherent to conventional sodium ion/metal batteries. However, irreversible Na plating/stripping and dendritic growth remain critical barriers. Herein, we demonstrate that separator engineering is a pivotal strategy for stabilizing AFSMBs. Through systematic evaluation of four separators—2500 separator (PP), 2325 separator (PP/PE/PP), glass fiber (GF), and an Al2O3-coated PE membrane, we reveal that the Al2O3-coated separator uniquely enables exceptional interfacial kinetics and morphological control. Na||Na symmetric cells with Al2O3 coated separator exhibit ultralow polarization (4.5 mV) and the highest exchange current density (1.77 × 10−2 mA cm−2), while the anode-free AlC-NFPP full cells retain 91.6% capacity after 150 cycles at 2C. Specifically, the Al2O3 coating homogenizes Na+ flux, promotes dense and planar Na deposition, and facilitates near-complete stripping with minimal “dead Na”. This work establishes ceramic-functionalized separators as essential enablers of practical high-energy AFSMBs. Full article
Show Figures

Figure 1

16 pages, 6440 KiB  
Article
Effect of Calcium Sulfate and Silica Gel on Vanadium Leaching Characteristics from Vanadium Titanomagnetite via Calcification Roasting–Sulfuric Acid Leaching: Formation Mechanism and Process Enhancement
by Jianli Chen, Yu Zheng, Benliu He, Shuzhong Chen, Shuai Wang, Feng Chen, Shiyuan Cui, Jing Liu, Lingzhi Yang, Yufeng Guo and Guanzhou Qiu
Metals 2025, 15(8), 870; https://doi.org/10.3390/met15080870 (registering DOI) - 3 Aug 2025
Viewed by 56
Abstract
Compared with vanadium extraction by sodium roasting followed by water leaching, the calcification roasting–sulfuric acid leaching method is considered a promising approach for the comprehensive utilization of vanadium titanomagnetite, as it avoids the introduction of alkali metals. However, during vanadium extraction by sulfuric [...] Read more.
Compared with vanadium extraction by sodium roasting followed by water leaching, the calcification roasting–sulfuric acid leaching method is considered a promising approach for the comprehensive utilization of vanadium titanomagnetite, as it avoids the introduction of alkali metals. However, during vanadium extraction by sulfuric acid heap leaching, the diffusion of leaching reagents and leaching products was hindered by the deposition of leaching solid products. To address this issue, this study systematically investigated the leaching kinetics and the mechanisms underlying the deposition of leaching solid products. The results indicated that vanadium leaching was governed by a combination of liquid film diffusion and internal diffusion through solid-phase products during days 0–2, and by internal diffusion alone from day 2 to day 9. The primary solid products formed during leaching were calcium sulfate and silica gel. Calcium sulfate precipitated and grew within the pore via two-dimensional nucleation, while silicates formed silica gel through dehydration. By optimizing the sulfuric acid leaching conditions—specifically, maintaining an H+ concentration of 2 mol/L, a leaching temperature of 40 °C, and a liquid-to-solid ratio of 5:1—the formation of calcium sulfate and silica gel was effectively suppressed. Under these conditions, the vanadium leaching efficiency reached 75.82%. Full article
(This article belongs to the Section Extractive Metallurgy)
23 pages, 3040 KiB  
Review
All-Solid-State Anode-Free Sodium Batteries: Challenges and Prospects
by Alexander M. Skundin and Tatiana L. Kulova
Batteries 2025, 11(8), 292; https://doi.org/10.3390/batteries11080292 - 2 Aug 2025
Viewed by 251
Abstract
All-solid-state anode-free sodium batteries present a special and especially important kind of energy storage device. Unfortunately, the industrial production of such batteries has been absent up to now, although the prospects of their development seem to be rather optimistic. The present mini review [...] Read more.
All-solid-state anode-free sodium batteries present a special and especially important kind of energy storage device. Unfortunately, the industrial production of such batteries has been absent up to now, although the prospects of their development seem to be rather optimistic. The present mini review considers the fundamental advantages of all-solid-state anode-free sodium batteries as well as challenges in their creation. The advantages of all-solid-state anode-free sodium batteries reveal themselves when comparing them with ordinary sodium-ion batteries, sodium metal batteries, sodium batteries with liquid electrolyte, and their lithium counterparts. Full article
Show Figures

Graphical abstract

12 pages, 3313 KiB  
Article
Graphene-Based Grid Patterns Fabricated via Direct Ink Writing for Flexible Transparent Electrodes
by Yongcheng Zheng, Hai Zi, Shuqi Wang, Shengming Yin and Xu Shen
Appl. Sci. 2025, 15(15), 8553; https://doi.org/10.3390/app15158553 (registering DOI) - 1 Aug 2025
Viewed by 145
Abstract
Graphene is considered one of the most promising flexible transparent electrode materials as it has high charge carrier mobility, high electrical conductivity, low optical absorption, excellent mechanical strength, and good bendability. However, graphene-based flexible transparent electrodes face a critical challenge in balancing electrical [...] Read more.
Graphene is considered one of the most promising flexible transparent electrode materials as it has high charge carrier mobility, high electrical conductivity, low optical absorption, excellent mechanical strength, and good bendability. However, graphene-based flexible transparent electrodes face a critical challenge in balancing electrical conductivity and optical transmittance. Here, we present a green and scalable direct ink writing (DIW) strategy to fabricate graphene grid patterns by optimizing ink formulation with sodium dodecyl sulfate (SDS) and ethanol. SDS eliminates the coffee ring effect via Marangoni flow, while ethanol enhances graphene flake alignment during hot-pressing, achieving a high conductivity of 5.22 × 105 S m−1. The grid-patterned graphene-based flexible transparent electrodes exhibit a low sheet resistance of 21.3 Ω/sq with 68.5% transmittance as well as a high stability in high-temperature and corrosive environments, surpassing most metal/graphene composites. This method avoids toxic solvents and high-temperature treatments, demonstrating excellent stability in harsh environments. Full article
Show Figures

Figure 1

12 pages, 1939 KiB  
Article
Fe3+-Modulated In Situ Formation of Hydrogels with Tunable Mechanical Properties
by Lihan Rong, Tianqi Guan, Xinyi Fan, Wenjie Zhi, Rui Zhou, Feng Li and Yuyan Liu
Gels 2025, 11(8), 586; https://doi.org/10.3390/gels11080586 - 30 Jul 2025
Viewed by 146
Abstract
Fe3+-incorporated hydrogels are particularly valuable for wearable devices due to their tunable mechanical properties and ionic conductivity. However, conventional immersion-based fabrication fundamentally limits hydrogel performance because of heterogeneous ion distribution, ionic leaching, and scalability limitations. To overcome these challenges, we report [...] Read more.
Fe3+-incorporated hydrogels are particularly valuable for wearable devices due to their tunable mechanical properties and ionic conductivity. However, conventional immersion-based fabrication fundamentally limits hydrogel performance because of heterogeneous ion distribution, ionic leaching, and scalability limitations. To overcome these challenges, we report a novel one-pot strategy where controlled amounts of Fe3+ are directly added to polyacrylamide-sodium acrylate (PAM-SA) precursor solutions, ensuring homogeneous ion distribution. Combining this with Photoinduced Electron/Energy Transfer Reversible Addition–Fragmentation Chain Transfer (PET-RAFT) polymerization enables efficient hydrogel fabrication under open-vessel conditions, improving its scalability. Fe3+ concentration achieves unprecedented modulation of mechanical properties: Young’s modulus (10 to 150 kPa), toughness (0.26 to 2.3 MJ/m3), and strain at break (800% to 2500%). The hydrogels also exhibit excellent compressibility (90% strain recovery), energy dissipation (>90% dissipation efficiency at optimal Fe3+ levels), and universal adhesion to diverse surfaces (plastic, metal, PTFE, and cardboard). Finally, these Fe3+-incorporated hydrogels demonstrated high effectiveness as strain sensors for monitoring finger/elbow movements, with gauge factors dependent on composition. This work provides a scalable, oxygen-tolerant route to tunable hydrogels for advanced wearable devices. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

18 pages, 2761 KiB  
Article
Dual-Functioned Magnesium-Enriched Biochar Hydrogels for Phosphate Recovery and Slow-Release Nutrient Delivery
by Nur Maisarah Mohamad Sarbani, Hiroyuki Harada, Mitsuru Aoyagi and Endar Hidayat
Water 2025, 17(15), 2235; https://doi.org/10.3390/w17152235 - 27 Jul 2025
Viewed by 256
Abstract
Excessive phosphate from agriculture and industry has led to widespread eutrophication, posing a serious environmental threat. To address this issue, metal-modified biochars have emerged as promising adsorbents due to their high affinity for phosphate ions. This study investigates the application of two magnesium-modified [...] Read more.
Excessive phosphate from agriculture and industry has led to widespread eutrophication, posing a serious environmental threat. To address this issue, metal-modified biochars have emerged as promising adsorbents due to their high affinity for phosphate ions. This study investigates the application of two magnesium-modified biochar hydrogels denoted as magnesium–bamboo biochar hydrogel (Mg-BBH) and magnesium–pulp biochar hydrogel (Mg-PBH) for phosphate recovery from aqueous solutions, with an additional aim as slow-release fertilizers. The adsorbents were synthesized by impregnating Mg-modified biochars into sodium-alginate-based hydrogel. The influence of initial phosphate concentration, contact time, and temperature were investigated to determine optimal adsorption conditions. Both adsorbents exhibited excellent adsorption performance, with maximum capacities of 309.96 mg PO4/g (Mg-BBH) and 234.69 mg PO4/g (Mg-PBH). Moreover, the adsorption performance of the adsorbents was greatly influenced by the magnesium content. The adsorption process followed the Temkin isotherm and pseudo-second-order kinetics, suggesting that the adsorption energy decreases proportionally with surface coverage and the phosphate uptake was governed by chemisorption. Thermodynamic study confirmed the process was spontaneous and endothermic at 40 °C. A slow-release study further demonstrated a great release of phosphate in soil over time. These findings highlight the dual functionality of Mg-BBH and Mg-PBH as effective materials for both phosphate recovery and controlled nutrient delivery, contributing to sustainable phosphate management. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

30 pages, 3715 KiB  
Article
The Inhibitory Effect and Adsorption Properties of Testagen Peptide on Copper Surfaces in Saline Environments: An Experimental and Computational Study
by Aurelian Dobriţescu, Adriana Samide, Nicoleta Cioateră, Oana Camelia Mic, Cătălina Ionescu, Irina Dăbuleanu, Cristian Tigae, Cezar Ionuţ Spînu and Bogdan Oprea
Molecules 2025, 30(15), 3141; https://doi.org/10.3390/molecules30153141 - 26 Jul 2025
Viewed by 432
Abstract
Experimental and theoretical studies were applied to investigate the adsorption properties of testagen (KEDG) peptide on copper surfaces in sodium chloride solution and, implicitly, its inhibition efficiency (IE) on metal corrosion. The tetrapeptide synthesized from the amino acids lysine (Lys), glutamic acid (Glu), [...] Read more.
Experimental and theoretical studies were applied to investigate the adsorption properties of testagen (KEDG) peptide on copper surfaces in sodium chloride solution and, implicitly, its inhibition efficiency (IE) on metal corrosion. The tetrapeptide synthesized from the amino acids lysine (Lys), glutamic acid (Glu), aspartic acid (Asp), and glycine (Gly), named as H-Lys-Glu-Asp-Gly-OH, achieved an inhibition efficiency of around 86% calculated from electrochemical measurements, making KEDG a promising new copper corrosion inhibitor. The experimental data were best fitted to the Freundlich adsorption isotherm. The standard free energy of adsorption (ΔGadso) reached the value of −30.86 kJ mol−1, which revealed a mixed action mechanism of tetrapeptide, namely, chemical and physical spontaneous adsorption. The copper surface characterization was performed using optical microscopy and SEM/EDS analysis. In the KEDG presence, post-corrosion, SEM images showed a network surface morphology including microdeposits with an acicular appearance, and EDS analysis highlighted an upper surface layer consisting of KEDG, sodium chloride, and copper corrosion compounds. The computational study based on DFT and Monte Carlo simulation confirmed the experimental results and concluded that the spontaneous adsorption equilibrium establishment was the consequence of the contribution of noncovalent (electrostatic, van der Waals) interactions and covalent bonds. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

17 pages, 1509 KiB  
Article
Nanocellulose Application for Metal Adsorption and Its Effect on Nanofiber Thermal Behavior
by Wanderson Ferreira Braz, Lucas Tonetti Teixeira, Rogério Navarro and Omar Ginoble Pandoli
Metals 2025, 15(8), 832; https://doi.org/10.3390/met15080832 - 25 Jul 2025
Viewed by 336
Abstract
Carboxylate (TCNF) and sulfonated (SCNC) cellulose nanofibers were synthesized and used as adsorbents for metallic cations in aqueous solutions: Na+ and Hg2+ (SCNC); Mg2+ and Hg2+ (TCNF). ICP-OES analysis of the liquid phase revealed metal removal efficiencies at room [...] Read more.
Carboxylate (TCNF) and sulfonated (SCNC) cellulose nanofibers were synthesized and used as adsorbents for metallic cations in aqueous solutions: Na+ and Hg2+ (SCNC); Mg2+ and Hg2+ (TCNF). ICP-OES analysis of the liquid phase revealed metal removal efficiencies at room temperature of 89.3% (Hg2+) and 100% (Mg2+) for TCNF, 35.2% (Hg2+) and 63.3% (Na+) for SCNC after 3 h of contact. Interestingly, the nanofibers exhibited a distinct thermal degradation profile (characterized by two main events) compared to that of cellulose, suggesting that their nanostructured morphology and surface functionalization may enhance thermal instability. Additionally, the presence of metals at its surface notably altered the thermal degradation kinetics, as observed for mercury and magnesium in TCNF. Finally, the results for SCNC strongly suggest that the mechanism for thermal degradation can also change, as observed for mercury and sodium, expressed through the appearance of a new DTG peak located around 300 °C. Full article
(This article belongs to the Special Issue Advances in Recycling of Valuable Metals—2nd Edition)
Show Figures

Figure 1

17 pages, 2863 KiB  
Article
Thermodynamic Aspects of Ion Exchange Properties of Bio-Resins from Phosphorylated Cellulose Fibers
by Lahbib Abenghal, Adrien Ratier, Hamid Lamoudan, Dan Belosinschi and François Brouillette
Polymers 2025, 17(15), 2022; https://doi.org/10.3390/polym17152022 - 24 Jul 2025
Viewed by 382
Abstract
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber [...] Read more.
Phosphorylated cellulose is proposed as a bio-resin for the removal of heavy metals, as a substitute for synthetic polymer-based materials. Phosphorylation is carried out using kraft pulp fibers as the cellulose source, with phosphate esters and urea as reactants to prevent significant fiber degradation. Herein, phosphorylated fibers, with three types of counterions (sodium, ammonium, or hydrogen), are used in adsorption trials involving four individual metals: nickel, copper, cadmium, and lead. The Langmuir isotherm model is applied to determine the maximum adsorption capacities at four different temperatures (10, 20, 30, and 50 °C), enabling the calculation of the Gibbs free energy (ΔG), entropy (ΔS), and enthalpy (ΔH) of adsorption. The results show that the adsorption capacity of phosphorylated fibers is equal or even higher than that of commercially available resins (1.7–2.9 vs. 2.4–2.6 mmol/g). However, the nature of the phosphate counterion plays an important role in the adsorption capacity, with the alkaline form showing a superior ion exchange capacity than the hybrid form and acid form (2.7–2.9 vs. 2.3–2.7 vs. 1.7–2.5 mmol/g). The thermodynamic analysis indicates the spontaneous (ΔG = (-)16–(-)30 kJ/mol) and endothermic nature of the adsorption process with positive changes in enthalpy (0.45–15.47 kJ/mol) and entropy (0.07–0.14 kJ/mol·K). These results confirm the high potential of phosphorylated lignocellulosic fibers for ion exchange applications, such as the removal of heavy metals from process or wastewaters. Full article
(This article belongs to the Special Issue New Advances in Cellulose and Wood Fibers)
Show Figures

Figure 1

16 pages, 1382 KiB  
Article
The Catalytic Consequence of Isolated Ni Single-Atoms in BEA Zeolite for Hydrogen Production and Olefin Conversion
by Yitong Zhao, Meng Liu, Yao Ning, Ying Zhang and Zhijie Wu
Catalysts 2025, 15(8), 703; https://doi.org/10.3390/catal15080703 - 24 Jul 2025
Viewed by 375
Abstract
In our previous work, we fabricated Ni single-atoms within Beta zeolite (Ni1@Beta-NO3) using NiNO3·6H2O as a metal precursor without any chelating agents, which exhibited exceptional performance in the selective hydrogenation of furfural. Owing to [...] Read more.
In our previous work, we fabricated Ni single-atoms within Beta zeolite (Ni1@Beta-NO3) using NiNO3·6H2O as a metal precursor without any chelating agents, which exhibited exceptional performance in the selective hydrogenation of furfural. Owing to the confinement effect, the as-encapsulated nickel species appears in the form of Ni0 and Niδ+, which implies its feasibility in metal catalysis and coordination catalysis. In the study reported herein, we further explored the hydrogen production and olefin oligomerization performance of Ni1@Beta-NO3. It was found that Ni1@Beta-NO3 demonstrated a high H2 generation turnover frequency (TOF) and low activation energy (Ea) in a sodium borohydride (NaBH4) hydrolysis reaction, with values of 331 min−1 and 30.1 kJ/mol, respectively. In ethylene dimerization, it exhibited a high butylene selectivity of 99.4% and a TOF as high as 5804 h−1. In propylene oligomerization, Ni1@Beta-NO3 demonstrated high selectivity (75.21%) of long-chain olefins (≥C6+), overcoming the problem of cracking reactions that occur during oligomerization using H-Beta. Additionally, as a comparison, the influence of the metal precursor (NiCl2) on the performance of the encapsulated Ni catalyst was also examined. This research expands the application scenarios of non-noble metal single-atom catalysts and provides significant assistance and potential for the production of H2 from hydrogen storage materials and the production of valuable chemicals. Full article
(This article belongs to the Special Issue State of the Art and Future Challenges in Zeolite Catalysts)
Show Figures

Graphical abstract

12 pages, 1897 KiB  
Article
Enhanced Extraction of Valuable Metals from Copper Slags by Disrupting Fayalite and Spinel Structures Using Sodium Sulfate
by Shafiq Alam, Behzod Tolibov, Madat Akhmedov, Umidjon Khujamov and Sardor Yarlakabov
Minerals 2025, 15(8), 771; https://doi.org/10.3390/min15080771 - 22 Jul 2025
Viewed by 774
Abstract
This study investigates the effects of sodium sulfate (Na2SO4) dosage, reaction temperature, and processing time on the structural decomposition of complex compounds in copper slag. Experimental results demonstrated that applying 20% Na2SO4 achieves an impressive decomposition [...] Read more.
This study investigates the effects of sodium sulfate (Na2SO4) dosage, reaction temperature, and processing time on the structural decomposition of complex compounds in copper slag. Experimental results demonstrated that applying 20% Na2SO4 achieves an impressive decomposition rate of 89%, highlighting its effectiveness in liberating valuable metals from the slag matrix. The optimal temperature for maximizing fayalite decomposition is determined to be 900 °C, which significantly enhances reaction kinetics and efficiency. Furthermore, extending the reaction time to 90 min resulted in the highest observed decomposition efficiency. Subsequent leaching experiments in sulfuric acid confirmed that the liberated metal transitioned into the solution phase was very effective, ensuring high metal recovery rates. The treated samples demonstrated metal recovery rates of 97% for copper (Cu), 96% for iron (Fe), and 93% for zinc (Zn). In contrast, the untreated samples exhibited considerably lower recovery rates, with copper at 61%, iron at 59%, and zinc at 65%. Additionally, this approach mitigates filtration challenges by preventing the formation of silica gel. These findings provide key operational parameters for optimizing metal recovery from copper slag and establish a solid foundation for advancing sustainable and efficient resource extraction research. Full article
(This article belongs to the Special Issue Hydrometallurgical Treatments of Copper Ores, By-Products and Waste)
Show Figures

Figure 1

15 pages, 3017 KiB  
Article
Strategies for the Recovery of Tungsten from Wolframite, Scheelite, or Wolframite–Scheelite Mixed Concentrates of Spanish Origin
by Francisco Jose Alguacil, Manuel Alonso, Luis Javier Lozano and Jose Ignacio Robla
Metals 2025, 15(8), 819; https://doi.org/10.3390/met15080819 - 22 Jul 2025
Viewed by 259
Abstract
Among the strategic materials considered by the EU, tungsten is included; thus, investigations about the recovery of this metal both from natural and recyclable sources are of interest. In this work, we presented an investigation about the recovery of tungsten based on the [...] Read more.
Among the strategic materials considered by the EU, tungsten is included; thus, investigations about the recovery of this metal both from natural and recyclable sources are of interest. In this work, we presented an investigation about the recovery of tungsten based on the treatment of three tungsten-bearing concentrates: scheelite (29% W), wolframite (50% W), and mixed scheelite–wolframite (29% W). All of these come from a cassiterite ore of Spanish origin. The characteristics of each concentrate pave the procedure to be followed in each case. In the case of the wolframite concentrate, the best results were derived from the leaching of the ore with NaOH solutions, whereas the treatment of the scheelite concentrate benefits from an acidic (HCl) leaching. The attack of the mixed concentrate is only possible by a previous roasting step (sodium carbonate and 700–800 °C) followed by a leaching step with water. In the acidic leaching, tungstic acid (H2WO4) was obtained, and the alkaline–water leaching produces Na2WO4 solutions from which pure synthesized scheelite is precipitated. Full article
Show Figures

Figure 1

18 pages, 1657 KiB  
Review
Alkaline Amino Acids for Salt Reduction in Surimi: A Review
by Tong Shi, Guxia Wang, Yu Xie, Wengang Jin, Xin Wang, Mengzhe Li, Yuanxiu Liu and Li Yuan
Foods 2025, 14(14), 2545; https://doi.org/10.3390/foods14142545 - 21 Jul 2025
Viewed by 349
Abstract
Surimi products are popular due to their high protein and low fat content. However, traditional processing methods rely on high concentrations of salt (2–3%) to maintain texture and stability, contributing to excessive sodium intake. As global health trends advance, developing green and low-salt [...] Read more.
Surimi products are popular due to their high protein and low fat content. However, traditional processing methods rely on high concentrations of salt (2–3%) to maintain texture and stability, contributing to excessive sodium intake. As global health trends advance, developing green and low-salt technologies while maintaining product quality has become a research focus. Alkaline amino acids regulate protein conformation and intermolecular interactions through charge shielding, hydrogen bond topology, metal chelation, and hydration to compensate for the defects of solubility, gelation, and emulsification stability in the low-salt system. This article systematically reviews the mechanisms and applications of alkaline amino acids in reducing salt and maintaining quality in surimi. Research indicates that alkaline amino acids regulate the conformational changes of myofibrillar proteins through electrostatic shielding, hydrogen bond topology construction, and metal chelation, significantly improving gel strength, water retention, and emulsion stability in low-salt systems, with the results comparable to those in high-salt systems. Future research should optimize addition strategies using computational simulations technologies and establish a quality and safety evaluation system to promote industrial application. This review provides a theoretical basis for the green processing and functional enhancement of surimi products, which could have significant academic and industrial value. Full article
(This article belongs to the Special Issue Innovative Technology of Aquatic Product Processing)
Show Figures

Figure 1

13 pages, 3335 KiB  
Article
Metallization of 3D-Printed PET and PETG Samples with Different Filling Densities of the Inner Layers
by Sonya Petrova, Diana Lazarova, Mihaela Georgieva, Maria Petrova, Dimiter Dobrev and Dimitre Ditchev
Materials 2025, 18(14), 3401; https://doi.org/10.3390/ma18143401 - 20 Jul 2025
Viewed by 323
Abstract
The aim of the study was to develop a suitable pre-treatment (and more specifically, the etching operation) of 3D-printed PET and PETG samples with different filling densities of the inner layers for subsequent electroless metallization. The influence of temperature, etching time, and sodium [...] Read more.
The aim of the study was to develop a suitable pre-treatment (and more specifically, the etching operation) of 3D-printed PET and PETG samples with different filling densities of the inner layers for subsequent electroless metallization. The influence of temperature, etching time, and sodium hydroxide concentration in the etching solution on the deposition rate, adhesion, and composition of Ni-P coatings was determined. The studies show that a high temperature and concentration of the etching solution do not improve the properties of the coating. The etching not only plays an important role in improving adhesion but also affects the composition and thickness of the nickel layer. It was also established how the degree of filling densities of the inner layers affects the uniformity, penetration depth, and thickness of electrolessly deposited Cu and Ni-P coatings on 3D PETG samples. Full article
(This article belongs to the Special Issue 3D Printing Materials in Civil Engineering)
Show Figures

Graphical abstract

Back to TopTop